
http://www.cambridge.org/0521791723

Foundations of Cryptography

Cryptography is concerned with the conceptualization, definition, and construction of
computing systems that address security concerns. The design of cryptographic systems
must be based on firm foundations. This book presents a rigorous and systematic
treatment of the foundational issues: defining cryptographic tasks and solving new
cryptographic problems using existing tools. It focuses on the basic mathematical tools:
computational difficulty (one-way functions), pseudorandomness, and zero-knowledge
proofs. The emphasis is on the clarification of fundamental concepts and on demonstrat-
ing the feasibility of solving cryptographic problems rather than on describing ad hoc
approaches.

The book is suitable for use in a graduate course on cryptography and as a reference
book for experts. The author assumes basic familiarity with the design and analysis of
algorithms; some knowledge of complexity theory and probability is also useful.

Oded Goldreich is Professor of Computer Science at the Weizmann Institute of Science
and incumbent of the Meyer W. Weisgal Professorial Chair. An active researcher, he
has written numerous papers on cryptography and is widely considered to be one of
the world experts in the area. He is an editor of Journal of Cryptology and SIAM
Journal on Computing and the author of Modern Cryptography, Probabilistic Proofs
and Pseudorandomness, published in 1999 by Springer-Verlag.

Foundations of Cryptography

Basic Tools

Oded Goldreich
Weizmann Institute of Science

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

First published in printed format

ISBN 0-521-79172-3 hardback
ISBN 0-511-04120-9 eBook

Oded Goldreich 2004

First published 2001
Reprinted with corrections 2003

2001

(netLibrary)

©

To Dana

Contents

List of Figures page xii
Preface xiii

1 Introduction 1

1.1. Cryptography: Main Topics 1
1.1.1. Encryption Schemes 2
1.1.2. Pseudorandom Generators 3
1.1.3. Digital Signatures 4
1.1.4. Fault-Tolerant Protocols and Zero-Knowledge Proofs 6

1.2. Some Background from Probability Theory 8
1.2.1. Notational Conventions 8
1.2.2. Three Inequalities 9

1.3. The Computational Model 12
1.3.1. P ,NP , andNP-Completeness 12
1.3.2. Probabilistic Polynomial Time 13
1.3.3. Non-Uniform Polynomial Time 16
1.3.4. Intractability Assumptions 19
1.3.5. Oracle Machines 20

1.4. Motivation to the Rigorous Treatment 21
1.4.1. The Need for a Rigorous Treatment 21
1.4.2. Practical Consequences of the Rigorous Treatment 23
1.4.3. The Tendency to Be Conservative 24

1.5. Miscellaneous 25
1.5.1. Historical Notes 25
1.5.2. Suggestions for Further Reading 27
1.5.3. Open Problems 27
1.5.4. Exercises 28

vii

CONTENTS

2 Computational Difficulty 30

2.1. One-Way Functions: Motivation 31
2.2. One-Way Functions: Definitions 32

2.2.1. Strong One-Way Functions 32
2.2.2. Weak One-Way Functions 35
2.2.3. Two Useful Length Conventions 35
2.2.4. Candidates for One-Way Functions 40
2.2.5. Non-Uniformly One-Way Functions 41

2.3 Weak One-Way Functions Imply Strong Ones 43
2.3.1. The Construction and Its Analysis (Proof of Theorem 2.3.2) 44
2.3.2. Illustration by a Toy Example 48
2.3.3. Discussion 50

2.4. One-Way Functions: Variations 51
2.4.1.∗∗ Universal One-Way Function 52
2.4.2. One-Way Functions as Collections 53
2.4.3. Examples of One-Way Collections 55
2.4.4. Trapdoor One-Way Permutations 58
2.4.5.∗∗ Claw-Free Functions 60
2.4.6.∗∗ On Proposing Candidates 63

2.5. Hard-Core Predicates 64
2.5.1. Definition 64
2.5.2. Hard-Core Predicates for Any One-Way Function 65
2.5.3.∗∗ Hard-Core Functions 74

2.6.∗∗ Efficient Amplification of One-Way Functions 78
2.6.1. The Construction 80
2.6.2. Analysis 81

2.7. Miscellaneous 88
2.7.1. Historical Notes 89
2.7.2. Suggestions for Further Reading 89
2.7.3. Open Problems 91
2.7.4. Exercises 92

3 Pseudorandom Generators 101

3.1. Motivating Discussion 102
3.1.1. Computational Approaches to Randomness 102
3.1.2. A Rigorous Approach to Pseudorandom Generators 103

3.2. Computational Indistinguishability 103
3.2.1. Definition 104
3.2.2. Relation to Statistical Closeness 106
3.2.3. Indistinguishability by Repeated Experiments 107
3.2.4.∗∗ Indistinguishability by Circuits 111
3.2.5. Pseudorandom Ensembles 112

3.3. Definitions of Pseudorandom Generators 112
3.3.1. Standard Definition of Pseudorandom Generators 113

viii

CONTENTS

3.3.2. Increasing the Expansion Factor 114
3.3.3.∗∗ Variable-Output Pseudorandom Generators 118
3.3.4. The Applicability of Pseudorandom Generators 119
3.3.5. Pseudorandomness and Unpredictability 119
3.3.6. Pseudorandom Generators Imply One-Way Functions 123

3.4. Constructions Based on One-Way Permutations 124
3.4.1. Construction Based on a Single Permutation 124
3.4.2. Construction Based on Collections of Permutations 131
3.4.3.∗∗ Using Hard-Core Functions Rather than Predicates 134

3.5.∗∗ Constructions Based on One-Way Functions 135
3.5.1. Using 1-1 One-Way Functions 135
3.5.2. Using Regular One-Way Functions 141
3.5.3. Going Beyond Regular One-Way Functions 147

3.6. Pseudorandom Functions 148
3.6.1. Definitions 148
3.6.2. Construction 150
3.6.3. Applications: A General Methodology 157
3.6.4.∗∗ Generalizations 158

3.7.∗∗ Pseudorandom Permutations 164
3.7.1. Definitions 164
3.7.2. Construction 166

3.8. Miscellaneous 169
3.8.1. Historical Notes 169
3.8.2. Suggestions for Further Reading 170
3.8.3. Open Problems 172
3.8.4. Exercises 172

4 Zero-Knowledge Proof Systems 184

4.1. Zero-Knowledge Proofs: Motivation 185
4.1.1. The Notion of a Proof 187
4.1.2. Gaining Knowledge 189

4.2. Interactive Proof Systems 190
4.2.1. Definition 190
4.2.2. An Example (Graph Non-Isomorphism in IP) 195
4.2.3.∗∗ The Structure of the Class IP 198
4.2.4. Augmentation of the Model 199

4.3. Zero-Knowledge Proofs: Definitions 200
4.3.1. Perfect and Computational Zero-Knowledge 200
4.3.2. An Example (Graph Isomorphism in PZK) 207
4.3.3. Zero-Knowledge with Respect to Auxiliary Inputs 213
4.3.4. Sequential Composition of Zero-Knowledge Proofs 216

4.4. Zero-Knowledge Proofs for NP 223
4.4.1. Commitment Schemes 223
4.4.2. Zero-Knowledge Proof of Graph Coloring 228

ix

CONTENTS

4.4.3. The General Result and Some Applications 240
4.4.4. Second-Level Considerations 243

4.5.∗∗ Negative Results 246
4.5.1. On the Importance of Interaction and Randomness 247
4.5.2. Limitations of Unconditional Results 248
4.5.3. Limitations of Statistical ZK Proofs 250
4.5.4. Zero-Knowledge and Parallel Composition 251

4.6.∗∗ Witness Indistinguishability and Hiding 254
4.6.1. Definitions 254
4.6.2. Parallel Composition 258
4.6.3. Constructions 259
4.6.4. Applications 261

4.7.∗∗ Proofs of Knowledge 262
4.7.1. Definition 262
4.7.2. Reducing the Knowledge Error 267
4.7.3. Zero-Knowledge Proofs of Knowledge forNP 268
4.7.4. Applications 269
4.7.5. Proofs of Identity (Identification Schemes) 270
4.7.6. Strong Proofs of Knowledge 274

4.8.∗∗ Computationally Sound Proofs (Arguments) 277
4.8.1. Definition 277
4.8.2. Perfectly Hiding Commitment Schemes 278
4.8.3. Perfect Zero-Knowledge Arguments forNP 284
4.8.4. Arguments of Poly-Logarithmic Efficiency 286

4.9.∗∗ Constant-Round Zero-Knowledge Proofs 288
4.9.1. Using Commitment Schemes with Perfect Secrecy 289
4.9.2. Bounding the Power of Cheating Provers 294

4.10.∗∗ Non-Interactive Zero-Knowledge Proofs 298
4.10.1. Basic Definitions 299
4.10.2. Constructions 300
4.10.3. Extensions 306

4.11.∗∗ Multi-Prover Zero-Knowledge Proofs 311
4.11.1. Definitions 311
4.11.2. Two-Sender Commitment Schemes 313
4.11.3. Perfect Zero-Knowledge forNP 317
4.11.4. Applications 319

4.12. Miscellaneous 320
4.12.1. Historical Notes 320
4.12.2. Suggestions for Further Reading 322
4.12.3. Open Problems 323
4.12.4. Exercises 323

Appendix A: Background in Computational Number Theory 331

A.1. Prime Numbers 331
A.1.1. Quadratic Residues Modulo a Prime 331

x

CONTENTS

A.1.2. Extracting Square Roots Modulo a Prime 332
A.1.3. Primality Testers 332
A.1.4. On Uniform Selection of Primes 333

A.2. Composite Numbers 334
A.2.1. Quadratic Residues Modulo a Composite 335
A.2.2. Extracting Square Roots Modulo a Composite 335
A.2.3. The Legendre and Jacobi Symbols 336
A.2.4. Blum Integers and Their Quadratic-Residue Structure 337

Appendix B: Brief Outline of Volume 2 338

B.1. Encryption: Brief Summary 338
B.1.1. Definitions 338
B.1.2. Constructions 340
B.1.3. Beyond Eavesdropping Security 343
B.1.4. Some Suggestions 345

B.2. Signatures: Brief Summary 345
B.2.1. Definitions 346
B.2.2. Constructions 347
B.2.3. Some Suggestions 349

B.3. Cryptographic Protocols: Brief Summary 350
B.3.1. Definitions 350
B.3.2. Constructions 352
B.3.3. Some Suggestions 353

Bibliography 355
Index 367

Note: Asterisks throughout Contents indicate advanced material.

xi

List of Figures

0.1 Organization of the work page xvi
0.2 Rough organization of this volume xvii
0.3 Plan for one-semester course on the foundations of cryptography xviii
1.1 Cryptography: two points of view 25
2.1 One-way functions: an illustration 31
2.2 The naive view versus the actual proof of Proposition 2.3.3 49
2.3 The essence of Construction 2.6.3 81
3.1 Pseudorandom generators: an illustration 102
3.2 Construction 3.3.2, as operating on seed s0 ∈ {0, 1}n 114
3.3 Hybrid H k

n as a modification of Construction 3.3.2 115
3.4 Construction 3.4.2, as operating on seed s0 ∈ {0, 1}n 129
3.5 Construction 3.6.5, for n= 3 151
3.6 The high-level structure of the DES 166
4.1 Zero-knowledge proofs: an illustration 185
4.2 The advanced sections of this chapter 185
4.3 The dependence structure of this chapter 186
B.1 The Blum-Goldwasser public-key encryption scheme [35] 342

xii

Preface

It is possible to build a cabin with no foundations,
but not a lasting building.

Eng. Isidor Goldreich (1906–1995)

Cryptography is concerned with the construction of schemes that should be able to
withstand any abuse. Such schemes are constructed so as to maintain a desired func-
tionality, even under malicious attempts aimed at making them deviate from their
prescribed functionality.

The design of cryptographic schemes is a very difficult task. One cannot rely on
intuitions regarding the typical state of the environment in which a system will operate.
For sure, an adversary attacking the system will try to manipulate the environment into
untypical states. Nor can one be content with countermeasures designed to withstand
specific attacks, because the adversary (who will act after the design of the system has
been completed) will try to attack the schemes in ways that typically will be different
from the ones the designer envisioned. Although the validity of the foregoing assertions
seems self-evident, still some people hope that, in practice, ignoring these tautologies
will not result in actual damage. Experience shows that such hopes are rarely met; cryp-
tographic schemes based on make-believe are broken, typically sooner rather than later.

In view of the foregoing, we believe that it makes little sense to make assumptions
regarding the specific strategy that an adversary may use. The only assumptions that can
be justified refer to the computational abilities of the adversary. Furthermore, it is our
opinion that the design of cryptographic systems has to be based on firm foundations,
whereas ad hoc approaches and heuristics are a very dangerous way to go. A heuristic
may make sense when the designer has a very good idea about the environment in
which a scheme is to operate, but a cryptographic scheme will have to operate in a
maliciously selected environment that typically will transcend the designer’s view.

This book is aimed at presenting firm foundations for cryptography. The foundations
of cryptography are the paradigms, approaches, and techniques used to conceptualize,
define, and provide solutions to natural “security concerns.” We shall present some of
these paradigms, approaches, and techniques, as well as some of the fundamental results

xiii

PREFACE

obtained by using them. Our emphasis is on the clarification of fundamental concepts
and on demonstrating the feasibility of solving several central cryptographic problems.

Solving a cryptographic problem (or addressing a security concern) is a two-stage
process consisting of a definitional stage and a constructive stage. First, in the defini-
tional stage, the functionality underlying the natural concern must be identified and an
adequate cryptographic problem must be defined. Trying to list all undesired situations
is infeasible and prone to error. Instead, one should define the functionality in terms of
operation in an imaginary ideal model and then require a candidate solution to emulate
this operation in the real, clearly defined model (which will specify the adversary’s
abilities). Once the definitional stage is completed, one proceeds to construct a system
that will satisfy the definition. Such a construction may use some simpler tools, and its
security is to be proved relying on the features of these tools. (In practice, of course,
such a scheme also may need to satisfy some specific efficiency requirements.)

This book focuses on several archetypical cryptographic problems (e.g., encryption
and signature schemes) and on several central tools (e.g., computational difficulty, pseu-
dorandomness, and zero-knowledge proofs). For each of these problems (resp., tools),
we start by presenting the natural concern underlying it (resp., its intuitive objective),
then define the problem (resp., tool), and finally demonstrate that the problem can be
solved (resp., the tool can be constructed). In the last step, our focus is on demonstrat-
ing the feasibility of solving the problem, not on providing a practical solution. As a
secondary concern, we typically discuss the level of practicality (or impracticality) of
the given (or known) solution.

Computational Difficulty

The specific constructs mentioned earlier (as well as most constructs in this area) can
exist only if some sort of computational hardness (i.e., difficulty) exists. Specifically,
all these problems and tools require (either explicitly or implicitly) the ability to gen-
erate instances of hard problems. Such ability is captured in the definition of one-way
functions (see further discussion in Section 2.1). Thus, one-way functions are the very
minimum needed for doing most sorts of cryptography. As we shall see, they actually
suffice for doing much of cryptography (and the rest can be done by augmentations and
extensions of the assumption that one-way functions exist).

Our current state of understanding of efficient computation does not allow us to prove
that one-way functions exist. In particular, the existence of one-way functions implies
that NP is not contained in BPP ⊇ P (not even “on the average”), which would
resolve the most famous open problem of computer science. Thus, we have no choice
(at this stage of history) but to assume that one-way functions exist. As justification for
this assumption we can only offer the combined beliefs of hundreds (or thousands) of
researchers. Furthermore, these beliefs concern a simply stated assumption, and their
validity is supported by several widely believed conjectures that are central to some
fields (e.g., the conjecture that factoring integers is difficult is central to computational
number theory).

As we need assumptions anyhow, why not just assume what we want, that is, the
existence of a solution to some natural cryptographic problem? Well, first we need

xiv

PREFACE

to know what we want: As stated earlier, we must first clarify what exactly we do
want; that is, we must go through the typically complex definitional stage. But once
this stage is completed, can we just assume that the definition derived can be met?
Not really: The mere fact that a definition has been derived does not mean that it can
be met, and one can easily define objects that cannot exist (without this fact being
obvious in the definition). The way to demonstrate that a definition is viable (and so
the intuitive security concern can be satisfied at all) is to construct a solution based on
a better-understood assumption (i.e., one that is more common and widely believed).
For example, looking at the definition of zero-knowledge proofs, it is not a priori clear
that such proofs exist at all (in a non-trivial sense). The non-triviality of the notion
was first demonstrated by presenting a zero-knowledge proof system for statements
regarding Quadratic Residuosity that are believed to be difficult to verify (without extra
information). Furthermore, contrary to prior belief, it was later shown that the existence
of one-way functions implies that anyNP-statement can be proved in zero-knowledge.
Thus, facts that were not at all known to hold (and were even believed to be false) were
shown to hold by reduction to widely believed assumptions (without which most of
modern cryptography would collapse anyhow). To summarize, not all assumptions are
equal, and so reducing a complex, new, and doubtful assumption to a widely believed
simple (or even merely simpler) assumption is of great value. Furthermore, reducing the
solution of a new task to the assumed security of a well-known primitive task typically
means providing a construction that, using the known primitive, will solve the new
task. This means that we not only know (or assume) that the new task is solvable but
also have a solution based on a primitive that, being well known, typically has several
candidate implementations.

Structure and Prerequisites

Our aim is to present the basic concepts, techniques, and results in cryptography. As
stated earlier, our emphasis is on the clarification of fundamental concepts and the rela-
tionships among them. This is done in a way independent of the particularities of some
popular number-theoretic examples. These particular examples played a central role in
the development of the field and still offer the most practical implementations of all
cryptographic primitives, but this does not mean that the presentation has to be linked
to them. On the contrary, we believe that concepts are best clarified when presented
at an abstract level, decoupled from specific implementations. Thus, the most relevant
background for this book is provided by basic knowledge of algorithms (including
randomized ones), computability, and elementary probability theory. Background on
(computational) number theory, which is required for specific implementations of cer-
tain constructs, is not really required here (yet a short appendix presenting the most
relevant facts is included in this volume so as to support the few examples of imple-
mentations presented here).

Organization of the work. This work is organized into three parts (see Figure 0.1),
to be presented in three volumes: Basic Tools, Basic Applications, and Beyond the
Basics. This first volume contains an introductory chapter as well as the first part

xv

PREFACE

Volume 1: Introduction and Basic Tools
Chapter 1: Introduction
Chapter 2: Computational Difficulty (One-Way Functions)
Chapter 3: Pseudorandom Generators
Chapter 4: Zero-Knowledge Proof Systems

Volume 2: Basic Applications
Chapter 5: Encryption Schemes
Chapter 6: Signature Schemes
Chapter 7: General Cryptographic Protocols

Volume 3: Beyond the Basics
· · ·

Figure 0.1: Organization of the work.

(basic tools). It provides chapters on computational difficulty (one-way functions),
pseudorandomness, and zero-knowledge proofs. These basic tools will be used for the
basic applications in the second volume, which will consist of encryption, signatures,
and general cryptographic protocols.

The partition of the work into three volumes is a logical one. Furthermore, it offers
the advantage of publishing the first part without waiting for the completion of the other
parts. Similarly, we hope to complete the second volume within a couple of years and
publish it without waiting for the third volume.

Organization of this first volume. This first volume consists of an introductory chap-
ter (Chapter 1), followed by chapters on computational difficulty (one-way functions),
pseudorandomness, and zero-knowledge proofs (Chapters 2–4, respectively). Also in-
cluded are two appendixes, one of them providing a brief summary of Volume 2.
Figure 0.2 depicts the high-level structure of this first volume.

Historical notes, suggestions for further reading, some open problems, and some
exercises are provided at the end of each chapter. The exercises are mostly designed to
assist and test one’s basic understanding of the main text, not to test or inspire creativity.
The open problems are fairly well known; still, we recommend that one check their
current status (e.g., at our updated-notices web site).

Web site for notices regarding this book. We intend to maintain a web site listing
corrections of various types. The location of the site is

http://www.wisdom.weizmann.ac.il/∼oded/foc-book.html

Using This Book

The book is intended to serve as both a textbook and a reference text. That is, it is aimed
at serving both the beginner and the expert. In order to achieve that goal, the presentation
of the basic material is very detailed, so as to allow a typical undergraduate in computer
science to follow it. An advanced student (and certainly an expert) will find the pace in
these parts far too slow. However, an attempt has been made to allow the latter reader
to easily skip details that are obvious to him or her. In particular, proofs typically are
presented in a modular way. We start with a high-level sketch of the main ideas and

xvi

PREFACE

Chapter 1: Introduction
Main topics covered by the book (Sec. 1.1)
Background on probability and computation (Sec. 1.2 and 1.3)
Motivation to the rigorous treatment (Sec. 1.4)

Chapter 2: Computational Difficulty (One-Way Functions)
Motivation and definitions (Sec. 2.1 and 2.2)
One-way functions: weak implies strong (Sec. 2.3)
Variants (Sec. 2.4) and advanced material (Sec. 2.6)
Hard-core predicates (Sec. 2.5)

Chapter 3: Pseudorandom Generators
Motivation and definitions (Sec. 3.1–3.3)
Constructions based on one-way permutations (Sec. 3.4)
Pseudorandom functions (Sec. 3.6)
Advanced material (Sec. 3.5 and 3.7)

Chapter 4: Zero-Knowledge Proofs
Motivation and definitions (Sec. 4.1–4.3)
Zero-knowledge proofs for NP (Sec. 4.4)
Advanced material (Sec. 4.5–4.11)

Appendix A: Background in Computational Number Theory
Appendix B: Brief Outline of Volume 2
Bibliography and Index

Figure 0.2: Rough organization of this volume.

only later pass to the technical details. The transition from high-level description to
lower-level details is typically indicated by phrases such as “details follow.”

In a few places, we provide straightforward but tedious details in indented paragraphs
such as this one. In some other (even fewer) places, such paragraphs provide technical
proofs of claims that are of marginal relevance to the topic of the book.

More advanced material typically is presented at a faster pace and with fewer details.
Thus, we hope that the attempt to satisfy a wide range of readers will not harm any of
them.

Teaching. The material presented in this book is, on one hand, way beyond what one
may want to cover in a semester course, and on the other hand it falls very short of what
one may want to know about cryptography in general. To assist these conflicting needs,
we make a distinction between basic and advanced material and provide suggestions
for further reading (in the last section of each chapter). In particular, those sections
marked by an asterisk are intended for advanced reading.

Volumes 1 and 2 of this work are intended to provide all the material needed for a
course on the foundations of cryptography. For a one-semester course, the instructor
definitely will need to skip all advanced material (marked by asterisks) and perhaps even
some basic material; see the suggestions in Figure 0.3. This should allow, depending on
the class, coverage of the basic material at a reasonable level (i.e., all material marked
as “main” and some of the “optional”). Volumes 1 and 2 can also serve as a textbook
for a two-semester course. Either way, this first volume covers only the first half of the
material for such a course. The second half will be covered in Volume 2. Meanwhile,

xvii

PREFACE

Each lecture consists of one hour. Lectures 1–15 are covered by this first volume. Lectures
16–28 will be covered by the second volume.

Lecture 1: Introduction, background, etc.
(depending on class)

Lectures 2–5: Computational Difficulty (One-Way Functions)
Main: Definition (Sec. 2.2), Hard-core predicates (Sec. 2.5)
Optional: Weak implies strong (Sec. 2.3), and Sec. 2.4.2–2.4.4

Lectures 6–10: Pseudorandom Generators
Main: Definitional issues and a construction (Sec. 3.2–3.4)
Optional: Pseudorandom functions (Sec. 3.6)

Lectures 11–15: Zero-Knowledge Proofs
Main: Some definitions and a construction (Sec. 4.2.1, 4.3.1, 4.4.1–4.4.3)
Optional: Sec. 4.2.2, 4.3.2, 4.3.3, 4.3.4, 4.4.4

Lectures 16–20: Encryption Schemes
Definitions and a construction (consult Appendix B.1.1–B.1.2)
(See also fragments of a draft for the encryption chapter [99].)

Lectures 21–24: Signature Schemes
Definition and a construction (consult Appendix B.2)
(See also fragments of a draft for the signatures chapter [100].)

Lectures 25–28: General Cryptographic Protocols
The definitional approach and a general construction (sketches).
(Consult Appendix B.3; see also [98].)

Figure 0.3: Plan for one-semester course on the foundations of cryptography.

we suggest the use of other sources for the second half. A brief summary of Volume
2 and recommendations for alternative sources are given in Appendix B. (In addition,
fragments and/or preliminary drafts for the three chapters of Volume 2 are available
from earlier texts, [99], [100], and [98], respectively.)

A course based solely on the material in this first volume is indeed possible, but
such a course cannot be considered a stand-alone course in cryptography because this
volume does not consider at all the basic tasks of encryption and signatures.

Practice. The aim of this work is to provide sound theoretical foundations for cryp-
tography. As argued earlier, such foundations are necessary for any sound practice
of cryptography. Indeed, sound practice requires more than theoretical foundations,
whereas this work makes no attempt to provide anything beyond the latter. However,
given sound foundations, one can learn and evaluate various practical suggestions that
appear elsewhere (e.g., [158]). On the other hand, the absence of sound foundations
will result in inability to critically evaluate practical suggestions, which in turn will
lead to unsound decisions. Nothing could be more harmful to the design of schemes
that need to withstand adversarial attacks than misconceptions about such attacks.

Relationship to another book by the author. A frequently asked question concerns
the relationship of this work to my text Modern Cryptography, Probabilistic Proofs
and Pseudorandomness [97]. That text consists of three brief introductions to the re-
lated topics in the title. Specifically, in Chapter 1 it provides a brief (i.e., 30-page)

xviii

PREFACE

summary of this work. The other two chapters of Modern Cryptography, Probabilistic
Proofs and Pseudorandomness [97] provide a wider perspective on two topics men-
tioned in this volume (i.e., probabilistic proofs and pseudorandomness). Further com-
ments on the latter aspect are provided in the relevant chapters of this volume.

Acknowledgments

First of all, I would like to thank three remarkable people who had a tremendous
influence on my professional development: Shimon Even introduced me to theoretical
computer science and closely guided my first steps. Silvio Micali and Shafi Goldwasser
led my way in the evolving foundations of cryptography and shared with me their
ongoing efforts toward further development of those foundations.

I have collaborated with many researchers, but I feel that my work with Benny Chor
and Avi Wigderson has had the most important impact on my professional development
and career. I would like to thank them both for their indispensable contributions to our
joint research and for the excitement and pleasure of working with them.

Leonid Levin deserves special thanks as well. I have had many interesting discussions
with Leonid over the years, and sometimes it has taken me too long to realize how helpful
those discussions have been.

Next, I would like to thank a few colleagues and friends with whom I have had
significant interactions regarding cryptography and related topics. These include Noga
Alon, Boaz Barak, Mihir Bellare, Ran Canetti, Ivan Damgard, Uri Feige, Shai Halevi,
Johan Hastad, Amir Herzberg, Russell Impagliazzo, Joe Kilian, Hugo Krawcyzk,
Eyal Kushilevitz, Yehuda Lindell, Mike Luby, Daniele Micciancio, Moni Naor, Noam
Nisan, Andrew Odlyzko, Yair Oren, Rafail Ostrovsky, Erez Petrank, Birgit Pfitzmann,
Omer Reingold, Ron Rivest, Amit Sahai, Claus Schnorr, Adi Shamir, Victor Shoup,
Madhu Sudan, Luca Trevisan, Salil Vadhan, Ronen Vainish, Yacob Yacobi, and David
Zuckerman.

Even assuming I have not overlooked people with whom I have had significant
interactions on topics related to this book, the complete list of people to whom I
am indebted is far more extensive. It certainly includes the authors of many papers
mentioned in the Bibliography. It also includes the authors of many cryptography-
related papers that I have not cited and the authors of many papers regarding the theory
of computation at large (a theory taken for granted in this book).

Finally, I would like to thank Alon Rosen for carefully reading this manuscript and
suggesting numerous corrections.

xix

CHAPTER 1

Introduction

In this chapter we briefly discuss the goals of cryptography (Section 1.1). In particular,
we discuss the basic problems of secure encryption, digital signatures, and fault-tolerant
protocols. These problems lead to the notions of pseudorandom generators and zero-
knowledge proofs, which are discussed as well.

Our approach to cryptography is based on computational complexity. Hence, this
introductory chapter also contains a section presenting the computational models used
throughout the book (Section 1.3). Likewise, this chapter contains a section presenting
some elementary background from probability theory that is used extensively in the
book (Section 1.2).

Finally, we motivate the rigorous approach employed throughout this book and
discuss some of its aspects (Section 1.4).

Teaching Tip. Parts of Section 1.4 may be more suitable for the last lecture (i.e., as
part of the concluding remarks) than for the first one (i.e., as part of the introductory
remarks). This refers specifically to Sections 1.4.2 and 1.4.3.

1.1. Cryptography: Main Topics

Historically, the term “cryptography” has been associated with the problem of design-
ing and analyzing encryption schemes (i.e., schemes that provide secret communica-
tion over insecure communication media). However, since the 1970s, problems such
as constructing unforgeable digital signatures and designing fault-tolerant protocols
have also been considered as falling within the domain of cryptography. In fact, cryptog-
raphy can be viewed as concerned with the design of any system that needs to withstand
malicious attempts to abuse it. Furthermore, cryptography as redefined here makes es-
sential use of some tools that need to be treated in a book on the subject. Notable
examples include one-way functions, pseudorandom generators, and zero-knowledge
proofs. In this section we briefly discuss these terms.

1

INTRODUCTION

We start by mentioning that much of the content of this book relies on the assump-
tion that one-way functions exist. The definition of one-way functions captures the sort
of computational difficulty that is inherent to our entire approach to cryptography, an
approach that attempts to capitalize on the computational limitations of any real-life
adversary. Thus, if nothing is difficult, then this approach fails. However, if, as is widely
believed, not only do hard problems exist but also instances of them can be efficiently
generated, then these hard problems can be “put to work.” Thus, “algorithmically bad
news” (by which hard computational problems exist) implies good news for cryptogra-
phy. Chapter 2 is devoted to the definition and manipulation of computational difficulty
in the form of one-way functions.

1.1.1. Encryption Schemes

The problem of providing secret communication over insecure media is the most tra-
ditional and basic problem of cryptography. The setting consists of two parties com-
municating over a channel that possibly may be tapped by an adversary, called the
wire-tapper. The parties wish to exchange information with each other, but keep the
wire-tapper as ignorant as possible regarding the content of this information. Loosely
speaking, an encryption scheme is a protocol allowing these parties to communicate se-
cretly with each other. Typically, the encryption scheme consists of a pair of algorithms.
One algorithm, called encryption, is applied by the sender (i.e., the party sending a mes-
sage), while the other algorithm, called decryption, is applied by the receiver. Hence,
in order to send a message, the sender first applies the encryption algorithm to the
message and sends the result, called the ciphertext, over the channel. Upon receiving a
ciphertext, the other party (i.e., the receiver) applies the decryption algorithm to it and
retrieves the original message (called the plaintext).

In order for this scheme to provide secret communication, the communicating parties
(at least the receiver) must know something that is not known to the wire-tapper. (Other-
wise, the wire-tapper could decrypt the ciphertext exactly as done by the receiver.) This
extra knowledge may take the form of the decryption algorithm itself or some parameters
and/or auxiliary inputs used by the decryption algorithm. We call this extra knowledge
the decryption key. Note that, without loss of generality, we can assume that the decryp-
tion algorithm is known to the wire-tapper and that the decryption algorithm needs two
inputs: a ciphertext and a decryption key. We stress that the existence of a secret key, not
known to the wire-tapper, is merely a necessary condition for secret communication.

Evaluating the “security” of an encryption scheme is a very tricky business. A
preliminary task is to understand what “security” is (i.e., to properly define what is
meant by this intuitive term). Two approaches to defining security are known. The first
(“classic”) approach is information-theoretic. It is concerned with the “information”
about the plaintext that is “present” in the ciphertext. Loosely speaking, if the ciphertext
contains information about the plaintext, then the encryption scheme is considered
insecure. It has been shown that such a high (i.e., “perfect”) level of security can be
achieved only if the key in use is at least as long as the total length of the messages sent
via the encryption scheme. The fact that the key has to be longer than the information
exchanged using it is indeed a drastic limitation on the applicability of such encryption

2

1.1. CRYPTOGRAPHY: MAIN TOPICS

schemes. This is especially true when huge amounts of information need to be secretly
communicated.

The second (“modern”) approach, as followed in this book, is based on computational
complexity. This approach is based on the fact that it does not matter whether or not
the ciphertext contains information about the plaintext, but rather whether or not this
information can be efficiently extracted. In other words, instead of asking whether or not
it is possible for the wire-tapper to extract specific information, we ask whether or not it
is feasible for the wire-tapper to extract this information. It turns out that the new (i.e.,
“computational-complexity”) approach offers security even if the key is much shorter
than the total length of the messages sent via the encryption scheme. For example, one
can use “pseudorandom generators” (discussed later) that expand short keys into much
longer “pseudo-keys,” so that the latter are as secure as “real keys” of comparable length.

In addition, the computational-complexity approach allows the introduction of con-
cepts and primitives that cannot exist under the information-theoretic approach. A
typical example is the concept of public-key encryption schemes. Note that in the pre-
ceding discussion we concentrated on the decryption algorithm and its key. It can be
shown that the encryption algorithm must get, in addition to the message, an auxiliary
input that depends on the decryption key. This auxiliary input is called the encryp-
tion key. Traditional encryption schemes, and in particular all the encryption schemes
used over the millennia preceding the 1980s, operate with an encryption key equal
to the decryption key. Hence, the wire-tapper in these schemes must be ignorant of
the encryption key, and consequently the key-distribution problem arises (i.e., how
two parties wishing to communicate over an insecure channel can agree on a secret
encryption/decryption key).1 The computational-complexity approach allows the in-
troduction of encryption schemes in which the encryption key can be known to the
wire-tapper without compromising the security of the scheme. Clearly, the decryption
key in such schemes is different from the encryption key, and furthermore it is infeasi-
ble to compute the decryption key from the encryption key. Such encryption schemes,
called public-key schemes, have the advantage of trivially resolving the key-distribution
problem, because the encryption key can be publicized.

In Chapter 5, which will appear in the second volume of this work and will be devoted
to encryption schemes, we shall discuss private-key and public-key encryption schemes.
Much attention is devoted to defining the security of encryption schemes. Finally, con-
structions of secure encryption schemes based on various intractability assumptions are
presented. Some of the constructions presented are based on pseudorandom generators,
which are discussed in Chapter 3. Other constructions use specific one-way functions
such as the RSA function and/or the operation of squaring modulo a composite number.

1.1.2. Pseudorandom Generators

It turns out that pseudorandom generators play a central role in the construction of
encryption schemes (and related schemes). In particular, pseudorandom generators

1The traditional solution is to exchange the key through an alternative channel that is secure, alas “more
expensive to use,” for example, by a convoy.

3

INTRODUCTION

yield simple constructions of private-key encryption schemes, and this observation is
often used in practice (usually implicitly).

Although the term “pseudorandom generators” is commonly used in practice, both in
the context of cryptography and in the much wider context of probabilistic procedures,
it is seldom associated with a precise meaning. We believe that using a term without
clearly stating what it means is dangerous in general and particularly so in a tricky
business such as cryptography. Hence, a precise treatment of pseudorandom generators
is central to cryptography.

Loosely speaking, a pseudorandom generator is a deterministic algorithm that ex-
pands short random seeds into much longer bit sequences that appear to be “random”
(although they are not). In other words, although the output of a pseudorandom generator
is not really random, it is infeasible to tell the difference. It turns out that pseudoran-
domness and computational difficulty are linked in an even more fundamental manner,
as pseudorandom generators can be constructed based on various intractability assump-
tions. Furthermore, the main result in this area asserts that pseudorandom generators
exist if and only if one-way functions exist.

Chapter 3, devoted to pseudorandom generators, starts with a treatment of the con-
cept of computational indistinguishability. Pseudorandom generators are defined next
and are constructed using special types of one-way functions (defined in Chapter 2).
Pseudorandom functions are defined and constructed as well. The latter offer a host of
additional applications.

1.1.3. Digital Signatures

A notion that did not exist in the pre-computerized world is that of a “digital signature.”
The need to discuss digital signatures arose with the introduction of computer commu-
nication in the business environment in which parties need to commit themselves to
proposals and/or declarations they make. Discussions of “unforgeable signatures” also
took place in previous centuries, but the objects of discussion were handwritten signa-
tures, not digital ones, and the discussion was not perceived as related to cryptography.

Relations between encryption and signature methods became possible with the
“digitalization” of both and the introduction of the computational-complexity approach
to security. Loosely speaking, a scheme for unforgeable signatures requires

• that each user be able to efficiently generate his or her own signature on documents of
his or her choice,

• that each user be able to efficiently verify whether or not a given string is a signature of
another (specific) user on a specific document, and

• that no one be able to efficiently produce the signatures of other users to documents that
those users did not sign.

We stress that the formulation of unforgeable digital signatures also provides a clear
statement of the essential ingredients of handwritten signatures. Indeed, the ingre-
dients are each person’s ability to sign for himself or herself, a universally agreed
verification procedure, and the belief (or assertion) that it is infeasible (or at least

4

1.1. CRYPTOGRAPHY: MAIN TOPICS

difficult) to forge signatures in a manner that could pass the verification procedure. It
is difficult to state to what extent handwritten signatures meet these requirements. In
contrast, our discussion of digital signatures will supply precise statements concern-
ing the extent to which digital signatures meet the foregoing requirements. Further-
more, schemes for unforgeable digital signatures can be constructed using the same
computational assumptions as used in the construction of (private-key) encryption
schemes.

In Chapter 6, which will appear in the second volume of this work and will be
devoted to signature schemes, much attention will be focused on defining the security
(i.e., unforgeability) of these schemes. Next, constructions of unforgeable signature
schemes based on various intractability assumptions will be presented. In addition, we
shall treat the related problem of message authentication.

Message Authentication

Message authentication is a task related to the setting considered for encryption schemes
(i.e., communication over an insecure channel). This time, we consider the case of an
active adversary who is monitoring the channel and may alter the messages sent on
it. The parties communicating through this insecure channel wish to authenticate the
messages they send so that the intended recipient can tell an original message (sent by
the sender) from a modified one (i.e., modified by the adversary). Loosely speaking, a
scheme for message authentication requires

• that each of the communicating parties be able to efficiently generate an authentication
tag for any message of his or her choice,

• that each of the communicating parties be able to efficiently verify whether or not a given
string is an authentication tag for a given message, and

• that no external adversary (i.e., a party other than the communicating parties) be able
to efficiently produce authentication tags to messages not sent by the communicating
parties.

In some sense, “message authentication” is similar to a digital signature. The difference
between the two is that in the setting of message authentication it is not required that
third parties (who may be dishonest) be able to verify the validity of authentication
tags produced by the designated users, whereas in the setting of signature schemes it is
required that such third parties be able to verify the validity of signatures produced by
other users. Hence, digital signatures provide a solution to the message-authentication
problem. On the other hand, a message-authentication scheme does not necessarily
constitute a digital-signature scheme.

Signatures Widen the Scope of Cryptography

Considering the problem of digital signatures as belonging to cryptography widens
the scope of this area from the specific secret-communication problem to a variety
of problems concerned with limiting the “gain” that can be achieved by “dishonest”
behavior of parties (who are either internal or external to the system). Specifically:

5

INTRODUCTION

• In the secret-communication problem (solved by use of encryption schemes), one wishes
to reduce, as much as possible, the information that a potential wire-tapper can extract
from the communication between two designated users. In this case, the designated
system consists of the two communicating parties, and the wire-tapper is considered as
an external (“dishonest”) party.

• In the message-authentication problem, one aims at prohibiting any (external) wire-
tapper from modifying the communication between two (designated) users.

• In the signature problem, one aims at providing all users of a system a way of making
self-binding statements and of ensuring that one user cannot make statements that would
bind another user. In this case, the designated system consists of the set of all users, and
a potential forger is considered as an internal yet dishonest user.

Hence, in the wide sense, cryptography is concerned with any problem in which one
wishes to limit the effects of dishonest users. A general treatment of such problems is
captured by the treatment of “fault-tolerant” (or cryptographic) protocols.

1.1.4. Fault-Tolerant Protocols and Zero-Knowledge Proofs

A discussion of signature schemes naturally leads to a discussion of cryptographic pro-
tocols, because it is a natural concern to ask under what circumstances one party should
provide its signature to another party. In particular, problems like mutual simultaneous
commitment (e.g., contract signing) arise naturally. Another type of problem, motivated
by the use of computer communication in the business environment, consists of “secure
implementation” of protocols (e.g., implementing secret and incorruptible voting).

Simultaneity Problems

A typical example of a simultaneity problem is that of simultaneous exchange of secrets,
of which contract signing is a special case. The setting for a simultaneous exchange
of secrets consists of two parties, each holding a “secret.” The goal is to execute a
protocol such that if both parties follow it correctly, then at termination each will hold
its counterpart’s secret, and in any case (even if one party cheats) the first party will
hold the second party’s secret if and only if the second party holds the first party’s
secret. Perfectly simultaneous exchange of secrets can be achieved only if we assume
the existence of third parties that are trusted to some extent. In fact, simultaneous
exchange of secrets can easily be achieved using the active participation of a trusted
third party: Each party sends its secret to the trusted third party (using a secure channel).
The third party, on receiving both secrets, sends the first party’s secret to the second
party and the second party’s secret to the first party. There are two problems with this
solution:

1. The solution requires the active participation of an “external” party in all cases (i.e., also
in case both parties are honest). We note that other solutions requiring milder forms of
participation of external parties do exist.

2. The solution requires the existence of a totally trusted third entity. In some applications,
such an entity does not exist. Nevertheless, in the sequel we shall discuss the problem

6

1.1. CRYPTOGRAPHY: MAIN TOPICS

of implementing a trusted third party by a set of users with an honest majority (even if
the identity of the honest users is not known).

Secure Implementation of Functionalities and Trusted Parties

A different type of protocol problem is concerned with the secure implementation of
functionalities. To be more specific, we discuss the problem of evaluating a func-
tion of local inputs each of which is held by a different user. An illustrative and
motivating example is voting, in which the function is majority, and the local input
held by user A is a single bit representing the vote of user A (e.g., “pro” or “con”).
Loosely speaking, a protocol for securely evaluating a specific function must satisfy the
following:

• Privacy: No party can “gain information” on the input of other parties, beyond what is
deduced from the value of the function.

• Robustness: No party can “influence” the value of the function, beyond the influence
exerted by selecting its own input.

It is sometimes required that these conditions hold with respect to “small” (e.g., minor-
ity) coalitions of parties (instead of single parties).

Clearly, if one of the users is known to be totally trustworthy, then there exists a
simple solution to the problem of secure evaluation of any function. Each user simply
sends its input to the trusted party (using a secure channel), who, upon receiving all
inputs, computes the function, sends the outcome to all users, and erases all interme-
diate computations (including the inputs received) from its memory. Certainly, it is
unrealistic to assume that a party can be trusted to such an extent (e.g., that it will
voluntarily erase what it has “learned”). Nevertheless, the problem of implementing
secure function evaluation reduces to the problem of implementing a trusted party.
It turns out that a trusted party can be implemented by a set of users with an hon-
est majority (even if the identity of the honest users is not known). This is indeed a
major result in this field, and much of Chapter 7, which will appear in the second
volume of this work, will be devoted to formulating and proving it (as well as variants
of it).

Zero-Knowledge as a Paradigm

A major tool in the construction of cryptographic protocols is the concept of zero-
knowledge proof systems and the fact that zero-knowledge proof systems exist for all
languages in NP (provided that one-way functions exist). Loosely speaking, a zero-
knowledge proof yields nothing but the validity of the assertion. Zero-knowledge proofs
provide a tool for “forcing” parties to follow a given protocol properly.

To illustrate the role of zero-knowledge proofs, consider a setting in which a party,
called Alice, upon receiving an encrypted message from Bob, is to send Carol the
least significant bit of the message. Clearly, if Alice sends only the (least significant)
bit (of the message), then there is no way for Carol to know Alice did not cheat.
Alice could prove that she did not cheat by revealing to Carol the entire message as
well as its decryption key, but that would yield information far beyond what had been

7

INTRODUCTION

required. A much better idea is to let Alice augment the bit she sends Carol with a
zero-knowledge proof that this bit is indeed the least significant bit of the message. We
stress that the foregoing statement is of the “NP type” (since the proof specified earlier
can be efficiently verified), and therefore the existence of zero-knowledge proofs for
NP-statements implies that the foregoing statement can be proved without revealing
anything beyond its validity.

The focus of Chapter 4, devoted to zero-knowledge proofs, is on the foregoing result
(i.e., the construction of zero-knowledge proofs for any NP-statement). In addition,
we shall consider numerous variants and aspects of the notion of zero-knowledge proofs
and their effects on the applicability of this notion.

1.2. Some Background from Probability Theory

Probability plays a central role in cryptography. In particular, probability is essential
in order to allow a discussion of information or lack of information (i.e., secrecy). We
assume that the reader is familiar with the basic notions of probability theory. In this
section, we merely present the probabilistic notations that are used throughout this book
and three useful probabilistic inequalities.

1.2.1. Notational Conventions

Throughout this entire book we shall refer to only discrete probability distributions.
Typically, the probability space consists of the set of all strings of a certain length
�, taken with uniform probability distribution. That is, the sample space is the set
of all �-bit-long strings, and each such string is assigned probability measure 2−�.
Traditionally, functions from the sample space to the reals are called random variables.
Abusing standard terminology, we allow ourselves to use the term random variable also
when referring to functions mapping the sample space into the set of binary strings.
We often do not specify the probability space, but rather talk directly about random
variables. For example, we may say that X is a random variable assigned values in
the set of all strings, so that Pr[X = 00] = 1

4 and Pr[X = 111] = 3
4 . (Such a random

variable can be defined over the sample space {0, 1}2, so that X (11) = 00 and X (00) =
X (01) = X (10) = 111.) In most cases the probability space consists of all strings of
a particular length. Typically, these strings represent random choices made by some
randomized process (see next section), and the random variable is the output of the
process.

How to Read Probabilistic Statements. All our probabilistic statements refer to
functions of random variables that are defined beforehand. Typically, we shall write
Pr[f (X) = 1], where X is a random variable defined beforehand (and f is a function).
An important convention is that all occurrences of a given symbol in a probabilistic
statement refer to the same (unique) random variable. Hence, if B(·, ·) is a Boolean
expression depending on two variables and X is a random variable, then Pr[B(X, X)]
denotes the probability that B(x, x) holds when x is chosen with probability Pr[X = x].

8

1.2. SOME BACKGROUND FROM PROBABILITY THEORY

Namely,

Pr[B(X, X)] =
∑

x

Pr[X = x] · χ (B(x, x))

where χ is an indicator function, so that χ (B) = 1 if event B holds, and equals zero oth-
erwise. For example, for every random variable X , we have Pr[X = X] = 1. We stress
that if one wishes to discuss the probability that B(x, y) holds when x and y are chosen
independently with the same probability distribution, then one needs to define two inde-
pendent random variables, both with the same probability distribution. Hence, if X and
Y are two independent random variables, then Pr[B(X, Y)] denotes the probability that
B(x, y) holds when the pair (x, y) is chosen with probability Pr[X = x] · Pr[Y = y].
Namely,

Pr[B(X, Y)] =
∑
x,y

Pr[X = x] · Pr[Y = y] · χ (B(x, y))

For example, for every two independent random variables, X and Y , we have
Pr[X = Y] = 1 only if both X and Y are trivial (i.e., assign the entire probability
mass to a single string).

Typical Random Variables. Throughout this entire book, Un denotes a random vari-
able uniformly distributed over the set of strings of length n. Namely, Pr[Un =α] equals
2−n if α ∈ {0, 1}n , and equals zero otherwise. In addition, we shall occasionally use
random variables (arbitrarily) distributed over {0, 1}n or {0, 1}l(n) for some function l :
N→N. Such random variables are typically denoted by Xn , Yn , Zn , etc. We stress that in
some cases Xn is distributed over {0, 1}n , whereas in others it is distributed over {0, 1}l(n),
for some function l(·), which is typically a polynomial. Another type of random variable,
the output of a randomized algorithm on a fixed input, is discussed in Section 1.3.

1.2.2. Three Inequalities

The following probabilistic inequalities will be very useful in the course of this book.
All inequalities refer to random variables that are assigned real values. The most ba-
sic inequality is the Markov inequality, which asserts that for random variables with
bounded maximum or minimum values, some relation must exist between the devia-
tion of a value from the expectation of the random variable and the probability that the

random variable is assigned this value. Specifically, letting E(X) def= ∑v Pr[X=v] · v
denote the expectation of the random variable X , we have the following:

Markov Inequality: Let X be a non-negative random variable and v a real
number. Then

Pr[X ≥ v] ≤ E(X)

v

Equivalently, Pr[X ≥ r · E(X)] ≤ 1
r .

9

INTRODUCTION

Proof:

E(X) =
∑

x

Pr[X = x] · x

≥
∑
x<v

Pr[X = x] · 0+
∑
x≥v

Pr[X = x] · v

= Pr[X ≥ v] · v
The claim follows. �

The Markov inequality is typically used in cases in which one knows very little about
the distribution of the random variable; it suffices to know its expectation and at least
one bound on the range of its values. See Exercise 1.

Using Markov’s inequality, one gets a “possibly stronger” bound for the deviation
of a random variable from its expectation. This bound, called Chebyshev’s inequal-
ity, is useful provided one has additional knowledge concerning the random variable
(specifically, a good upper bound on its variance). For a random variable X of finite
expectation, we denote by Var(X) def= E[(X − E(X))2] the variance of X and observe
that Var(X) = E(X 2)− E(X)2.

Chebyshev’s Inequality: Let X be a random variable, and δ > 0. Then

Pr[|X − E(X)| ≥ δ] ≤ Var(X)

δ2

Proof: We define a random variable Y
def= (X − E(X))2 and apply the Markov

inequality. We get

Pr[|X − E(X)| ≥ δ] = Pr[(X − E(X))2 ≥ δ2]

≤ E[(X − E(X))2]

δ2

and the claim follows. �

Chebyshev’s inequality is particularly useful for analysis of the error probability of
approximation via repeated sampling. It suffices to assume that the samples are picked
in a pairwise-independent manner.

Corollary (Pairwise-Independent Sampling): Let X1, X2, . . . , Xn be pairwise-
independent random variables with the same expectation, denotedµ, and the same
variance, denoted σ 2. Then, for every ε > 0,

Pr

[∣∣∣∣∑n
i=1 Xi

n
− µ

∣∣∣∣ ≥ ε

]
≤ σ 2

ε2n

The Xi ’s are called pairwise-independent if for every i �= j and all a and b, it holds
that Pr[Xi = a ∧ X j = b] equals Pr[Xi = a] · Pr[X j = b].

10

1.2. SOME BACKGROUND FROM PROBABILITY THEORY

Proof: Define the random variables Xi
def= Xi − E(Xi). Note that the Xi ’s are

pairwise-independent and each has zero expectation. Applying Chebyshev’s in-
equality to the random variable defined by the sum

∑n
i=1

Xi
n , and using the linearity

of the expectation operator, we get

Pr

[∣∣∣∣∣
n∑

i=1

Xi

n
− µ

∣∣∣∣∣ ≥ ε

]
≤ Var

[∑n
i=1

Xi
n

]
ε2

=
E
[(∑n

i=1 Xi

)2
]

ε2 · n2

Now (again using the linearity of E)

E

(n∑
i=1

Xi

)2
 = n∑

i=1

E
[

X
2
i

]+ ∑
1≤i �= j≤n

E[Xi X j]

By the pairwise independence of the Xi ’s, we get E[Xi X j] = E[Xi] · E[X j], and
using E[Xi] = 0, we get

E

(n∑
i=1

Xi

)2
 = n · σ 2

The corollary follows. �

Using pairwise-independent sampling, the error probability in the approximation
is decreasing linearly with the number of sample points. Using totally independent
sampling points, the error probability in the approximation can be shown to decrease
exponentially with the number of sample points. (The random variables X1, X2, . . . , Xn

are said to be totally independent if for every sequence a1, a2, . . . , an it holds that
Pr[∧n

i=1 Xi = ai] equals
∏n

i=1 Pr[Xi = ai].) Probability bounds supporting the forego-
ing statement are given next. The first bound, commonly referred to as the Chernoff
bound, concerns 0-1 random variables (i.e., random variables that are assigned values
of either 0 or 1).

Chernoff Bound: Let p ≤ 1
2 , and let X1, X2, . . . , Xn be independent 0-1 random

variables, so that Pr[Xi = 1] = p for each i . Then for all ε, 0 < ε ≤ p(1− p),
we have

Pr

[∣∣∣∣∑n
i=1 Xi

n
− p

∣∣∣∣ > ε

]
< 2 · e−

ε2
2p(1−p) ·n

We shall usually apply the bound with a constant p ≈ 1
2 . In this case, n independent

samples give an approximation that deviates by ε from the expectation with probability δ
that is exponentially decreasing with ε2n. Such an approximation is called an (ε, δ)-
approximation and can be achieved using n = O(ε−2 · log(1/δ)) sample points. It is
important to remember that the sufficient number of sample points is polynomially
related to ε−1 and logarithmically related to δ−1. So using poly(n) many samples, the

11

INTRODUCTION

error probability (i.e., δ) can be made negligible (as a function in n), but the accuracy of
the estimation (i.e., ε) can be bounded above only by any fixed polynomial fraction (but
cannot be made negligible).2 We stress that the dependence of the number of samples
on ε is not better than in the case of pairwise-independent sampling; the advantage of
totally independent samples lies only in the dependence of the number of samples on δ.

A more general bound, useful for approximation of the expectation of a general
random variable (not necessarily 0-1), is given as follows:

Hoefding Inequality:3 Let X1, X2, . . . , Xn be n independent random variables
with the same probability distribution, each ranging over the (real) interval [a, b],
and let µ denote the expected value of each of these variables. Then, for every
ε > 0,

Pr

[∣∣∣∣∑n
i=1 Xi

n
− µ

∣∣∣∣ > ε

]
< 2 · e

− 2ε2

(b−a)2
·n

The Hoefding inequality is useful for estimating the average value of a function defined
over a large set of values, especially when the desired error probability needs to be
negligible. It can be applied provided we can efficiently sample the set and have a
bound on the possible values (of the function). See Exercise 2.

1.3. The Computational Model

Our approach to cryptography is heavily based on computational complexity. Thus,
some background on computational complexity is required for our discussion of cryp-
tography. In this section, we briefly recall the definitions of the complexity classes P ,
NP , BPP , and “non-uniform P” (i.e., P/poly) and the concept of oracle machines.
In addition, we discuss the types of intractability assumptions used throughout the rest
of this book.

1.3.1. P, NP, and NP-Completeness

A conservative approach to computing devices associates efficient computations with
the complexity class P . Jumping ahead, we note that the approach taken in this book
is a more liberal one in that it allows the computing devices to be randomized.

Definition 1.3.1 (Complexity ClassPP): A language L is recognizable in (deter-
ministic) polynomial time if there exists a deterministic Turing machine M and
a polynomial p(·) such that
� on input a string x, machine M halts after at most p(|x |) steps, and
� M(x) = 1 if and only if x ∈ L.

2Here and in the rest of this book, we denote by poly() some fixed but unspecified polynomial.
3A more general form requires the Xi ’s to be independent, but not necessarily identical, and uses

µ
def= 1

n

∑n
i=1 E(Xi). See [6, app. A].

12

1.3. THE COMPUTATIONAL MODEL

P is the class of languages that can be recognized in (deterministic) polynomial
time.

Likewise, the complexity classNP is associated with computational problems having
solutions that, once given, can be efficiently tested for validity. It is customary to
define NP as the class of languages that can be recognized by a non-deterministic
polynomial-time Turing machine. A more fundamental formulation ofNP is given by
the following equivalent definition.

Definition 1.3.2 (Complexity ClassNPNPNP): A language L is inNP if there exists
a Boolean relation RL ⊆ {0, 1}∗ × {0, 1}∗ and a polynomial p(·) such that RL can
be recognized in (deterministic) polynomial time, and x ∈ L if and only if there
exists a y such that |y| ≤ p(|x |) and (x, y) ∈ RL. Such a y is called a witness
for membership of x ∈ L.

Thus,NP consists of the set of languages for which there exist short proofs of member-
ship that can be efficiently verified. It is widely believed that P �= NP , and resolution
of this issue is certainly the most intriguing open problem in computer science. If indeed
P �= NP , then there exists a language L ∈ NP such that every algorithm recognizing
L will have a super-polynomial running time in the worst case. Certainly, all NP-
complete languages (defined next) will have super-polynomial-time complexity in the
worst case.

Definition 1.3.3 (NPNPNP-Completeness): A language is NP-complete if it is in
NP and every language in NP is polynomially reducible to it. A language L
is polynomially reducible to a language L ′ if there exists a polynomial-time-
computable function f such that x ∈ L if and only if f (x) ∈ L ′.

Among the languages known to be NP-complete are Satisfiability (of propositional
formulae), Graph Colorability, and Graph Hamiltonicity.

1.3.2. Probabilistic Polynomial Time

Randomized algorithms play a central role in cryptography. They are needed in or-
der to allow the legitimate parties to generate secrets and are therefore allowed also
to the adversaries. The reader is assumed to be familiar and comfortable with such
algorithms.

1.3.2.1. Randomized Algorithms: An Example

To demonstrate the notion of a randomized algorithm, we present a simple randomized
algorithm for deciding whether or not a given (undirected) graph is connected (i.e., there
is a path between each pair of vertices in the graph). We comment that the following
algorithm is interesting because it uses significantly less space than the standard (BFS
or DFS-based) deterministic algorithms.

13

INTRODUCTION

Testing whether or not a graph is connected is easily reduced to testing connectivity
between any given pair of vertices.4 Thus, we focus on the task of determining whether
or not two given vertices are connected in a given graph.

Algorithm. On input a graph G = (V, E) and two vertices, s and t , we take a random
walk of length O(|V | · |E |), starting at vertex s, and test at each step whether or not
vertex t is encountered. If vertex t is ever encountered, then the algorithm will accept;
otherwise, it will reject. By a random walk we mean that at each step we uniformly select
one of the edges incident at the current vertex and traverse this edge to the other endpoint.

Analysis. Clearly, if s is not connected to t in the graph G, then the probability that the
foregoing algorithm will accept will be zero. The harder part of the analysis is to prove
that if s is connected to t in the graph G, then the algorithm will accept with probability
at least 2

3 . (The proof is deferred to Exercise 3.) Thus, either way, the algorithm will err
with probability at most 1

3 . The error probability can be further reduced by invoking
the algorithm several times (using fresh random choices in each try).

1.3.2.2. Randomized Algorithms: Two Points of View

Randomized algorithms (machines) can be viewed in two equivalent ways. One way of
viewing randomized algorithms is to allow the algorithm to make random moves (i.e.,
“toss coins”). Formally, this can be modeled by a Turing machine in which the transition
function maps pairs of the form (〈state〉, 〈symbol〉) to two possible triples of the form
(〈state〉, 〈symbol〉, 〈direction〉). The next step for such a machine is determined by a
random choice of one of these triples. Namely, to make a step, the machine chooses at
random (with probability 1

2 for each possibility) either the first triple or the second one
and then acts accordingly. These random choices are called the internal coin tosses of
the machine. The output of a probabilistic machine M on input x is not a string but
rather a random variable that assumes strings as possible values. This random variable,
denoted M(x), is induced by the internal coin tosses of M . By Pr[M(x) = y] we mean
the probability that machine M on input x will output y. The probability space is that
of all possible outcomes for the internal coin tosses taken with uniform probability
distribution.5 Because we consider only polynomial-time machines, we can assume,
without loss of generality, that the number of coin tosses made by M on input x is
independent of their outcome and is denoted by tM (x). We denote by Mr (x) the output
of M on input x when r is the outcome of its internal coin tosses. Then Pr[M(x) = y]

4The space complexity of such a reduction is low; we merely need to store the names of two vertices (currently
being tested). Alas, the time complexity is indeed relatively high; we need to invoke the two-vertex tester

(
n
2

)
times, where n is the number of vertices in the graph.

5This sentence is slightly more problematic than it seems. The simple case is when, on input x , machine M
always makes the same number of internal coin tosses (independent of their outcome). In general, the number of
coin tosses may depend on the outcome of prior coin tosses. Still, for every r , the probability that the outcome of
the sequence of internal coin tosses will be r equals 2−| r| if the machine does not terminate when the sequence
of outcomes is a strict prefix of r , and equals zero otherwise. Fortunately, because we consider polynomial-time
machines, we can modify all machines so that they will satisfy the structure of the simple case (and thus avoid the
foregoing complication).

14

1.3. THE COMPUTATIONAL MODEL

is merely the fraction of r ∈ {0, 1}tM (x) for which Mr (x) = y. Namely,

Pr[M(x) = y] =
∣∣{r ∈ {0, 1}tM (x) : Mr (x) = y

}∣∣
2tM (x)

The second way of looking at randomized algorithms is to view the outcome of
the internal coin tosses of the machine as an auxiliary input. Namely, we consider
deterministic machines with two inputs. The first input plays the role of the “real
input” (i.e., x) of the first approach, while the second input plays the role of a possible
outcome for a sequence of internal coin tosses. Thus, the notation M(x, r) corresponds
to the notation Mr (x) used earlier. In the second approach, we consider the probability
distribution of M(x, r) for any fixed x and a uniformly chosen r ∈ {0, 1}tM (x). Pictorially,
here the coin tosses are not “internal” but rather are supplied to the machine by an
“external” coin-tossing device.

Before continuing, let it be noted that we should not confuse the fictitious model of
“non-deterministic” machines with the model of probabilistic machines. The former is
an unrealistic model that is useful for talking about search problems whose solutions
can be efficiently verified (e.g., the definition of NP), whereas the latter is a realistic
model of computation.

Throughout this entire book, unless otherwise stated, a probabilistic polynomial-
time Turing machine means a probabilistic machine that always (i.e., independently of
the outcome of its internal coin tosses) halts after a polynomial (in the length of the
input) number of steps. It follows that the number of coin tosses for a probabilistic
polynomial-time machine M is bounded by a polynomial, denoted TM , in its input
length. Finally, without loss of generality, we assume that on input x the machine
always makes TM (|x |) coin tosses.

1.3.2.3. Associating “Efficient” Computations with BPPBPPBPP
The basic thesis underlying our discussion is the association of “efficient” computations
with probabilistic polynomial-time computations. That is, we shall consider as efficient
only randomized algorithms (i.e., probabilistic Turing machines) for which the running
time is bounded by a polynomial in the length of the input.

Thesis: Efficient computations correspond to computations that can be carried
out by probabilistic polynomial-time Turing machines.

A complexity class capturing these computations is the class, denoted BPP , of
languages recognizable (with high probability) by probabilistic polynomial-time Turing
machines. The probability refers to the event in which the machine makes the correct
verdict on string x .

Definition 1.3.4 (Bounded-Probability Polynomial Time, BPPBPPBPP): We say that
L is recognized by the probabilistic polynomial-time Turing machine M if

� for every x ∈ L it holds that Pr[M(x) = 1] ≥ 2
3 , and

� for every x �∈ L it holds that Pr[M(x) = 0] ≥ 2
3 .

15

INTRODUCTION

BPP is the class of languages that can be recognized by a probabilistic polynomial-
time Turing machine (i.e., randomized algorithm).

The phrase “bounded-probability” indicates that the success probability is bounded
away from 1

2 . In fact, in Definition 1.3.4, replacing the constant 2
3 by any other constant

greater than 1
2 will not change the class defined; see Exercise 4. Likewise, the constant

2
3 can be replaced by 1− 2−|x | and the class will remain invariant; see Exercise 5.
We conclude that languages in BPP can be recognized by probabilistic polynomial-
time algorithms with a negligible error probability. We use negligible to describe any
function that decreases faster than the reciprocal of any polynomial:

Negligible Functions

Definition 1.3.5 (Negligible): We call a function µ : N → R negligible if for
every positive polynomial p(·) there exists an N such that for all n > N,

µ(n) <
1

p(n)

For example, the functions 2−
√

n and n− log2 n are negligible (as functions in n). Neg-
ligible functions stay that way when multiplied by any fixed polynomial. Namely, for
every negligible function µ and any polynomial p, the function µ′(n) def= p(n) · µ(n)
is negligible. It follows that an event that occurs with negligible probability would
be highly unlikely to occur even if we repeated the experiment polynomially many
times.

Convention. In Definition 1.3.5 we used the phrase “there exists an N such that for
all n > N .” In the future we shall use the shorter and less tedious phrase “for all
sufficiently large n.” This makes one quantifier (i.e., the ∃N) implicit, and that is
particularly beneficial in statements that contain several (more essential) quantifiers.

1.3.3. Non-Uniform Polynomial Time

A stronger (and actually unrealistic) model of efficient computation is that of non-
uniform polynomial time. This model will be used only in the negative way, namely,
for saying that even such machines cannot do something (specifically, even if the
adversary employs such a machine, it cannot cause harm).

A non-uniform polynomial-time “machine” is a pair (M, a), where M is a two-input
polynomial-time Turing machine and a = a1, a2, . . . is an infinite sequence of strings
such that |an| = poly(n).6 For every x , we consider the computation of machine M
on the input pair (x, a|x |). Intuitively, an can be thought of as extra “advice” supplied
from the “outside” (together with the input x ∈ {0, 1}n). We stress that machine M

6Recall that poly() stands for some (unspecified) fixed polynomial; that is, we say that there exists some
polynomial p such that |an | = p(n) for all n ∈ N.

16

1.3. THE COMPUTATIONAL MODEL

gets the same advice (i.e., an) on all inputs of the same length (i.e., n). Intuitively,
the advice an may be useful in some cases (i.e., for some computations on inputs of
length n), but it is unlikely to encode enough information to be useful for all 2n possible
inputs.

Another way of looking at non-uniform polynomial-time “machines” is to consider
an infinite sequence of Turing machines, M1, M2, . . . , such that both the length of the
description of Mn and its running time on inputs of length n are bounded by polynomials
in n (fixed for the entire sequence). Machine Mn is used only on inputs of length n. Note
the correspondence between the two ways of looking at non-uniform polynomial time.
The pair (M, (a1, a2, . . .)) (of the first definition) gives rise to an infinite sequence of

machines Ma1, Ma2, . . . , where Ma|x |(x) def= M(x, a|x |). On the other hand, a sequence
M1, M2, . . . (as in the second definition) gives rise to a pair (U, (〈M1〉, 〈M2〉, . . .)),
where U is the universal Turing machine and 〈Mn〉 is the description of machine Mn

(i.e., U (x, 〈M|x |〉) = M|x |(x)).
In the first sentence of this Section 1.3.3, non-uniform polynomial time was referred

to as a stronger model than probabilistic polynomial time. That statement is valid in
many contexts (e.g., language recognition, as seen later in Theorem 1.3.7). In particular,
it will be valid in all contexts we discuss in this book. So we have the following informal
“meta-theorem”:

Meta-theorem: Whatever can be achieved by probabilistic polynomial-time
machines can be achieved by non-uniform polynomial-time “machines.”

The meta-theorem clearly is wrong if we think of the task of tossing coins. So
the meta-theorem should not be understood literally. It is merely an indication of real
theorems that can be proved in reasonable cases. Let us consider, for example, the
context of language recognition.

Definition 1.3.6: The complexity class non-uniform polynomial time (denoted
P/poly) is the class of languages L that can be recognized by a non-uniform
sequence of polynomial time “machines.” Namely, L ∈ P/poly if there exists an
infinite sequence of machines M1, M2, . . . satisfying the following:

1. There exists a polynomial p(·) such that for every n, the description of machine
Mn has length bounded above by p(n).

2. There exists a polynomial q(·) such that for every n, the running time of machine
Mn on each input of length n is bounded above by q(n).

3. For every n and every x ∈ {0, 1}n, machine Mn will accept x if and only if x ∈ L.

Note that the non-uniformity is implicit in the absence of a requirement concerning
the construction of the machines in the sequence. It is required only that these ma-
chines exist. In contrast, if we augment Definition 1.3.6 by requiring the existence of
a polynomial-time algorithm that on input 1n (n presented in unary) outputs the de-
scription of Mn , then we get a cumbersome way of defining P . On the other hand, it

17

INTRODUCTION

is obvious that P ⊆ P/poly (in fact, strict containment can be proved by considering
non-recursive unary languages). Furthermore:

Theorem 1.3.7: BPP ⊆ P/poly.

Proof: Let M be a probabilistic polynomial-time Turing machine recognizing

L ∈ BPP . Let χL(x) def= 1 if x ∈ L , and χL(x) def= 0 otherwise. Then, for every
x ∈ {0, 1}∗,

Pr[M(x) = χL(x)] ≥ 2

3

Assume, without loss of generality, that on each input of length n, machine M
uses the same number, denoted m = poly(n), of coin tosses. Let x ∈ {0, 1}n .
Clearly, we can find for each x ∈ {0, 1}n a sequence of coin tosses r ∈ {0, 1}m
such that Mr (x) = χL(x) (in fact, most sequences r have this property). But can
one sequence r ∈ {0, 1}m fit all x ∈ {0, 1}n? Probably not. (Provide an example!)
Nevertheless, we can find a sequence r ∈ {0, 1}n that fits 2

3 of all the x’s of length
n. This is done by an averaging argument (which asserts that if 2

3 of the r ’s are
good for each x , then there is an r that is good for at least 2

3 of the x’s). However,
this does not give us an r that is good for all x ∈ {0, 1}n . To get such an r , we have
to apply the preceding argument on a machine M ′ with exponentially vanishing
error probability. Such a machine is guaranteed by Exercise 5. Namely, for every
x ∈ {0, 1}∗,

Pr[M ′(x) = χL(x)] > 1− 2−|x |

Applying the averaging argument, now we conclude that there exists an r ∈
{0, 1}m , denoted rn , that is good for more than a 1− 2−n fraction of the x’s
in {0, 1}n . It follows that rn is good for all the 2n inputs of length n.
Machine M ′ (viewed as a deterministic two-input machine), together with the
infinite sequence r1, r2, . . . constructed as before, demonstrates that L is in
P/poly. �

Non-Uniform Circuit Families. A more convenient way of viewing non-uniform poly-
nomial time, which is actually the way used in this book, is via (non-uniform) families
of polynomial-size Boolean circuits. A Boolean circuit is a directed acyclic graph with
internal nodes marked by elements of {∧,∨,¬}. Nodes with no in-going edges are
called input nodes, and nodes with no out-going edges are called output nodes. A node
marked¬ can have only one child. Computation in the circuit begins with placing input
bits on the input nodes (one bit per node) and proceeds as follows. If the children of a
node (of in-degree d) marked∧ have values v1, v2, . . . , vd , then the node gets the value
∧d

i=1vi . Similarly for nodes marked ∨ and ¬. The output of the circuit is read from its
output nodes. The size of a circuit is the number of its edges. A polynomial-size circuit
family is an infinite sequence of Boolean circuits C1,C2, . . . such that for every n, the
circuit Cn has n input nodes and size p(n), where p(·) is a polynomial (fixed for the
entire family).

18

1.3. THE COMPUTATIONAL MODEL

The computation of a Turing machine M on inputs of length n can be simulated
by a single circuit (with n input nodes) having size O((|〈M〉| + n + t(n))2), where
t(n) is a bound on the running time of M on inputs of length n. Thus, a non-uniform
sequence of polynomial-time machines can be simulated by a non-uniform family of
polynomial-size circuits. The converse is also true, because machines with polynomial
description lengths can incorporate polynomial-size circuits and simulate their compu-
tations in polynomial time. The thing that is nice about the circuit formulation is that
there is no need to repeat the polynomiality requirement twice (once for size and once
for time) as in the first formulation.

Convention. For the sake of simplicity, we often take the liberty of considering circuit
families {Cn}n∈N, where each Cn has poly(n) input bits rather than n.

1.3.4. Intractability Assumptions

We shall consider as intractable those tasks that cannot be performed by probabilistic
polynomial-time machines. However, the adversarial tasks in which we shall be inter-
ested (“breaking an encryption scheme,” “forging signatures,” etc.) can be performed
by non-deterministic polynomial-time machines (because the solutions, once found,
can be easily tested for validity). Thus, the computational approach to cryptography
(and, in particular, most of the material in this book) is interesting only if NP is not
contained in BPP (which certainly implies P �= NP).7 We use the phrase “not in-
teresting” (rather than “not valid”) because all our statements will be of the form “if
〈intractability assumption〉 then 〈useful consequence〉,” Such a statement re-
mains valid even if P = NP (or if just 〈intractability assumption〉, which is
never weaker than P �= NP , is wrong); but in such a case the implication is of little
interest (because everything is implied by a fallacy).

In most places where we state that “if 〈intractability assumption〉 then
〈useful consequence〉,” it will be the case that 〈useful consequence〉 either im-
plies 〈intractability assumption〉or implies some weaker form of it, which in turn
impliesNP \ BPP �= ∅. Thus, in light of the current state of knowledge in complex-
ity theory, we cannot hope to assert 〈useful consequence〉without any intractability
assumption.

In a few cases, an assumption concerning the limitations of probabilistic polynomial-
time machines shall not suffice, and we shall use instead an assumption concerning the
limitations of non-uniform polynomial-time machines. Such an assumption is of course
stronger. But also the consequences in such a case will be stronger, since they will also
be phrased in terms of non-uniform complexity. However, because all our proofs are ob-
tained by reductions, an implication stated in terms of probabilistic polynomial time is
stronger (than one stated in terms of non-uniform polynomial time) and will be preferred
unless it is either not known or too complicated. This is the case because a probabilistic

7We remark that NP is not known to contain BPP . This is the reason we state the foregoing conjecture
as NP is not contained in BPP , rather than BPP �= NP . Likewise, although “sufficiently strong” one-way
functions imply BPP = P , this equality is not known to hold unconditionally.

19

INTRODUCTION

polynomial-time reduction (proving implication in its probabilistic formalization) al-
ways implies a non-uniform polynomial-time reduction (proving the statement in its
non-uniform formalization), but the converse is not always true.8

Finally, we mention that intractability assumptions concerning worst-case complex-
ity (e.g., P �= NP) will not suffice, because we shall not be satisfied with their cor-
responding consequences. Cryptographic schemes that are guaranteed to be hard to
break only in the worst case are useless. A cryptographic scheme must be unbreakable
in “most cases” (i.e., “typical cases”), which implies that it will be hard to break on the
average. It follows that because we are not able to prove that “worst-case intractability”
implies analogous “intractability for the average case” (such a result would be consid-
ered a breakthrough in complexity theory), our intractability assumption must concern
average-case complexity.

1.3.5. Oracle Machines

The original utility of oracle machines in complexity theory was to capture notions of
reducibility. In this book (mainly in Chapters 5 and 6) we use oracle machines mainly
for a different purpose altogether – to model an adversary that may use a cryptosystem
in the course of its attempt to break the system. Other uses of oracle machines are
discussed in Sections 3.6 and 4.7.

Loosely speaking, an oracle machine is a machine that is augmented so that it can
ask questions to the outside. We consider the case in which these questions (called
queries) are answered consistently by some function f : {0, 1}∗ → {0, 1}∗, called the
oracle. That is, if the machine makes a query q, then the answer it obtains is f (q). In
such a case, we say that the oracle machine is given access to the oracle f .

Definition 1.3.8 (Oracle Machines): A (deterministic/probabilistic) oracle ma-
chine is a (deterministic/probabilistic) Turing machine with an additional tape,
called the oracle tape, and two special states, called oracle invocation and
oracle appeared. The computation of the deterministic oracle machine M on
input x and with access to the oracle f : {0, 1}∗ → {0, 1}∗ is defined by the
successive-configuration relation. For configurations with states different from
oracle invocation, the next configuration is defined as usual. Let γ be a config-
uration in which the state is oracle invocation and the content of the oracle tape
is q. Then the configuration following γ is identical to γ , except that the state is
oracle appeared, and the content of the oracle tape is f (q). The string q is called
M’s query, and f (q) is called the oracle reply. The computation of a probabilis-
tic oracle machine is defined analogously. The output distribution of the oracle
machine M, on input x and with access to the oracle f , is denoted M f (x).

We stress that the running time of an oracle machine is the number of steps made
during its computation and that the oracle’s reply to each query is obtained in a single
step.

8The current paragraph may be better understood in the future, after seeing some concrete examples.

20

1.4. MOTIVATION TO THE RIGOROUS TREATMENT

1.4. Motivation to the Rigorous Treatment

In this section we address three related issues:

1. the mere need for a rigorous treatment of the field,

2. the practical meaning and/or consequences of the rigorous treatment, and

3. the “conservative” tendencies of the treatment.

Parts of this section (corresponding to Items 2 and 3) are likely to become more clear
after reading any of the following chapters.

1.4.1. The Need for a Rigorous Treatment

If the truth of a proposition does not follow
from the fact that it is self-evident to us,

then its self-evidence in no way justifies our belief in its truth.
Ludwig Wittgenstein, Tractatus logico-philosophicus (1921)

Cryptography is concerned with the construction of schemes that will be robust against
malicious attempts to make these schemes deviate from their prescribed functionality.
Given a desired functionality, a cryptographer should design a scheme that not only will
satisfy the desired functionality under “normal operation” but also will maintain that
functionality in face of adversarial attempts that will be devised after the cryptographer
has completed the design. The fact that an adversary will devise its attack after the
scheme has been specified makes the design of such schemes very hard. In particular,
the adversary will try to take actions other than the ones the designer has envisioned.
Thus, the evaluation of cryptographic schemes must take account of a practically infinite
set of adversarial strategies. It is useless to make assumptions regarding the specific
strategy that an adversary may use. The only assumptions that can be justified will
concern the computational abilities of the adversary. To summarize, an evaluation of a
cryptographic scheme is a study of an infinite set of potential strategies (which are not
explicitly given). Such a highly complex study cannot be carried out properly without
great care (i.e., rigor).

The design of cryptographic systems must be based on firm foundations, whereas
ad hoc approaches and heuristics are a very dangerous way to go. Although always
inferior to a rigorously analyzed solution, a heuristic may make sense when the designer
has a very good idea about the environment in which a scheme is to operate. Yet a
cryptographic scheme has to operate in a maliciously selected environment that typically
will transcend the designer’s view. Under such circumstances, heuristics make little
sense (if at all).

In addition to these straightforward considerations, we wish to stress two additional
aspects.

On Trusting Unsound Intuitions. We believe that one of the roles of science is to
formulate, examine, and refine our intuition about reality. A rigorous formulation is

21

INTRODUCTION

required in order to allow a careful examination that may lead either to verification
and justification of our intuition or to its rejection as false (or as something that is true
only in certain cases or only under certain refinements). There are many cases in which
our initial intuition turns out to be correct, as well as many cases in which our initial
intuition turns out to be wrong. The more we understand the discipline, the better our
intuition becomes.

At this stage in history, it would be very presumptuous to claim that we have good
intuition about the nature of efficient computation. In particular, we do not even know
the answers to such basic questions as whether or not P is strictly contained in NP ,
let alone have an understanding of what makes one computational problem hard while
a seemingly related problem is easy. Consequently, we should be extremely careful
when making assertions about what can or cannot be efficiently computed. Unfortu-
nately, making assertions about what can or cannot be efficiently computed is exactly
what cryptography is all about. Worse yet, many of the problems of cryptography
have much more complex and cumbersome descriptions than are usually encountered
in complexity theory. To summarize, cryptography deals with very complex computa-
tional notions and currently must do so without having a good understanding of much
simpler computational notions. Hence, our current intuitions about cryptography must
be considered highly unsound until they can be formalized and examined carefully. In
other words, the general need to formalize and examine intuition becomes even more
acute in a highly sensitive field such as cryptography that is intimately concerned with
questions we hardly understand.

The Track Record. Cryptography, as a discipline, is well motivated. Consequently,
cryptographic issues are being discussed by many researchers, engineers, and layper-
sons. Unfortunately, most such discussions are carried out without precise definitions
of the subject matter. Instead, it is implicitly assumed that the basic concepts of cryp-
tography (e.g., secure encryption) are self-evident (because they are so natural) and
that there is no need to present adequate definitions. The fallacy of that assumption is
demonstrated by the abandon of papers (not to mention private discussions) that derive
and/or jump to wrong conclusions concerning security. In most cases these wrong con-
clusions can be traced back to implicit misconceptions regarding security that could not
have escaped the eyes of the authors if they had been made explicit. We avoid listing
all such cases here for several obvious reasons. Nevertheless, we shall mention one
well-known example.

Around 1979, Ron Rivest claimed that no signature scheme that was “proven secure
assuming the intractability of factoring” could resist a “chosen message attack.” His
argument was based on an implicit (and unjustified) assumption concerning the nature of
a “proof of security (which assumes the intractability of factoring).” Consequently, for
several years it was believed that one had to choose between having a signature scheme
“proven to be unforgeable under the intractability of factoring” and having a signature
scheme that could resist a “chosen message attack.” However, in 1984, Goldwasser,
Micali, and Rivest pointed out the fallacy on which Rivest’s 1979 argument had been
based and furthermore presented signature schemes that could resist a “chosen message
attack,” under general assumptions. In particular, the intractability of factoring suffices

22

1.4. MOTIVATION TO THE RIGOROUS TREATMENT

to prove that there exists a signature scheme that can resist “forgery,” even under a
“chosen message attack.”

To summarize, the basic concepts of cryptography are indeed very natural, but they
are not self-evident nor well understood. Hence, we do not yet understand these concepts
well enough to be able to discuss them correctly without using precise definitions and
rigorously justifying every statement made.

1.4.2. Practical Consequences of the Rigorous Treatment

As customary in complexity theory, our treatment is presented in terms of asymptotic
analysis of algorithms. (Actually, it would be more precise to use the term “functional
analysis of running time.”) This makes the treatment less cumbersome, but it is not es-
sential to the underlying ideas. In particular, the definitional approach taken in this book
(e.g., the definitions of one-way functions, pseudorandom generators, zero-knowledge
proofs, secure encryption schemes, unforgeable signature schemes, and secure proto-
cols) is based on general paradigms that remain valid in any reasonable computational
model. In particular, the definitions, although stated in an “abstract manner,” lend
themselves to concrete interpolations. The same holds with respect to the results that
typically relate several such definitions. To clarify the foregoing, we shall consider, as
an example, the statement of a generic result as presented in this book.

A typical result presented in this book relates two computational problems. The
first problem is a simple computational problem that is assumed to be intractable (e.g.,
intractability of factoring), whereas the second problem consists of “breaking” a specific
implementation of a useful cryptographic primitive (e.g., a specific encryption scheme).
The abstract statement may assert that if integer factoring cannot be performed in
polynomial time, then the encryption scheme is secure in the sense that it cannot be
“broken” in polynomial time. Typically, the statement is proved by a fixed polynomial-
time reduction of integer factorization to the problem of breaking the encryption scheme.
Hence, what is actually being proved is that if one can break the scheme in time T (n),
where n is the security parameter (e.g., key length), then one can factor integers of length
m in time T ′(m) = f (m, T (g(m))), where f and g are fixed polynomials that are at
least implicit in the proof. In order to determine the practicality of the result, one should
first determine these polynomials (f and g). For most of the basic results presented
in this book, these polynomials are reasonably small, in the sense that instantiating
a scheme with a reasonable security parameter and making reasonable intractability
assumptions (e.g., regarding factoring) will yield a scheme that it is infeasible to break
in practice. (In the exceptional cases, we say so explicitly and view these results as
merely claims of the plausibility of relating the two notions.) We actually distinguish
three types of results:

1. Plausibility results: Here we refer to results that are aimed either at establishing a con-
nection between two notions or at providing a generic way of solving a class of problems.

A result of the first type says that, in principle, X (e.g., a specific tool) can be used
in order to construct Y (e.g., a useful utility), but the specific construction provided in
the proof may be impractical. Still, such a result may be useful in practice because it
suggests that one may be able to use specific implementations of X in order to provide a

23

INTRODUCTION

practical construction of Y. At the very least, such a result can be viewed as a challenge
to the researchers to either provide a practical construction of Y using X or explain why
a practical construction cannot be provided.

A result of the second type says that any task that belongs to some class C is solvable,
but the generic construction provided in the proof may be impractical. Still, this is a very
valuable piece of information: If we have a specific problem that falls into the foregoing
class, then we know that the problem is solvable in principle. However, if we need to
construct a real system, then we probably should construct a solution from scratch (rather
than employing the preceding generic result).

To summarize, in both cases a plausibility result provides very useful information
(even if it does not yield a practical solution). Furthermore, it is often the case that some
tools developed toward proving a plausibility result may be useful in solving the specific
problem at hand. This is typically the case for the next type of results.

2. Introduction of paradigms and techniques that may be applicable in practice: Here we
refer to results that are aimed at introducing a new notion, model, tool, or technique.
Such results (e.g., techniques) typically are applicable in practice, either as presented in
the original work or, after further refinements, or at least as an inspiration.

3. Presentation of schemes that are suitable for practical applications.

Typically, it is quite easy to determine to which of the foregoing categories a specific
result belongs. Unfortunately, the classification is not always stated in the original pa-
per; however, typically it is evident from the construction. We stress that all results of
which we are aware (in particular, all results mentioned in this book) come with an
explicit construction. Furthermore, the security of the resulting construction is explic-
itly related to the complexity of certain intractable tasks. Contrary to some uninformed
beliefs, for each of these results there is an explicit translation of concrete intractability
assumptions (on which the scheme is based) into lower bounds on the amount of work
required to violate the security of the resulting scheme.9 We stress that this translation
can be invoked for any value of the security parameter. Doing so will determine whether
a specific construction is adequate for a specific application under specific reasonable
intractability assumptions. In many cases the answer is in the affirmative, but in general
this does depend on the specific construction, as well as on the specific value of the
security parameter and on what it is reasonable to assume for this value (of the security
parameter).

1.4.3. The Tendency to Be Conservative

When reaching the chapters in which cryptographic primitives are defined, the reader
may notice that we are unrealistically “conservative” in our definitions of security.
In other words, we are unrealistically liberal in our definition of insecurity. Techni-
cally speaking, this tendency raises no problems, because our primitives that are secure
in a very strong sense certainly are also secure in the (more restricted) reasonable
sense. Furthermore, we are able to implement such (strongly secure) primitives using

9The only exception to the latter statement is Levin’s observation regarding the existence of a universal one-way
function (see Section 2.4.1).

24

1.5. MISCELLANEOUS

Historical view Conceptual view

Signatures

Encryption

One-Way Functions

Computational Difficulty (One-Way Functions)

Zero-Knowledge

Proof Systems

Schemes
General

Schemes

A P P L I C A T I O N S

Pseudorandom
Generators

 and Functions

Encryption
Crypto-Protocols

Signature

Figure 1.1: Cryptography: two points of view.

reasonable intractability assumptions, and in most cases we can show that such assump-
tions are necessary even for much weaker (and, in fact, less than minimal) notions of
security. Yet the reader may wonder why we choose to present definitions that seem
stronger than what is required in practice.

The reason for our tendency to be conservative when defining security is that it is
extremely difficult to capture what is exactly required in a specific practical application.
Furthermore, each practical application has different requirements, and it is undesirable
to redesign the system for each new application. Thus, we actually need to address the
security concerns of all future applications (which are unknown to us), not merely the
security concerns of some known applications. It seems impossible to cover whatever
can be required in all applications (or even in some wide set of applications) without
taking our conservative approach.10 In the sequel, we shall see how our conservative
approach leads to definitions of security that can cover all possible practical applications.

1.5. Miscellaneous

In Figure 1.1 we confront the “historical view” of cryptography (i.e., the view of the
field in the mid-1970s) with the approach advocated in this text.

1.5.1. Historical Notes

Work done during the 1980s plays a dominant role in our exposition. That work, in turn,
had been tremendously influenced by previous work, but those early influences are not
stated explicitly in the historical notes to subsequent chapters. In this section we shall

10One may even argue that it seems impossible to cover whatever is required in one reasonable application
without taking our conservative approach.

25

INTRODUCTION

trace some of those influences. Generally speaking, those influences took the form of
setting intuitive goals, providing basic techniques, and suggesting potential solutions
that later served as a basis for constructive criticism (leading to robust approaches).

Classic Cryptography. Answering the fundamental question of classic cryptogra-
phy in a gloomy way (i.e., it is impossible to design a code that cannot be broken),
Shannon [200] also suggested a modification to the question: Rather than asking whether
or not it is possible to break a code, one should ask whether or not it is feasible to break
it. A code should be considered good if it cannot be broken by an investment of work
that is in reasonable proportion to the work required of the legal parties using the code.
Indeed, this is the approach followed by modern cryptography.

New Directions in Cryptography. The prospect for commercial applications was the
trigger for the beginning of civil investigations of encryption schemes. The DES block-
cipher [168], designed in the early 1970s, has adopted the new paradigm: It is clearly
possible, but supposedly infeasible, to break it. Following the challenge of constructing
and analyzing new (private-key) encryption schemes came new questions, such as how
to exchange keys over an insecure channel [159]. New concepts were invented: digital
signatures (cf., Diffie and Hellman [63] and Rabin [186]), public-key cryptosystems
[63], and one-way functions [63]. First implementations of these concepts were sug-
gested by Merkle and Hellman [163], Rivest, Shamir, and Adleman [191], and Rabin
[187].

Cryptography was explicitly related to complexity theory in the late 1970s [39, 73,
147]: It was understood that problems related to breaking a 1-1 cryptographic mapping
could not be NP-complete and, more important, that NP-hardness of the breaking
task was poor evidence for cryptographic security. Techniques such as “n-out-of-2n
verification” [186] and secret sharing [196] were introduced (and indeed were used
extensively in subsequent research).

At the Dawn of a New Era. Early investigations of cryptographic protocols revealed
the inadequacy of imprecise notions of security, as well as the subtleties involved in
designing cryptographic protocols. In particular, problems such as coin tossing over the
telephone [31], exchange of secrets [30], and oblivious transfer [188] (cf. [70]) were
formulated. Doubts (raised by Lipton) concerning the security of the mental-poker
protocol of [199] led to the current notion of secure encryption, due to Goldwasser and
Micali [123], and to concepts such as computational indistinguishability [123, 210].
Doubts (raised by Fischer) concerning the oblivious-transfer protocol of [188] led to
the concept of zero-knowledge (suggested by Goldwasser, Micali, and Rackoff [124],
with early versions dating to March 1982).

A formal approach to the security of cryptographic protocols was suggested in [65].
That approach actually identified a subclass of insecure protocols (i.e., those that could
be broken via a syntactically restricted type of attack). Furthermore, it turned out that
it was much too difficult to test whether or not a given protocol was secure [69]. Recall
that, in contrast, our current approach is to construct secure protocols (along with their
proofs of security) and that this approach is complete (in the sense that it allows us to
solve any solvable problem).

26

1.5. MISCELLANEOUS

1.5.2. Suggestions for Further Reading

The background material concerning probability theory and computational complexity
provided in Sections 1.2 and 1.3, respectively, should suffice for the purposes of this
book. Still, a reader feeling uncomfortable with any of these areas may want to consult
some standard textbooks on probability theory (e.g., [79]) and computational complex-
ity (e.g., [86; 202]). The reader may also benefit from familiarity with randomized
computation [167; 97, app. B].

Computational problems in number theory have provided popular candidates for
one-way functions (and related intractability assumptions). However, because this book
focuses on concepts, rather than on specific implementation of such concepts, those
popular candidates will not play a major role in the exposition. Consequently, back-
ground in computational number theory is not really necessary for this book. Still, a
brief description of relevant facts appears in Appendix A herein, and the interested
reader is referred to other text (e.g., [10]).

This book focuses on the basic concepts, definitions, and results in cryptography.
As argued earlier, these are of key importance for sound practice. However, practice
needs much more than a sound theoretical framework, whereas this book makes no
attempt to provide anything beyond the latter. For helpful suggestions concerning prac-
tice (i.e., applied cryptography), the reader may critically consult other texts (e.g.,
[158]).

Our treatment is presented in terms of asymptotic analysis of algorithms. Further-
more, for simplicity, we state results in terms of robustness against polynomial-time
adversaries, rather than discussing general time-bounded adversaries. However, as ex-
plained in Section 1.4, none of these conventions is essential, and the results could be
stated in general terms, as done in Section 2.6 and elsewhere (e.g., [155]). Our choice
to present results in terms of robustness against polynomial-time adversaries makes
the statement of the results somewhat less cumbersome, because it avoids stating the
exact complexity of the reduction by which security is proved. This suffices for stating
plausibility results, which is indeed our main objective in this book, but when using
schemes in practice one needs to know the exact complexity of the reduction (for that
will determine the actual security of the concrete scheme). We stress that typically it is
easy to determine the complexity of the reductions presented in this book, and in some
cases we also include comments referring to this aspect. We mention that the alterna-
tive choice, of presenting results in terms of robustness against general time-bounded
adversaries, is taken in Luby’s book [155].

1.5.3. Open Problems

As mentioned earlier (and further formalized in the next chapter), most of the content
of this book relies on the existence of one-way functions. Currently, we assume the
existence of such functions; it is to be hoped that the new century will witness a proof of
this widely believed assumption/conjecture. We mention that the existence of one-way
functions implies that NP is not contained in BPP , and thus would establish that
NP �= P (which is the most famous open problem in computer science).

27

INTRODUCTION

We mention that NP �= P is not known to imply any practical consequences. For
the latter, it would be required that hard instances not only exist but also occur quite
frequently (with respect to some easy-to-sample distribution). For further discussion,
see Chapter 2.

1.5.4. Exercises

Exercise 1: Applications of Markov’s inequality:
1. Let X be a random variable such that E(X) = µ and X ≤ 2µ. Give an upper bound on

Pr[X ≤ µ

2].
2. Let 0 < ε and δ < 1, and let Y be a random variable ranging in the interval [0,1] such that

E(Y) = δ + ε. Give a lower bound on Pr[Y ≥ δ + ε

2].
Guideline: In both cases, one can define auxiliary random variables and apply Markov’s
inequality. However, it is easier simply to apply directly the reasoning underlying the proof
of Markov’s inequality.

Exercise 2: Applications of Chernoff/Hoefding bounds: Let f : {0, 1}∗ → [0, 1] be a
polynomial-time-computable function, and let F(n) denote the average value of f over
{0, 1}n. Namely,

F(n)
def
=

∑
x∈{0,1}n f (x)

2n

Let p(·) be a polynomial. Present a probabilistic polynomial-time algorithm that on input
1n will output an estimate to F(n), denoted A(n), such that

Pr
[
|F(n)− A(n)| > 1

p(n)

]
< 2−n

Guideline: The algorithm selects at random polynomially many (how many?) sample
points si ∈ {0, 1}n. These points are selected independently and with uniform probability
distribution. (Why?) The algorithm outputs the average value taken over this sample.
Analyze the performance of the algorithm using the Hoefding inequality. (Hint: Define
random variables Xi such that Xi = f (si).)

Exercise 3: Analysis of the graph-connectivity algorithm: Regarding the algorithm
presented in Section 1.3.2.1, show that if s is connected to t in the graph G, then,
with probability at least 2

3 , vertex t will be encountered in a random walk starting
at s.

Guideline: Consider the connected component of vertex s, denoted G ′ = (V ′ , E ′). For
any edge (u,v) in E ′ , let Tu,v be a random variable representing the number of steps taken
in a random walk starting at u until v is first encountered. First, prove that E[Tu,v] ≤ 2|E ′ |.
(Hint: Consider the “frequency” with which this edge is traversed in a certain direction
during an infinite random walk, and note that this frequency is independent of the identity
of the edge and the direction.) Next, letting cover(G ′) be the expected number of steps in
a random walk starting at s and ending when the last of the vertices of V ′ is encountered,
prove that cover(G ′) ≤ 4 · |V ′ | · |E ′ |. (Hint: consider a cyclic tour C going through all ver-
tices of G ′ , and show that cover(G ′) ≤ ∑

(u,v)∈C E[Tu,v].) Conclude by applying Markov’s
inequality.

28

1.5. MISCELLANEOUS

Exercise 4: Equivalent definition of BPP . Part 1: Prove that Definition 1.3.4 is robust
when 2

3 is replaced by 1
2 + 1

p(|x |) for every positive polynomial p(·). Namely, show that
L ∈ BPP if there exists a polynomial p(·) and a probabilistic polynomial-time machine
M such that
• for every x ∈ L it holds that Pr[M(x)=1] ≥ 1

2 + 1
p (|x |) , and

• for every x �∈ L it holds that Pr[M(x)=0] ≥ 1
2 + 1

p (|x |) .
Guideline: Given a probabilistic polynomial-time machine M satisfying the foregoing con-
dition, construct a probabilistic polynomial-time machine M ′ as follows. On input x, ma-
chine M ′ runs O(p(|x |)2) many copies of M, on the same input x, and rules by majority.
Use Chebyshev’s inequality (see Section 1.2) to show that M ′ is correct with probability
at least 2

3 .

Exercise 5: Equivalent definition of BPP . Part 2: Prove that Definition 1.3.4 is robust
when 2

3 is replaced by 1− 2− p(|x |) for every positive polynomial p(·). Namely, show that
for every L ∈ BPP and every polynomial p(·), there exists a probabilistic polynomial-
time machine M such that
• for every x ∈ L it holds that Pr[M(x)=1] ≥ 1− 2− p (|x |), and
• for every x �∈ L it holds that Pr[M(x)=0] ≥ 1− 2− p (|x |).

Guideline: Similar to Exercise 4, except that you have to use a stronger probabilistic
inequality (namely, Chernoff bound; see Section 1.2).

29

CHAPTER 2

Computational Difficulty

In this chapter we define and study one-way functions. One-way functions capture
our notion of “useful” computational difficulty and serve as a basis for most of the
results presented in this book. Loosely speaking, a one-way function is a function that
is easy to evaluate but hard to invert (in an average-case sense). (See the illustration
in Figure 2.1.) In particular, we define strong and weak one-way functions and prove
that the existence of weak one-way functions implies the existence of strong ones. The
proof provides a good example of a reducibility argument, which is a strong type of
“reduction” used to establish most of the results in the area. Furthermore, the proof
provides a simple example of a case where a computational statement is much harder
to prove than its “information-theoretic analogue.”

In addition, we define hard-core predicates and prove that every one-way function
has a hard-core predicate. Hard-core predicates will play an important role in almost
all subsequent chapters (the chapter on signature scheme being the exception).

Organization. In Section 2.1 we motivate the definition of one-way functions by argu-
ing informally that it is implicit in various natural cryptographic primitives. The basic
definitions are given in Section 2.2, and in Section 2.3 we show that weak one-way
functions can be used to construct strong ones. A more efficient construction (for certain
restricted cases) is postponed to Section 2.6. In Section 2.4 we view one-way functions
as uniform collections of finite functions and consider various additional properties
that such collections may have. In Section 2.5 we define hard-core predicates and show
how to construct them from one-way functions.

Teaching Tip. As stated earlier, the proof that the existence of weak one-way functions
implies the existence of strong ones (see Section 2.3) is instructive for the rest of the
material. Thus, if you choose to skip this proof, do incorporate a discussion of the
reducibility argument in the first place you use it (e.g., when showing how to construct
hard-core predicates from one-way functions).

30

2.1. ONE-WAY FUNCTIONS: MOTIVATION

x f(x)

easy

HARD
Figure 2.1: One-way functions: an illustration.

2.1. One-Way Functions: Motivation

As stated in the introductory chapter, modern cryptography is based on a gap between
efficient algorithms provided for the legitimate users and the computational infeasibility
of abusing or breaking these algorithms (via illegitimate adversarial actions). To illus-
trate this gap, we concentrate on the cryptographic task of secure data communication,
namely, encryption schemes.

In secure encryption schemes, the legitimate users should be able to easily decipher
the messages using some private information available to them, yet an adversary (not
having this private information) should not be able to decrypt the ciphertext efficiently
(i.e., in probabilistic polynomial time).1 On the other hand, a non-deterministic machine
can quickly decrypt the ciphertext (e.g., by guessing the private information). Hence,
the existence of secure encryption schemes implies that there are tasks (e.g., “break-
ing” encryption schemes) that can be performed by non-deterministic polynomial-time
machines, yet cannot be performed by deterministic (or even randomized) polynomial-
time machines. In other words, a necessary condition for the existence of secure
encryption schemes is thatNP not be contained in BPP (and thus P �= NP).

Although P �= NP is a necessary condition for modern cryptography, it is not a
sufficient one. Suppose that the breaking of some encryption scheme isNP-complete.
Then, P �= NP implies that this encryption scheme is hard to break in the worst case,
but it does not rule out the possibility that the encryption scheme is easy to break almost
always. In fact, one can construct “encryption schemes” for which the breaking problem
isNP-complete and yet there exists an efficient breaking algorithm that succeeds 99%
of the time. Hence, worst-case hardness is a poor measure of security. Security requires
hardness in most cases, or at least “average-case hardness.” A necessary condition for
the existence of secure encryption schemes is thus the existence of languages in NP

1This “private information” is called a key; see Chapter 5.

31

COMPUTATIONAL DIFFICULTY

that are hard on the average. We mention that it is not known whether or not P �= NP
implies the existence of languages inNP that are hard on the average.

Furthermore, the mere existence of problems (in NP) that are hard on the average
does not suffice either. In order to be able to use such hard-on-the-average problems,
we must be able to generate hard instances together with auxiliary information that
will enable us to solve these instances fast. Otherwise, these hard instances will be
hard also for the legitimate users, and consequently the legitimate users will gain no
computational advantage over the adversary. Hence, the existence of secure encryption
schemes implies the existence of an efficient way (i.e., probabilistic polynomial-time
algorithm) to generate instances with corresponding auxiliary input such that

1. it is easy to solve these instances given the auxiliary input, but

2. it is hard, on the average, to solve these instances when not given the auxiliary input.

The foregoing requirement is reflected in the definition of one-way functions (as pre-
sented in the next section). Loosely speaking, a one-way function is a function that is
easy to compute but hard (on the average) to invert. Thus, one-way functions capture the
hardness of reversing the process of generating instances (and obtaining the auxiliary
input from the instance alone), which is responsible for the discrepancy between the
preceding two items. (For further discussion of this relationship, see Exercise 1.)

In assuming that one-way functions exist, we are postulating the existence of efficient
processes (i.e., the computation of the function in the forward direction) that are hard
to reverse. Note that such processes of daily life are known to us in abundance (e.g., the
lighting of a match). The assumption that one-way functions exist is thus a complexity-
theoretic analogue of daily experience.

2.2. One-Way Functions: Definitions

In this section, we present several definitions of one-way functions. The first version,
hereafter referred to as a strong one-way function (or just one-way function), is the
most popular one. We also present weak one-way functions, non-uniformly one-way
functions, and plausible candidates for such functions.

2.2.1. Strong One-Way Functions

Loosely speaking, a one-way function is a function that is easy to compute but hard to
invert. The first condition is quite clear: Saying that a function f is easy to compute
means that there exists a polynomial-time algorithm that on input x outputs f (x). The
second condition requires more elaboration. What we mean by saying that a function
f is hard to invert is that every probabilistic polynomial-time algorithm trying, on
input y, to find an inverse of y under f may succeed only with negligible (in |y|)
probability, where the probability is taken over the choices of y (as discussed later).
A sequence {sn}n∈N (resp., a function µ : N → R) is called negligible in n if for every
positive polynomial p(·) and all sufficiently large n’s, it holds that sn <

1
p(n) (resp.,

µ(n) < 1
p(n)). Further discussion follows the definition.

32

2.2. ONE-WAY FUNCTIONS: DEFINITIONS

Definition 2.2.1 (Strong One-Way Functions): A function f : {0, 1}∗ → {0, 1}∗
is called (strongly) one-way if the following two conditions hold:

1. Easy to compute: There exists a (deterministic) polynomial-time algorithm A such
that on input x algorithm A outputs f (x) (i.e., A(x) = f (x)).

2. Hard to invert: For every probabilistic polynomial-time algorithm A′, every positive
polynomial p(·), and all sufficiently large n’s,

Pr[A′(f (Un), 1n) ∈ f −1(f (Un))] <
1

p(n)

Recall that Un denotes a random variable uniformly distributed over {0, 1}n . Hence,
the probability in the second condition is taken over all the possible values assigned
to Un and all possible internal coin tosses of A′, with uniform probability distribution.
Note that A′ is not required to output a specific pre-image of f (x); any pre-image (i.e.,
element in the set f −1(f (x))) will do. (Indeed, in case f is 1-1, the string x is the only
pre-image of f (x) under f ; but in general there may be other pre-images.)

The Auxiliary Input 1n. In addition to an input in the range of f , the inverting algorithm
A′ is also given the length of the desired output (in unary notation). The main reason
for this convention is to rule out the possibility that a function will be considered
one-way merely because it drastically shrinks its input, and so the inverting algorithm
just does not have enough time to print the desired output (i.e., the corresponding pre-
image). Consider, for example, the function flen defined by flen(x) = y such that y is the
binary representation of the length of x (i.e., flen(x) = |x |). Since | flen(x)| = log2 |x |,
no algorithm can invert flen on y in time polynomial in |y|; yet there exists an obvious
algorithm that inverts flen on y = flen(x) in time polynomial in |x | (e.g., by |x | �→ 0|x |).
In general, the auxiliary input 1|x |, provided in conjunction with the input f (x), allows
the inverting algorithm to run in time polynomial in the total length of the main input
and the desired output. Note that in the special case of length-preserving functions
f (i.e.| f (x)| = |(x)| for all x’s), this auxiliary input is redundant. More generally, the
auxiliary input is redundant if, given only f (x), one can generate 1|x | in time polynomial
in |x |. (See Exercise 4 and Section 2.2.3.2.)

Further Discussion

Hardness to invert is interpreted (by the foregoing definition) as an upper bound on the
success probability of efficient inverting algorithms. The probability is measured with
respect to both the random choices of the inverting algorithm and the distribution of
the (main) input to this algorithm (i.e., f (x)). The input distribution to the inverting
algorithm is obtained by applying f to a uniformly selected x ∈ {0, 1}n . If f induces a
permutation on {0, 1}n , then the input to the inverting algorithm is uniformly distributed
over {0, 1}n . However, in the general case where f is not necessarily a one-to-one
function, the input distribution to the inverting algorithm may differ substantially from
the uniform one. In any case, it is required that the success probability, defined over the
aforementioned probability space, be negligible (as a function of the length of x). To

33

COMPUTATIONAL DIFFICULTY

further clarify the condition placed on the success probability, we consider two trivial
algorithms.

Random-Guess Algorithm A1. On input (y, 1n), algorithm A1 uniformly selects and
outputs a string of length n. We note that the success probability of A1 equals the
collision probability of the random variable f (Un) (i.e.,

∑
y Pr[f (Un) = y]2). That is,

letting U ′
n denote a random variable uniformly distributed over {0, 1}n independently

of Un , we have

Pr[A1(f (Un), 1n) ∈ f −1(f (Un))] = Pr[f (U ′
n) = f (Un)]

=
∑

y

Pr[f (Un) = y]2 ≥ 2−n

where the inequality is due to the fact that, for non-negative xi ’s summing to 1, the
sum

∑
i x2

i is minimized when all xi ’s are equal. Thus, the last inequality becomes an
equality if and only if f is a 1-1 function. Consequently:

1. For any function f , the success probability of the trivial algorithm A1 is strictly positive.
Thus, one cannot require that any efficient algorithm will always fail to invert f .

2. For any 1-1 function f , the success probability of A1 in inverting f is negligible.
Of course, this does not indicate that f is one-way (but rather that A1 is trivial).

3. If f is one-way, then the collision probability of the random variable f (Un) is negligible.
This follows from the fact that A1 falls within the scope of the definition, and its

success probability equals the collision probability.

Fixed-Output Algorithm A2. Another trivial algorithm, denoted A2, is one that com-
putes a function that is constant on all inputs of the same length (e.g., A2(y, 1n) = 0n).
For every function f , we have

Pr[A2(f (Un), 1n) ∈ f −1(f (Un))] = Pr[f (0n) = f (Un)]

= | f −1(f (0n))|
2n

≥ 2−n

with equality holding in case f (0n) has a single pre-image (i.e., 0n itself) under f .
Again we observe analogous facts:

1. For any function f , the success probability of the trivial algorithm A2 is strictly positive.

2. For any 1-1 function f , the success probability of A2 in inverting f is negligible.

3. If f is one-way, then the fraction of x’s in {0, 1}n that are mapped by f to f (0n) is
negligible.

Obviously, Definition 2.2.1 considers all probabilistic polynomial-time algorithms,
not merely the trivial ones discussed earlier. In some sense this definition asserts that
for one-way functions, no probabilistic polynomial-time algorithm can “significantly”
outperform these trivial algorithms.

34

2.2. ONE-WAY FUNCTIONS: DEFINITIONS

Negligible Probability

A few words concerning the notion of negligible probability are in order. The foregoing
definition and discussion consider the success probability of an algorithm to be neg-
ligible if, as a function of the input length, the success probability is bounded above
by every polynomial fraction. It follows that repeating the algorithm polynomially (in
the input length) many times yields a new algorithm that also has negligible success
probability. In other words, events that occur with negligible (in n) probability remain
negligible even if the experiment is repeated for polynomially (in n) many times. Hence,
defining a negligible success rate as “occurring with probability smaller than any poly-
nomial fraction” is naturally coupled with defining feasible computation as “computed
within polynomial time.”

A “strong negation” of the notion of a negligible fraction/probability is the notion
of a noticeable fraction/probability. We say that a function ν : N → R is noticeable
if there exists a polynomial p(·) such that for all sufficiently large n’s, it holds that
µ(n) > 1

p(n) . We stress that functions may be neither negligible nor noticeable.

2.2.2. Weak One-Way Functions

One-way functions, as defined earlier, are one-way in a very strong sense. Namely, any
efficient inverting algorithm has negligible success in inverting them. A much weaker
definition, presented next, requires only that all efficient inverting algorithms fail with
some noticeable probability.

Definition 2.2.2 (Weak One-Way Functions): A function f : {0, 1}∗ → {0, 1}∗
is called weakly one-way if the following two conditions hold:

1. Easy to compute: As in the definition of a strong one-way function.

2. Slightly hard to invert: There exists a polynomial p(·) such that for every proba-
bilistic polynomial-time algorithm A′ and all sufficiently large n’s,

Pr[A′(f (Un), 1n) �∈ f −1(f (Un))] >
1

p(n)

We call the reader’s attention to the order of quantifiers: There exists a single poly-
nomial p(·) such that 1/p(n) lower-bounds the failure probability of all probabilistic
polynomial-time algorithms trying to invert f on f (Un).

Weak one-way functions fail to provide the kind of hardness alluded to in the earlier
motivational discussions. Still, as we shall see later, they can be converted into strong
one-way functions, which in turn do provide such hardness.

2.2.3. Two Useful Length Conventions

In the sequel it will be convenient to use the following two conventions regarding the
lengths of the pre-images and images of one-way functions. In the current section we
justify the use of these conventions.

35

COMPUTATIONAL DIFFICULTY

2.2.3.1. Functions Defined Only for Some Lengths

In many cases it is more convenient to consider one-way functions with domains partial
to the set of all strings. In particular, this facilitates the introduction of some structure in
the domain of the function. A particularly important case, used throughout the rest of this
section, is that of functions with domain ∪n∈N{0, 1}l(n), where l(·) is some polynomial.
We provide a more general treatment of this case.

Let I ⊆ N, and denote by sI (n) the successor of n with respect to I ; namely, sI (n) is
the smallest integer that is both greater than n and in the set I (i.e., sI (n) def= min{i ∈ I :
i > n}). A set I ⊆ N is called polynomial-time-enumerable if there exists an algorithm
that on input n halts within poly(n) steps and outputs 1sI (n). (The unary output forces
sI to be polynomially bounded; i.e., sI (n) ≤ poly(n).) Let I be a polynomial-time-
enumerable set and f be a function with domain ∪n∈I {0, 1}n . We call f strongly (resp.,
weakly) one-way on lengths in I if f is polynomial-time-computable and is hard to
invert over n’s in I . For example, the hardness condition for functions that are strongly
one-way on lengths in I is stated as follows:

For every probabilistic polynomial-time algorithm A′, every positive polynomial p(·), and
all sufficiently large n’s in I ,

Pr[A′(f (Un), 1n) ∈ f −1(f (Un))] <
1

p(n)

Ordinary one-way functions, as defined in previous subsections, can be viewed as being
one-way on lengths in N.

One-way functions on lengths in any polynomial-time-enumerable set can be eas-
ily transformed into ordinary one-way functions (i.e., defined over all of {0, 1}∗). In
particular, for any function f with domain ∪n∈I {0, 1}n , we can construct a function
g : {0, 1}∗ → {0, 1}∗ by letting

g(x) def= f (x ′) (2.1)

where x ′ is the longest prefix of x with length in I . In case the function f is length-
preserving (i.e., | f (x)| = |x | for all x), we can preserve this property by modifying the
construction to obtain a length-preserving function g′ : {0, 1}∗ → {0, 1}∗ such that

g′(x) def= f (x ′)x ′′ (2.2)

where x = x ′x ′′, and x ′ is the longest prefix of x with length in I .

Proposition 2.2.3: Let I be a polynomial-time-enumerable set, and let f be
strongly (resp., weakly) one-way on lengths in I . Then g and g′ (as defined in
Eq. (2.1) and Eq. (2.2), respectively) are strongly (resp., weakly) one-way (in the
ordinary sense).

Although the validity of the foregoing proposition is very appealing, we urge the reader
not to skip the following proof. The proof, which is indeed quite simple, uses (for the
first time in this book) an argument that is used extensively in the sequel. The argument
used to prove the hardness-to-invert property of the function g (resp., g′) proceeds by

36

2.2. ONE-WAY FUNCTIONS: DEFINITIONS

assuming, toward the contradiction, that g (resp., g′) can be efficiently inverted with
unallowable success probability. Contradiction is derived by deducing that f can be
efficiently inverted with unallowable success probability. In other words, inverting f
is “reduced” to inverting g (resp., g′). The term “reduction” is used here in a stronger-
than-standard sense. Here a reduction needs to preserve the success probability of the
algorithms. This kind of argument is called a reducibility argument.

Proof: We first prove that g and g′ can be computed in polynomial time. To this
end we use the fact that I is a polynomial-time-enumerable set, which implies that
we can decide membership in I in polynomial time (e.g., by observing that m ∈ I
if and only if sI (m − 1) = m). It follows that on input x one can find in poly-
nomial time the largest m ≤ |x | that satisfies m ∈ I . Computing g(x) amounts
to finding this m and applying the function f to the m-bit prefix of x . Similarly
for g′.

We next prove that g maintains the hardness-to-invert property of f . A similar
proof establishes the hardness-to-invert property of g′. For the sake of brevity, we
present here only the proof for the case that f is strongly one-way. The proof for
the case that f is weakly one-way is analogous.

The proof proceeds by contradiction. We assume, contrary to the claim (of
the proposition), that there exists an efficient algorithm that inverts g with suc-
cess probability that is not negligible. We use this inverting algorithm (for g) to
construct an efficient algorithm that inverts f with success probability that is not
negligible, hence deriving a contradiction (to the hypothesis of the proposition).
In other words, we show that inverting f (with unallowable success probability)
is efficiently reducible to inverting g (with unallowable success probability) and
hence conclude that the latter is not feasible. The reduction is based on the obser-
vation that inverting g on images of arbitrary lengths yields inverting g also on
images of lengths in I , and that on such lengths g collides with f .

Intuitively, any algorithm inverting g can be used to invert f as follows. On
input (y, 1n), where y is supposedly in the image of f (Un) = g(Um) for any
m ∈ {n, . . . , sI (n)− 1}, we can invoke the g-inverter on input (y, 1m) and output
the longest prefix with length in I of the string that the g-inverter returns (e.g., if the
g-inverter returns an m-bit-long string, then we output its n-bit-long prefix). Thus,
our success probability in inverting f on f (Un) equals the success probability of
the g-inverter on g(Um). The question is which m ∈ {n, . . . , sI (n)− 1}we should
use, and the answer is to try them all (capitalizing on the fact that sI (n) = poly(n)).
Note that the integers are partitioned to intervals of the form [n, . . . , sI (n)− 1],
each associated with a single n ∈ I . Thus, the success probability of any
g-inverter on infinitely many lengths m ∈ N translates to the success probability
of our f -inverter on infinitely many lengths n ∈ I . Details follow.

Given an algorithm B ′ for inverting g, we construct an algorithm A′ for invert-
ing f such that A′ has complexity and success probability related to those for B ′.
(For simplicity, we shall assume that B ′(y, 1m) ∈ {0, 1}m holds for all y ∈ {0, 1}∗
and m ∈ N; this assumption is immaterial, and later we comment about this aspect
in two footnotes.) Algorithm A′ uses algorithm B ′ as a subroutine and proceeds

37

COMPUTATIONAL DIFFICULTY

as follows. On input y and 1n (supposedly y is in the range of f (Un), and n ∈ I),
algorithm A′ proceeds as follows:

1. It computes sI (n) and sets k
def= sI (n)− n − 1 ≥ 0. (Thus, for every i = 1, . . . , k,

we have n + i /∈ I .)

2. For i = 0, 1, . . . , k, algorithm A′ invokes algorithm B ′ on input (y, 1n+i), obtain-
ing zi ← B ′(y, 1n+i); if g(zi) = y, then A′ outputs the n-bit-long prefix2 of zi .

Note that for all x ′ ∈ {0, 1}n and |x ′′| ≤ k, we have g(x ′x ′′) = f (x ′), and so if
g(x ′x ′′) = y, then f (x ′) = y, which establishes the correctness of the output of
A′. Using sI (n) = poly(n) and the fact that sI (n) is computable in polynomial
time, it follows that if B ′ is a probabilistic polynomial-time algorithm, then so is
A′. We next analyze the success probability of A′ (showing that if B ′ inverts g
with unallowable success probability, then A′ inverts f with unallowable success
probability).

Suppose that B ′ inverts g on (g(Um), 1m) with probability ε(m). Then there
exists an n such that m ∈ {n, . . . , poly(n)} and such that A′(f (Un), 1n) invokes B ′

on input (f (Un), 1m) = (g(Um), 1m). It follows that A′(f (Un), 1n) inverts f with
probability at least ε(m) = ε(poly(n)). Thus, A′(f (Un), 1n) inherits the success
of B ′(g(Um), 1m). A tedious analysis (which can be skipped) follows.3

Suppose, contrary to our claim, that g is not strongly one-way, and let B ′ be an algorithm
demonstrating this contradiction hypothesis. Namely, there exists a polynomial p(·)
such that for infinitely many m’s the probability that B ′ inverts g on g(Um) is at least

1
p(m) . Let us denote the set of these m’s by M . Define a function �I : N → I such that
�I (m) is the largest lower bound of m in I is both (i.e., �I (m)

def= max{i ∈ I : i ≤ m}).
Clearly, m ≥ �I (m) and m ≤ sI (�I (m))− 1 for every m. The following two claims
relate the success probability of algorithm A′ with that of algorithm B ′.

Claim 2.2.3.1: Let m be an integer and n = �I (m). Then

Pr[A′(f (Un), 1n) ∈ f −1(f (Un))] ≥ Pr[B ′(g(Um), 1m) ∈ g−1(g(Um))]

(Namely, the success probability of algorithm A′ on f (U�I (m)) is bounded below by
the success probability of algorithm B ′ on g(Um).)

Proof: By construction of A′, on input (f (x ′), 1n), where x ′ ∈ {0, 1}n , algorithm A′
obtains the value B ′(f (x ′), 1t) for every t ∈ {n, . . . , sI (n)− 1}. In particular, since
m ≥ n and m ≤ sI (�I (m))− 1 = sI (n)− 1, it follows that algorithm A′ obtains the
value B ′(f (x ′), 1m). By definition of g, for all x ′′ ∈ {0, 1}m−n , it holds that f (x ′) =
g(x ′x ′′). The claim follows. �

Claim 2.2.3.2: There exists a polynomial q(·) such that m < q(�I (m)) for all m’s.

2Here we use the assumption zi ∈ {0, 1}n+i , which implies that n is the largest integer that both is in I and
is at most n + i . In general, A′ outputs the longest prefix x ′ of zi satisfying |x ′| ∈ I . Note that it holds that
f (x ′) = g(zi) = y.

3The reader can verify that the following analysis does not refer to the length of the output of B ′ and so does
not depend on the simplifying assumption made earlier.

38

2.2. ONE-WAY FUNCTIONS: DEFINITIONS

Proof: Let q be a polynomial (as guaranteed by the polynomial-time enumer-
ability of I) such that sI (n) < q(n). Then, for every m, we have m < sI (�I (m)) <
q(�I (m)). �

By Claim 2.2.3.2, the set S
def= {�I (m) : m ∈ M} is infinite (as, otherwise, for u upper-

bounding the elements in S we get m < q(�I (m)) ≤ q(u) for every m ∈ M , which
contradicts the hypothesis that M is infinite). Using Claim 2.2.3.1, it follows that for
every n = �I (m) ∈ S, the probability that A′ inverts f on f (Un) is at least

1

p(m)
>

1

p(q(�I (m)))
= 1

p(q(n))
= 1

poly(n)

where the inequality is due to Claim 2.2.3.2. It follows that f is not strongly one-way,
in contradiction to the proposition’s hypothesis. �

2.2.3.2. Length-Regular and Length-Preserving Functions

A second useful convention regarding one-way functions is to assume that the function
f is length-regular in the sense that for every x, y ∈ {0, 1}∗, if |x | = |y|, then | f (x)| =
| f (y)|. We point out that the transformation presented earlier (i.e., both Eq. (2.1) and
Eq. (2.2)) preserves length regularity. A special case of length regularity, preserved by
Eq. (2.2), is that of length-preserving functions.

Definition 2.2.4 (Length-Preserving Functions): A function f is length-
preserving if for every x ∈ {0, 1}∗ it holds that | f (x)| = |x |.

Given a strongly (resp., weakly) one-way function f , we can construct a strongly (resp.,
weakly) one-way function f ′′ that is length-preserving, as follows. Let p be a polyno-
mial bounding the length expansion of f (i.e., | f (x)| ≤ p(|x |)). Such a polynomial must
exist because f is polynomial-time-computable. We first construct a length-regular
function f ′ by defining

f ′(x) def= f (x)10p(|x |)−| f (x)| (2.3)

(We use a padding of the form 10∗ in order to facilitate the parsing of f ′(x) into f (x)
and the “leftover” padding.) Next, we define f ′′ only on strings of length p(n)+ 1, for
n ∈ N, by letting

f ′′(x ′x ′′) def= f ′(x ′) , where |x ′x ′′| = p(|x ′|)+ 1 (2.4)

Clearly, f ′′ is length-preserving.

Proposition 2.2.5: If f is a strongly (resp., weakly) one-way function, then so
are f ′ and f ′′ (as defined in Eq. (2.3) and Eq. (2.4), respectively).

Proof Sketch: It is quite easy to see that both f ′ and f ′′ are polynomial-time-
computable. Using “reducibility arguments” analogous to the one used in the
preceding proof, we can establish the hardness-to-invert of both f ′ and f ′′. For
example, given an algorithm B ′ for inverting f ′, we construct an algorithm A′ for

39

COMPUTATIONAL DIFFICULTY

inverting f as follows. On input y and 1n (supposedly y is in the range of f (Un)),
algorithm A′ halts with output B ′(y10p(n)−|y|, 1n). �

On Dropping the Auxiliary Input 1|x|. The reader can easily verify that if f is length-
preserving, then it is redundant to provide the inverting algorithm with the auxiliary
input 1|x | (in addition to f (x)). The same holds if f is length-regular and does not shrink
its input by more than a polynomial amount (i.e., there exists a polynomial p(·) such
that p(| f (x)|) ≥ |x | for all x). In the sequel, we shall deal only with one-way functions
that are length-regular and do not shrink their input by more than a polynomial amount.
Furthermore, we shall mostly deal with length-preserving functions. In all these cases,
we can assume, without loss of generality, that the inverting algorithm is given only
f (x) as input.

On 1-1 One-Way Functions. If f is 1-1, then so is f ′ (as defined in Eq. (2.3)), but
not f ′′ (as defined in Eq. (2.4)). Thus, when given a 1-1 one-way function, we can
assume without loss of generality that it is length-regular, but we cannot assume that
it is length-preserving. Furthermore, the assumption that 1-1 one-way functions exist
seems stronger than the assumption that arbitrary (and hence length-preserving) one-
way functions exist. For further discussion, see Section 2.4.

2.2.4. Candidates for One-Way Functions

Following are several candidates for one-way functions. Clearly, it is not known whether
or not these functions are indeed one-way. These are only conjectures supported by
extensive research that thus far has failed to produce an efficient inverting algorithm
(one having noticeable success probability).

2.2.4.1. Integer Factorization

In spite of the extensive research directed toward the construction of feasible integer-
factoring algorithms, the best algorithms known for factoring integers have sub-
exponential running times. Hence it is reasonable to believe that the function fmult

that partitions its input string into two parts and returns the (binary representation of
the) integer resulting by multiplying (the integers represented by) these parts is one-way.
Namely, let

fmult(x, y) = x · y

where |x | = |y|, and x · y denotes (the string representing) the integer resulting by
multiplying the integers (represented by the strings) x and y. Clearly, fmult can be com-
puted in polynomial time. Assuming the intractability of factoring (e.g., that given the
product of two uniformly chosen n-bit-long primes, it is infeasible to find the prime
factors), and using the density-of-primes theorem (which guarantees that at least N

log2 N
of the integers smaller than N are primes), it follows that fmult is at least weakly one-
way. (For further discussion, see Exercise 8.) Other popular functions related to integer
factorization (e.g., the RSA function) are discussed in Section 2.4.3.

40

2.2. ONE-WAY FUNCTIONS: DEFINITIONS

2.2.4.2. Decoding of Random Linear Codes

One of the most outstanding open problems in the area of error-correcting codes is
that of presenting efficient decoding algorithms for random linear codes. Of particu-
lar interest are random linear codes with constant information rates that can correct a
constant fraction of errors. An (n, k, d) linear code is a k-by-n binary matrix in which
the vector sum (mod 2) of any non-empty subset of rows results in a vector with at
least d entries of 1 (one-entries). (A k-bit-long message is encoded by multiplying
it by the k-by-n matrix, and the resulting n-bit-long vector has a unique pre-image
even when flipping up to d

2 of its entries.) The Gilbert-Varshamov bound for linear
codes guarantees the existence of such a code provided that k

n < 1− H2(d
n), where

H2(p) def= −p log2 p − (1− p) log2(1− p) if p < 1
2 and H2(p) def= 1 otherwise (i.e.,

H2(·) is a modification of the binary entropy function). Similarly, if for some
ε > 0 it holds that k

n < 1− H2((1+ε)d
n), then almost all k-by-n binary matrices will con-

stitute (n, k, d) linear codes. Consider three constants κ, δ, ε > 0 satisfying
κ < 1− H2((1+ ε)δ). The function fcode seems a plausible candidate for a one-way
function:

fcode(C, x, i) def= (C, xC + e(i))

where C is a κn-by-n binary matrix, x is a κn-dimensional binary vector, i is the index
of an n-dimensional binary vector having at most δn2 one-entries within a corresponding
enumeration of such vectors (the vector itself is denoted e(i)), and the arithmetic is in
the n-dimensional binary vector space. Clearly, fcode is polynomial-time-computable,
provided we use an efficient enumeration of vectors. An efficient algorithm for inverting
fcode would yield an efficient algorithm for decoding a non-negligible fraction of the
constant-rate linear codes (which would constitute an earth-shaking result in coding
theory).

2.2.4.3. The Subset-Sum Problem

Consider the function fssum defined as follows:

fssum(x1, . . . , xn, I) =
(

x1, . . . , xn,
∑
i∈I

xi

)
where |x1| = · · · = |xn| = n, and I ⊆ {1, 2, . . . , n}. Clearly, fssum is polynomial-time-
computable. The fact that the subset-sum problem is NP-complete cannot serve as
evidence to the one-wayness of fssum. On the other hand, the fact that the subset-
sum problem is easy for special cases (such as having “hidden structure” and/or “low
density”) does not rule out this proposal. The conjecture that fssum is one-way is based
on the failure of known algorithms to handle random “high-density” instances (i.e.,
instances in which the length of the elements approximately equals their number, as in
the definition of fssum).

2.2.5. Non-Uniformly One-Way Functions

In the foregoing two definitions of one-way functions the inverting algorithm is a
probabilistic polynomial-time algorithm. Stronger versions of both definitions require

41

COMPUTATIONAL DIFFICULTY

that the functions cannot be inverted even by non-uniform families of polynomial-size
circuits. We stress that the easy-to-compute condition is still stated in terms of uniform
algorithms. For example, the following is a non-uniform version of the definition of
strong (length-preserving) one-way functions.

Definition 2.2.6 (Non-Uniformly Strong One-Way Functions): A function f :
{0, 1}∗ → {0, 1}∗ is called non-uniformly one-way if the following two condi-
tions hold:

1. Easy to compute: There exists a polynomial-time algorithm A such that on input
x algorithm A outputs f (x).

2. Hard to invert: For every (even non-uniform) family of polynomial-size circuits
{Cn}n∈N, every positive polynomial p(·), and all sufficiently large n’s,

Pr[Cn(f (Un)) ∈ f −1(f (Un))] <
1

p(n)

The probability in the second condition is taken only over all the possible values of
Un . We note that any non-uniformly one-way function is one-way (i.e., in the uniform
sense).

Proposition 2.2.7: If f is non-uniformly one-way, then it is one-way. That is, if
f satisfies Definition 2.2.6, then it also satisfies Definition 2.2.1.

Proof: We convert any (uniform) probabilistic polynomial-time inverting algo-
rithm into a non-uniform family of polynomial-size circuits, without decreas-
ing the success probability. This is in accordance with our meta-theorem (see
Section 1.3.3). Details follow.

Let A′ be a probabilistic polynomial-time (inverting) algorithm. Let rn denote a
sequence of coin tosses for A′ maximizing the success probability of A′ (averaged
over input f (Un)). Namely, rn satisfies

Pr[A′
rn

(f (Un)) ∈ f −1(f (Un))] ≥ Pr[A′(f (Un)) ∈ f −1(f (Un))]

where the first probability is taken only over all possible values of Un , and the
second probability is also over all possible coin tosses for A′. (Recall that A′

r (y)
denotes the output of algorithm A′ on input y and internal coin tosses r .) The
desired circuit Cn incorporates the code of algorithm A′ and the sequence rn

(which is of length polynomial in n). �

We note that, typically, averaging arguments (of the form applied earlier) allow us
to convert probabilistic polynomial-time algorithms into non-uniform polynomial-size
circuits. Thus, in general, non-uniform notions of security (i.e., robustness against non-
uniform polynomial-size circuits) imply uniform notions of security (i.e., robustness
against probabilistic polynomial-time algorithms). The converse is not necessarily true.
In particular, it is possible that one-way functions exist (in the uniform sense) and yet

42

2.3. WEAK ONE-WAY FUNCTIONS IMPLY STRONG ONES

there are no non-uniformly one-way functions. However, this situation (i.e., that one-
way functions exist only in the uniform sense) seems unlikely, and it is widely believed
that non-uniformly one-way functions exist. In fact, all candidates mentioned in the
preceding subsection are believed to be non-uniformly one-way functions.

2.3. Weak One-Way Functions Imply Strong Ones

We first remark that not every weak one-way function is necessarily a strong one.
Consider, for example, a one-way function f (which, without loss of generality, is
length-preserving). Modify f into a function g so that g(p, x) = (p, f (x)) if p starts
with log2 |x | zeros, and g(p, x) = (p, x) otherwise, where (in both cases) |p| = |x |.4
We claim that g is a weak one-way function but not a strong one. Clearly, g cannot be
a strong one-way function (because for all but a 1

n fraction of the strings of length 2n
the function g coincides with the identity function). To prove that g is weakly one-way,
we use a “reducibility argument.”

Proposition 2.3.1: Let f be a one-way function (even in the weak sense). Then
g, constructed earlier, is a weakly one-way function.

Proof: Intuitively, inverting g on inputs on which it does not coincide with the
identity transformation is related to inverting f . Thus, if g is inverted, on inputs
of length 2n, with probability that is noticeably greater than 1− 1

n , then g must be
inverted with noticeable probability on inputs to which g applies f . Therefore, if
g is not weakly one-way, then neither is f . The full, straightforward but tedious
proof follows.

Given a probabilistic polynomial-time algorithm B ′ for inverting g, we construct a
probabilistic polynomial-time algorithm A′ that inverts f with “related” success prob-
ability. Following is the description of algorithm A′. On input y, algorithm A′ sets
n

def= |y| and l
def= log2 n, selects p′ uniformly in {0, 1}n−l , computes z

def= B ′(0l p′, y),
and halts with output of the n-bit suffix of z. Let S2n denote the sets of all 2n-bit-long
strings that start with log2 n zeros (i.e., S2n

def= {0log2 nα : α ∈ {0, 1}2n−log2 n}). Then,
by construction of A′ and g, we have

Pr[A′(f (Un)) ∈ f −1(f (Un))]

≥ Pr[B ′(0lUn−l , f (Un)) ∈ (0lUn−l , f −1(f (Un)))]

= Pr[B ′(g(U2n)) ∈ g−1(g(U2n)) |U2n ∈ S2n]

≥ Pr[B ′(g(U2n)) ∈ g−1(g(U2n))]− Pr[U2n �∈ S2n]

Pr[U2n ∈ S2n]

= n ·
(

Pr[B ′(g(U2n)) ∈ g−1(g(U2n))]−
(

1− 1

n

))
= 1− n · (1− Pr[B ′(g(U2n)) ∈ g−1(g(U2n))])

4 Throughout the text, we treat log2 |x | as if it were an integer. A precise argument can be derived by replacing
log2 |x | with "log2 |x |# and some minor adjustments.

43

COMPUTATIONAL DIFFICULTY

(For the second inequality, we used Pr[A|B] = Pr[A∩B]
Pr[B] and Pr[A ∩ B] ≥ Pr[A]−

Pr[¬B].) It should not come as a surprise that the above expression is meaningful only
in case Pr[B ′(g(U2n)) ∈ g−1(g(U2n))] > 1− 1

n .
It follows that for every polynomial p(·) and every integer n, if B ′ inverts g on g(U2n)

with probability greater than 1− 1
p(2n) , then A′ inverts f on f (Un) with probability

greater than 1− n
p(2n) . Hence, if g is not weakly one-way (i.e., for every polynomial

p(·) there exist infinitely many m’s such that g can be inverted on g(Um) with probabil-
ity ≥ 1− 1/p(m)), then also f is not weakly one-way (i.e., for every polynomial q(·)
there exist infinitely many n’s such that f can be inverted on f (Un) with probability
≥ 1− 1/q(n), where q(n) = p(2n)/n). This contradicts our hypothesis (that f is
weakly one-way).

To summarize, given a probabilistic polynomial-time algorithm that inverts
g on g(U2n) with success probability 1− 1

n + α(n), we obtain a probabilistic
polynomial-time algorithm that inverts f on f (Un) with success probability
n · α(n). Thus, since f is (weakly) one-way, n · α(n) < 1− (1/q(n)) must hold
for some polynomial q, and so g must be weakly one-way (since each proba-
bilistic polynomial-time algorithm trying to invert g on g(U2n) must fail with
probability at least 1

n − α(n) > 1
n·q(n)). �

We have just shown that unless no one-way functions exist, there exist weak one-
way functions that are not strong ones. This rules out the possibility that all one-way
functions are strong ones. Fortunately, we can also rule out the possibility that all
one-way functions are (only) weak ones. In particular, the existence of weak one-way
functions implies the existence of strong ones.

Theorem 2.3.2: Weak one-way functions exist if and only if strong one-way
functions exist.

We strongly recommend that the reader not skip the proof (given in Section 2.3.1),
since we believe that the proof is very instructive to the rest of this book. Furthermore,
the proof demonstrates that amplification of computational difficulty is much more
involved than amplification of an analogous probabilistic event. Both aspects are further
discussed in Section 2.3.3. An illustration of the proof in the context of a “toy” example
is provided in Section 2.3.2. (It is possible to read Section 2.3.2 before Section 2.3.1;
in fact, most readers may prefer to do so.)

2.3.1. Proof of Theorem 2.3.2

Let f be a weak one-way function, and let p be the polynomial guaranteed by the
definition of a weak one-way function. Namely, every probabilistic polynomial-time
algorithm fails to invert f on f (Un) with probability at least 1

p(n) . We assume, for
simplicity, that f is length-preserving (i.e. | f (x)| = |x | for all x’s). This assumption,
which is not really essential, is justified by Proposition 2.2.5. We define a function g

44

2.3. WEAK ONE-WAY FUNCTIONS IMPLY STRONG ONES

as follows:

g
(
x1, . . . , xt(n)

) def= f (x1), . . . , f
(
xt(n)

)
(2.5)

where |x1| = · · · = |xt(n)| = n and t(n) def= n · p(n). Namely, the n2 p(n)-bit-long in-
put of g is partitioned into t(n) blocks, each of length n, and f is applied to each
block.

Clearly, g can be computed in polynomial time (by an algorithm that breaks the
input into blocks and applies f to each block). Furthermore, it is easy to see that
inverting g on g(x1, . . . , xt(n)) requires finding a pre-image to each f (xi). One may
be tempted to deduce that it is also clear that g is a strongly one-way function. A
naive argument might proceed by assuming implicitly (with no justification) that the
inverting algorithm worked separately on each f (xi). If that were indeed the case,
then the probability that an inverting algorithm could successfully invert all f (xi)
would be at most (1− 1

p(n))
n·p(n) < 2−n (which is negligible also as a function of

n2 p(n)). However, the assumption that an algorithm trying to invert g works inde-
pendently on each f (xi) cannot be justified. Hence, a more complex argument is
required.

Following is an outline of our proof. The proof that g is strongly one-way proceeds
by a contradiction argument. We assume, on the contrary, that g is not strongly one-way;
namely, we assume that there exists a polynomial-time algorithm that inverts g with
probability that is not negligible. We derive a contradiction by presenting a polynomial-
time algorithm that, for infinitely many n’s, inverts f on f (Un) with probability greater
than 1− 1

p(n) (in contradiction to our hypothesis). The inverting algorithm for f uses
the inverting algorithm for g as a subroutine (without assuming anything about the
manner in which the latter algorithm operates). (We stress that we do not assume that
the g-inverter works in a particular way, but rather use any g-inverter to construct, in a
generic way, an f -inverter.) Details follow.

Suppose that g is not strongly one-way. By definition, it follows that there exists a
probabilistic polynomial-time algorithm B ′ and a polynomial q(·) such that for infinitely
many m’s,

Pr[B ′(g(Um)) ∈ g−1(g(Um))] >
1

q(m)
(2.6)

Let us denote by M ′ the infinite set of integers for which this holds. Let N ′ denote the
infinite set of n’s for which n2 · p(n) ∈ M ′ (note that all m’s considered are of the form
n2 · p(n), for some integer n).

Using B ′, we now present a probabilistic polynomial-time algorithm A′ for inverting
f . On input y (supposedly in the range of f), algorithm A′ proceeds by applying
the following probabilistic procedure, denoted I , on input y for a(|y|) times, where
a(·) is a polynomial that depends on the polynomials p and q (specifically, we set

a(n) def= 2n2 · p(n) · q(n2 p(n))).

Procedure I

Input: y (denote n
def= |y|).

45

COMPUTATIONAL DIFFICULTY

For i = 1 to t(n) do begin

1. Select uniformly and independently a sequence of strings x1, . . . , xt(n) ∈ {0, 1}n .
2. Compute (z1, . . . , zt(n)) ← B ′(f (x1), . . . , f (xi−1), y, f (xi+1), . . . , f (xt(n))).

(Note that y is placed in the i th position instead of f (xi).)
3. If f (zi) = y, then halt and output zi .

(This is considered a success).
end

Using Eq. (2.6), we now present a lower bound on the success probability of algorithm
A′. To this end we define a set, denoted Sn , that contains all n-bit strings on which the
procedure I succeeds with non-negligible probability (specifically, greater than n

a(n)).
(The probability is taken only over the coin tosses of procedure I.) Namely,

Sn
def=
{

x : Pr[I (f (x)) ∈ f −1(f (x))] >
n

a(n)

}
In the next two claims we shall show that Sn contains all but at most a 1

2p(n) fraction
of the strings of length n ∈ N ′ and that for each string x ∈ Sn the algorithm A′ inverts
f on f (x) with probability exponentially close to 1. It will follow that A′ inverts f
on f (Un), for n ∈ N ′, with probability greater than 1− 1

p(n) , in contradiction to our
hypothesis.

Claim 2.3.2.1: For every x ∈ Sn ,

Pr[A′(f (x)) ∈ f −1(f (x))] > 1− 1

2n

Proof: By definition of the set Sn , the procedure I inverts f (x) with probability
at least n

a(n) . Algorithm A′ merely repeats I for a(n) times, and hence

Pr[A′(f (x)) �∈ f −1(f (x))] <
(

1− n

a(n)

)a(n)

<
1

2n

The claim follows. �

Claim 2.3.2.2: For every n ∈ N ′,

|Sn| >
(

1− 1

2p(n)

)
· 2n

Proof: We assume, to the contrary, that |Sn| ≤ (1− 1
2p(n)) · 2n . We shall reach a

contradiction to Eq. (2.6) (i.e., our hypothesis concerning the success probability
of B ′). Recall that by this hypothesis (for n ∈ N0),

s(n) def= Pr
[
B ′(g(Un2 p(n)

)) ∈ g−1(g(Un2 p(n)

))]
>

1

q(n2 p(n))
(2.7)

Let U (1)
n , . . . ,U (n·p(n))

n denote the n-bit-long blocks in the random variable Un2 p(n)

(i.e., these U (i)
n ’s are independent random variables each uniformly distributed in

{0, 1}n). We partition the event considered in Eq. (2.7) into two disjoint events
corresponding to whether or not one of the U (i)

n ’s resides out of Sn . Intuitively,
B ′ cannot perform well in such a case, since this case corresponds to the success

46

2.3. WEAK ONE-WAY FUNCTIONS IMPLY STRONG ONES

probability of I on pre-images out of Sn . On the other hand, the probability that
all U (i)

n ’s reside in Sn is small. Specifically, we define

s1(n) def= Pr
[
B ′ (g(Un2 p(n)

)) ∈ g−1 (g (Un2 p(n)

)) ∧ (∃i s.t. U (i)
n �∈ Sn

)]
and

s2(n) def= Pr
[
B ′ (g (Un2 p(n)

)) ∈ g−1 (g (Un2 p(n)

)) ∧ (∀i : U (i)
n ∈ Sn

)]
Clearly, s(n) = s1(n)+ s2(n) (as the events considered in the si ’s are disjoint).
We derive a contradiction to the lower bound on s(n) (given in Eq. (2.7)) by
presenting upper bounds for both s1(n) and s2(n) (which sum up to less).

First, we present an upper bound on s1(n). The key observation is that algorithm
I inverts f on input f (x) with probability that is related to the success of B ′ to
invert g on a sequence of random f -images containing f (x). Specifically, for
every x ∈ {0, 1}n and every 1 ≤ i ≤ n · p(n), the probability that I inverts f on
f (x) is greater than or equal to the probability that B ′ inverts g on g(Un2 p(n))
conditioned on U (i)

n = x (since any success of B ′ to invert g means that f was
inverted on the i th block, and thus contributes to the success probability of I). It
follows that, for every x ∈ {0, 1}n and every 1 ≤ i ≤ n · p(n),

Pr[I (f (x)) ∈ f −1(f (x))]

≥ Pr
[
B ′(g(Un2 p(n)

)) ∈ g−1(g(Un2 p(n)

)) ∣∣U (i)
n = x

]
(2.8)

Since for x �∈ Sn the left-hand side (l.h.s.) cannot be large, we shall show that (the
r.h.s. and so) s1(n) cannot be large. Specifically, using Eq. (2.8), it follows that

s1(n) = Pr
[∃i s.t. B ′(g(Un2 p(n)

)) ∈ g−1(g(Un2 p(n)

)) ∧ U (i)
n �∈ Sn

]
≤

n·p(n)∑
i=1

Pr
[
B ′(g(Un2 p(n)

)) ∈ g−1(g(Un2 p(n)

)) ∧ U (i)
n �∈ Sn

]

≤
n·p(n)∑

i=1

∑
x �∈Sn

Pr
[
B ′(g(Un2 p(n)

)) ∈ g−1(g(Un2 p(n)

)) ∧ U (i)
n = x

]

=
n·p(n)∑

i=1

∑
x �∈Sn

Pr
[
U (i)

n = x
] · Pr

[
B ′(g(Un2 p(n)

)) ∈ g−1(g(Un2 p(n)

)) ∣∣U (i)
n = x

]

≤
n·p(n)∑

i=1

max
x �∈Sn

{
Pr
[
B ′(g(Un2 p(n)

)) ∈ g−1(g(Un2 p(n)

)) ∣∣U (i)
n = x

]}

≤
n·p(n)∑

i=1

max
x �∈Sn

{Pr[I (f (x)) ∈ f −1(f (x))]}

≤ n · p(n) · n

a(n)
= n2 · p(n)

a(n)

(The last inequality uses the definition of Sn , and the one before it uses Eq. (2.8).)

47

COMPUTATIONAL DIFFICULTY

We now present an upper bound on s2(n). Recall that by the contradiction
hypothesis, |Sn| ≤ (1− 1

2p(n)) · 2n . It follows that

s2(n) ≤ Pr
[∀i : U (i)

n ∈ Sn

]
≤
(

1− 1

2p(n)

)n·p(n)

<
1

2n/2
<

n2 · p(n)

a(n)

(The last inequality holds for sufficiently large n.)
Combining the upper bounds on the si ’s, we have s1(n)+ s2(n) < 2n2·p(n)

a(n) =
1

q(n2 p(n)) , where equality is by the definition of a(n). Yet, on the other hand, s1(n)+
s2(n) = s(n) > 1

q(n2 p(n)) , where the inequality is due to Eq. (2.7). Contradiction is
reached, and the claim follows. �

Combining Claims 2.3.2.1 and 2.3.2.2, we obtain

Pr[A′(f (Un)) ∈ f −1(f (Un))]

≥ Pr[A′(f (Un)) ∈ f −1(f (Un)) ∧ Un ∈ Sn]

= Pr[Un ∈ Sn] · Pr[A′(f (Un)) ∈ f −1(f (Un)) |Un ∈ Sn]

≥
(

1− 1

2p(n)

)
· (1− 2−n

)
> 1− 1

p(n)

It follows that there exists a probabilistic polynomial-time algorithm (i.e., A′)
that inverts f on f (Un), for n ∈ N ′, with probability greater than 1− 1

p(n) . This
conclusion, which follows from the hypothesis that g is not strongly one-way
(i.e., Eq. (2.6)), stands in contradiction to the hypothesis that every probabilistic
polynomial-time algorithm fails to invert f with probability at least 1

p(n) , and the
theorem follows. �

2.3.2. Illustration by a Toy Example

Let us try to further clarify the algorithmic ideas underlying the proof of Theorem 2.3.2.
To do so, consider the following quantitative notion of weak one-way functions. We say
that (a polynomial-time-computable) f is ρ-one-way if for all probabilistic polynomial-
time algorithms A′, for all but finitely many n’s, the probability that on input f (Un)
algorithm A′ fails to find a pre-image under f is at least ρ(n). (Each weak one-way
function is 1/p()-one-way for some polynomial p, whereas strong one-way functions
are (1− µ())-one-way, where µ is a negligible function.)

Proposition 2.3.3 (Toy Example): Suppose that f is 1
3 -one-way, and let

g(x1, x2) def= (f (x1), f (x2)). Then g is 0.55-one-way (where 0.55 < 1− (2
3)2).

Proof Outline: Suppose, toward the contradiction, that there exists a polynomial-
time algorithm A′ that inverts g(U2n) with success probability greater than

48

2.3. WEAK ONE-WAY FUNCTIONS IMPLY STRONG ONES

The Naive View The Actual Proof

R

C

Good

Rows

Good Columns

S

Figure 2.2: The naive view versus the actual proof of Proposition 2.3.3.

1− 0.55 = 0.45, for infinitely many n’s. Consider any such n, and let N
def= 2n .

Assume for simplicity that A′ is deterministic. Consider an N -by-N matrix with
entries corresponding to pairs (x1, x2) ∈ {0, 1}n × {0, 1}n such that entry (x1, x2)
is marked 1 if A′ successfully inverts g on input g(x1, x2) = (f (x1), f (x2)) and
is marked zero otherwise. Our contradiction hypothesis is that the fraction of
1-entries in the matrix is greater than 45%.

The naive (unjustified) assumption is that A′ operates separately on each el-
ement of the pair (f (x1), f (x2)). If that were the case, then the success region
of A′ would have been a generalized rectangle R × C ⊆ {0, 1}n × {0, 1}n (i.e.,
corresponding to all pairs (x1, x2) such that x1 ∈ R and x2 ∈ C for some sets
R ⊆ {0, 1}n and C ⊆ {0, 1}n). Using the hypothesis that f is 1

3 -one-way, we have
|R|, |C | ≤ 2

3 · N , and so |R×C |
N 2 ≤ 4

9 < 0.45, in contradiction to our hypothesis
regarding A′.

However, as stated earlier, the naive assumption cannot be justified, and so a
more complex argument is required. In general, the success region of A′, denoted
S, may be an arbitrary subset of {0, 1}n × {0, 1}n satisfying |S| > 0.45 · N 2 (by
the contradiction hypothesis). Let us call a row x1 (resp., column x2) good if it
contains at least 0.1% of 1-entries; otherwise it is called bad. (See Figure 2.2.)
The main algorithmic part of the proof is establishing the following claim.

Claim 2.3.3.1: The fraction of good rows (resp., columns) is at most 66.8%.

Once this claim is proved, all that is left is straightforward combinatorics (i.e.,
counting). That is, we upper-bound the size of S by counting separately the number
of 1-entries in the intersection of good rows and good columns and the 1-entries
in bad rows and bad columns: By Claim 2.3.3.1, there are at most (0.668N)2

entries in the intersection of good rows and good columns, and by definition
the number of 1-entries in each bad row (resp., bad column) is at most 0.001N .
Thus, |S| ≤ (0.668N)2 + 2 · N · 0.001N < 0.449 · N 2, in contradiction to our
hypothesis (i.e., |S| > 0.45 · N 2).

49

COMPUTATIONAL DIFFICULTY

Proof of Claim 2.3.3.1: Suppose, toward the contradiction, that the fraction of
good rows is greater than 66.8% (the argument for columns is analogous). Then,
to reach a contradiction, we construct an algorithm for inverting f as follows. On
input y, the algorithm repeats the following steps 10,000 times:

1. Select x2 uniformly in {0, 1}n .

2. Invoke A′ on input (y, f (x2)), and obtain its output (x ′, x ′′).

3. If f (x ′) = y, then halt with output x ′.

Clearly, this algorithm works in polynomial time, and it is left to analyze its
success in inverting f . For every good x1, the probability that the algorithm
fails to invert f on input y = f (x1) is at most (1− 0.001)10,000 < 0.001. Thus,
the probability that the algorithm succeeds in inverting f on input f (Un) is
at least 0.668 · 0.999 > 2

3 , in contradiction to the hypothesis that f is
1
3 -one-way. �

2.3.3. Discussion

2.3.3.1. Reducibility Arguments: A Digest

Let us recall the structure of the proof of Theorem 2.3.2. Given a weak one-way function
f , we first constructed a polynomial-time-computable function g. This was done with
the intention of later proving that g is strongly one-way. To prove that g is strongly one-
way, we used a reducibility argument. The argument transforms efficient algorithms
that supposedly contradict the strong one-wayness of g into efficient algorithms that
contradict the hypothesis that f is weakly one-way. Hence g must be strongly one-
way. We stress that our algorithmic transformation, which is in fact a randomized
Cook reduction,5 makes no implicit or explicit assumptions about the structure of the
prospective algorithms for inverting g. Assumptions such as the “natural” assumption
that the inverter of g works independently on each block cannot be justified (at least
not at our current state of understanding of the nature of efficient computations).

We use the term reducibility argument, rather than just saying a reduction, so as to
emphasize that we do not refer here to standard (worst-case-complexity) reductions.
Let us clarify the distinction: In both cases we refer to reducing the task of solving one
problem to the task of solving another problem; that is, we use a procedure solving
the second task in order to construct a procedure that solves the first task. However, in
standard reductions one assumes that the second task has a perfect procedure solving
it on all instances (i.e., on the worst case) and constructs such a procedure for the first
task. Thus, the reduction may invoke the given procedure (for the second task) on very
“non-typical” instances. This cannot be done in our reducibility arguments. Here, we
are given a procedure that solves the second task with certain probability with respect
to a certain distribution. Thus, in employing a reducibility argument, we cannot invoke
this procedure on any instance. Instead, we must consider the probability distribution,

5A (randomized) Cook reduction of one computational problem �1 to another problem, denoted �2, is a
(probabilistic) polynomial-time oracle machine that solves �1, while making queries to oracle �2.

50

2.4. ONE-WAY FUNCTIONS: VARIATIONS

on instances of the second task, induced by our reduction. In many cases the latter
distribution equals the distribution to which the hypothesis (regarding solvability of the
second task) refers, but other cases can be handled too (e.g., these distributions may
be “sufficiently close” for the specific purpose). In any case, a careful analysis of the
distribution induced by the reducibility argument is due.

2.3.3.2. The Information-Theoretic Analogue

Theorem 2.3.2 has a natural information-theoretic (or “probabilistic”) analogue that as-
serts that repeating an experiment that has a noticeable failure probability sufficiently
many times will yield some failure with very high probability. The reader is probably
convinced at this stage that the proof of Theorem 2.3.2 is much more complex than the
proof of the information-theoretic analogue. In the information-theoretic context, the
repeated events are independent by definition, whereas in our computational context no
such independence (which corresponds to the naive argument given at the beginning
of the proof of Theorem 2.3.2) can be guaranteed. Another indication of the difference
between the two settings follows. In the information-theoretic setting, the probability
that none of the failure events will occur decreases exponentially with the number of
repetitions. In contrast, in the computational setting we can reach only an unspecified
negligible bound on the inverting probabilities of polynomial-time algorithms. Further-
more, it may be the case that g constructed in the proof of Theorem 2.3.2 can be ef-
ficiently inverted on g(Un2 p(n)) with success probability that is sub-exponentially de-
creasing (e.g., with probability 2−(log2 n)3

), whereas the analogous information-theoretic
bound is exponentially decreasing (i.e., e−n).

2.3.3.3. Weak One-Way Functions Versus Strong Ones: A Summary

By Theorem 2.3.2, whenever we assume the existence of one-way functions, there
is no need to specify whether we refer to weak or strong ones. That is, as far as the
mere existence of one-way function goes, the notions of weak and strong one-way
functions are equivalent. However, as far as efficiency considerations are concerned,
the two notions are not really equivalent, since the above transformation of weak one-
way functions into strong ones is not practical. An alternative transformation, which is
much more efficient, does exist for the case of one-way permutations and other specific
classes of one-way functions. The interested reader is referred to Section 2.6.

2.4. One-Way Functions: Variations

In this section we discuss several issues concerning one-way functions. In the first
subsection we present a function that is (strongly) one-way, provided that one-way
functions exist. The construction of this function is of strict abstract interest. In contrast,
the issues discussed in the other subsections are of practical importance. First, we
present an alternative formulation of one-way functions. This formulation is better
suited for describing many natural candidates for one-way functions, and indeed we use
it in order to describe some popular candidates for one-way functions. Next, we use this

51

COMPUTATIONAL DIFFICULTY

formulation to present one-way functions with additional properties; specifically, we
consider (one-way) trapdoor permutations and claw-free function pairs. We remark that
these additional properties are used in several constructions presented in other chapters
of this book (e.g., trapdoor permutations are used in the construction of public-key
encryption schemes, whereas claw-free permutations are used in the construction of
collision-free hashing). We conclude this section with remarks concerning the “art” of
proposing candidates for one-way functions.

2.4.1.∗Universal One-Way Function

Using the notion of a universal machine and the result of the preceding section, it is
possible to prove the existence of a universal one-way function; that is, we present a
(fixed) function that is one-way, provided that one-way functions exist.

Proposition 2.4.1: There exists a polynomial-time-computable function that is
(strongly) one-way if and only if one-way functions exist.

Proof Sketch: A key observation is that there exist one-way functions if and
only if there exist one-way functions that can be evaluated by a quadratic-time
algorithm. (The choice of the specific time bound is immaterial; what is important
is that such a specific time bound exists.) This statement is proved using a padding
argument. Details follow.

Let f be an arbitrary one-way function, and let p(·) be a polynomial bounding

the time complexity of an algorithm for computing f . Define g(x ′x ′′) def= f (x ′)x ′′,
where |x ′x ′′| = p(|x ′|). An algorithm computing g first parses the input into x ′

and x ′′ so that |x ′x ′′| = p(|x ′|) and then applies f to x ′. The parsing and the other
overhead operations can be implemented in quadratic time (in |x ′x ′′|), whereas
computing f (x ′) is done within time p(|x ′|) = |x ′x ′′| (which is linear in the input
length). Hence, g can be computed (by a Turing machine) in quadratic time. The
reader can verify that g is one-way using a “reducibility argument” (analogous
to the one used in the proof of Proposition 2.2.5).

We now present a (universal one-way) function, denoted funi:

funi(desc(M), x) def= (desc(M), M(x)) (2.9)

where desc(M) is a description of Turing machine M , and M(x) is defined as
the output of M on input x if M runs at most quadratic time on x , and M(x)
is defined as x otherwise. (Without loss of generality, we can view any string
as the description of some Turing machine.) Clearly, funi can be computed in
polynomial time by a universal machine that uses a step counter. To show that
funi is weakly one-way (provided that one-way functions exist at all), we use a
“reducibility argument.”

Assuming that one-way functions exist, and using the foregoing observation,
it follows that there exists a one-way function g that is computed in quadratic
time. Let Mg be the quadratic-time machine computing g. Clearly, an (efficient)

52

2.4. ONE-WAY FUNCTIONS: VARIATIONS

algorithm inverting funi on inputs of the form funi(desc(Mg),Un) with probability
p(n) can be easily modified into an (efficient) algorithm inverting g on inputs
of the form g(Un) with probability p(n). As in the proof of Proposition 2.3.1,
it follows that an algorithm inverting funi with probability at least 1− ε(n) on
strings of length |desc(Mg)| + n yields an algorithm inverting g with probability
at least 1− 2|desc(Mg)| · ε(n) on strings of length n. (We stress that |desc(Mg)| is
a constant, depending only on g.) Hence, if funi is not weakly one-way (i.e., the
function ε is not noticeable), then also g cannot be (weakly) one-way (i.e., also
2|desc(Mg)| · ε is not noticeable).

Using Theorem 2.3.2 (to transform the weak one-way function funi into a
strong one), the proposition follows. �

Discussion. The observation by which it suffices to consider one-way functions that
can be evaluated within a specific time bound is crucial to the construction of funi,
the reason being that it is not possible to construct a polynomial-time machine that is
universal for the class of all polynomial-time machines (i.e., a polynomial-time machine
that can “simulate” all polynomial-time machines). It is, however, possible to construct,
for every polynomial p(·), a polynomial-time machine that is universal for the class of
machines with running time bounded by p(·).

The impracticality of the construction of funi stems from the fact that funi is likely to
be hard to invert only on huge input lengths (i.e., lengths allowing the encoding of non-
trivial algorithms as required for the evaluation of one-way functions). Furthermore, to
obtain a strongly one-way function from funi, we need to apply the latter on a sequence
of more than 2L inputs, each of length L + n, where L is a lower bound on the length
of the encoding of potential one-way functions, and n is our actual security parameter.

Still, Proposition 2.4.1 says that, in principle, the question of whether or not one-
way functions exist “reduces” to the question of whether or not a specific function is
one-way.

2.4.2. One-Way Functions as Collections

The formulation of one-way functions used thus far is suitable for an abstract dis-
cussion. However, for describing many natural candidates for one-way functions,
the following formulation (although being more cumbersome) is more serviceable.
Instead of viewing one-way functions as functions operating on an infinite domain
(i.e., {0, 1}∗), we consider infinite collections of functions each operating on a finite do-
main. The functions in the collection share a single evaluating algorithm that when given
as input a succinct representation of a function and an element in its domain returns
the value of the specified function at the given point. The formulation of a collection
of functions is also useful for the presentation of trapdoor permutations and claw-
free functions (see Sections 2.4.4 and 2.4.5, respectively). We start with the following
definition.

Definition 2.4.2 (Collection of Functions): A collection of functions consists
of an infinite set of indices, denoted Ī , and a corresponding set of finite functions,

53

COMPUTATIONAL DIFFICULTY

denoted { fi }i∈ Ī . That is, for each i ∈ Ī , the domain of the function fi , denoted
Di , is a finite set.

Typically, the set of indices Ī will be a “dense” subset of the set of all strings; that is, the
fraction of n-bit-long strings in Ī will be noticeable (i.e., | Ī ∩ {0, 1}n| ≥ 2n/poly(n)).

We shall be interested only in collections of functions that can be used in crypto-
graphic applications. As hinted earlier, a necessary condition for using a collection of
functions is the existence of an efficient function-evaluating algorithm (denoted F) that
on input i ∈ Ī and x ∈ Di returns fi (x). Yet this condition by itself does not suffice. We
need to be able to (randomly) select an index specifying a function over a sufficiently
large domain, as well as to be able to (randomly) select an element of the domain
(when given the domain’s index). The sampling property of the index set is captured by
an efficient algorithm (denoted I) that on input an integer n (presented in unary) ran-
domly selects a poly(n)-bit-long index specifying a function and its associated domain.
(As usual, unary presentation is used so as to conform with the standard association
of efficient algorithms with those running in times polynomial in the lengths of their
inputs.) The sampling property of the domains is captured by an efficient algorithm
(denoted D) that on input an index i randomly selects an element in Di . The one-way
property of the collection is captured by requiring that every efficient algorithm, when
given an index of a function and an element in its range, fails to invert the function,
except with negligible probability. The probability is taken over the distribution induced
by the sampling algorithms I and D. All the preceding is captured by the following
definition.

Definition 2.4.3 (Collection of One-Way Functions): A collection of functions
{ fi : Di → {0, 1}∗}i∈ Ī is called strongly (resp., weakly) one-way if there exist
three probabilistic polynomial-time algorithms I , D, and F such that the follow-
ing two conditions hold:

1. Easy to sample and compute: The output distribution of algorithm I on input 1n is
a random variable assigned values in the set Ī ∩ {0, 1}n. The output distribution
of algorithm D on input i ∈ Ī is a random variable assigned values in Di . On
input i ∈ Ī and x ∈ Di , algorithm F always outputs fi (x).

(Thus, Di ⊆ ∪m≤poly(|i |){0, 1}m. Without loss of generality, we can assume that
Di ⊆ {0, 1}poly(|i |). Also without loss of generality, we can assume that algorithm
F is deterministic.)

2. Hard to invert (version for strongly one-way): For every probabilistic polynomial-
time algorithm A′, every positive polynomial p(·), and all sufficiently large n’s,

Pr[A′(In, f In (Xn)) ∈ f −1
In

(f In
(Xn))] <

1

p(n)

where In is a random variable describing the output distribution of algorithm I
on input 1n, and Xn is a random variable describing the output of algorithm D on
input (random variable) In.

(The version for weakly one-way collections is analogous.)

54

2.4. ONE-WAY FUNCTIONS: VARIATIONS

We stress that the output of algorithm I on input 1n is not necessarily distributed
uniformly over Ī ∩ {0, 1}n . Furthermore, it is not even required that I (1n) not be entirely
concentrated on one single string. Likewise, the output of algorithm D on input i is not
necessarily distributed uniformly over Di . Yet the hardness-to-invert condition implies
that D(i) cannot be mainly concentrated on polynomially many (in |i |) strings. We
stress that the collection is hard to invert with respect to the distribution induced by the
algorithms I and D (in addition to depending, as usual, on the mapping induced by the
function itself).

We can describe a collection of one-way functions by indicating the corresponding
triplet of algorithms. Hence, we can say that a triplet of probabilistic polynomial-time
algorithms (I, D, F) constitutes a collection of one-way functions if there exists a
collection of functions for which these algorithms satisfy the foregoing two conditions.

Clearly, any collection of one-way functions can be represented as a one-way func-
tion, and vice versa (see Exercise 18), yet each formulation has its own advantages. In
the sequel, we shall use the formulation of a collection of one-way functions in order
to present popular candidates for one-way functions.

Relaxations. To allow a less cumbersome presentation of natural candidates for one-
way collections (of functions), we relax Definition 2.4.3 in two ways. First, we allow the
index-sampling algorithm to output, on input 1n , indices of length p(n) rather than n,
where p(·) is some polynomial. Second, we allow all algorithms to fail with negligible
probability. Most important, we allow the index sampler I to output strings not in Ī
so long as the probability that I (1n) �∈ Ī ∩ {0, 1}p(n) is a negligible function in n. (The
same relaxations can be used when discussing trapdoor permutations and claw-free
functions.)

Additional Properties: Efficiently Recognizable Indices and Domains. Several ad-
ditional properties that hold for some candidate collections for one-way functions will be
explicitly discussed in subsequent subsections. Here we mention two (useful) additional
properties that hold in some candidate collections for one-way functions. The proper-
ties are (1) having an efficiently recognizable set of indices and (2) having efficiently
recognizable collection of domains; that is, we refer to the existence of an efficient
algorithm for deciding membership in Ī and the existence of an efficient algorithm that
given i ∈ Ī and x can determine whether or not x ∈ Di . Note that for the non-relaxed
Definition 2.4.3, the coins used to generate i ∈ Ī (resp., x ∈ Di) constitute a certificate
(i.e., anNP-witness) for the corresponding claim; yet this certificate that i ∈ Ī (resp.,
x ∈ Di) may assist in inverting the function fi (resp., always yielding the pre-image x).

2.4.3. Examples of One-Way Collections

In this section we present several popular collections of one-way functions (e.g., RSA
and discrete exponentiation) based on computational number theory.6 In the exposition

6 Obviously these are merely candidate collections for one-way functions; their hardness-to-invert feature
either is a (widely believed) conjecture or follows from a (widely believed) conjecture.

55

COMPUTATIONAL DIFFICULTY

that follows, we assume some knowledge of elementary number theory and some
familiarity with simple number-theoretic algorithms. Further discussion of the relevant
number theoretic material is presented in Appendix A.

2.4.3.1. The RSA Function

The RSA collection of functions has an index set consisting of pairs (N , e), where N is
a product of two (1

2 · log2 N)-bit primes, denoted P and Q, and e is an integer smaller
than N and relatively prime to (P − 1) · (Q − 1). The function of index (N , e) has
domain {1, . . . , N } and maps the domain element x to xe mod N . Using the fact that
e is relatively prime to (P − 1) · (Q − 1), it can be shown that the function is in fact a
permutation over its domain. Hence, the RSA collection is a collection of permutations.

We first substantiate the fact that the RSA collection satisfies the first condition for
the definition of a one-way collection (i.e., that it is easy to sample and compute). To
this end, we present the triplet of algorithms (IRSA, DRSA, FRSA).

On input 1n , algorithm IRSA selects uniformly two primes, P and Q, such that 2n−1 ≤
P < Q < 2n , and an integer e such that e is relatively prime to (P − 1) · (Q − 1).
(Specifically, e is uniformly selected among the admissible possibilities.7) Algorithm
IRSA terminates with output (N , e), where N = P · Q. For an efficient implementation
of IRSA, we need a probabilistic polynomial-time algorithm for generating uniformly
(or almost uniformly) distributed primes. For more details concerning the uniform
generation of primes, see Appendix A.

As for algorithm DRSA, on input (N , e) it selects (almost) uniformly an element in

the set DN ,e
def= {1, . . . , N }. (The exponentially vanishing deviation is due to the fact

that we implement an N -way selection via a sequence of unbiased coin tosses.) The
output of FRSA, on input ((N , e), x), is

RSAN ,e(x) def= xe mod N (2.10)

It is not known whether or not factoring N can be reduced to inverting RSAN ,e, and
in fact this is a well-known open problem. We remark that the best algorithms known
for inverting RSAN ,e proceed by (explicitly or implicitly) factoring N . In any case, it
is widely believed that the RSA collection is hard to invert.

In the foregoing description, DN ,e corresponds to the additive group mod N (and
hence will contain N elements). Alternatively, the domain DN ,e can be restricted to
the elements of the multiplicative group modulo N (and hence will contain (P − 1) ·
(Q − 1) ≈ N − 2

√
N ≈ N elements). A modified domain sampler may work by se-

lecting an element in {1, . . . , N } and discarding the unlikely cases in which the selected
element is not relatively prime to N . The function RSAN ,e defined earlier induces a
permutation on the multiplicative group modulo N . The resulting collection is as hard
to invert as the original one. (A proof of this statement is left as an exercise to the
reader.) The question of which formulation to prefer seems to be a matter of personal
taste.

7In some sources, e is set to equal 3. In such a case, the primes (P and Q) are selected so that they are congruent
to 2 mod 3. It is not known whether or not the assumption that one variant is one-way implies that the other
also is.

56

2.4. ONE-WAY FUNCTIONS: VARIATIONS

2.4.3.2. The Rabin Function

The Rabin collection of functions is defined analogously to the RSA collection, except
that the function is squaring modulo N (instead of raising to the eth power mod N).
Namely,

RabinN (x) def= x2 mod N (2.11)

This function, however, does not induce a permutation on the multiplicative group
modulo N , but is rather a 4-to-1 mapping on this group.

It can be shown that extracting square roots modulo N is computationally equiv-
alent to factoring N (i.e., the two tasks are reducible to one another via probabilistic
polynomial-time reductions). For details, see Exercise 21. Hence, squaring modulo a
composite is a collection of one-way functions if and only if factoring is intractable. We
remind the reader that it is generally believed that integer factorization is intractable,
and this holds also for the special case in which the integer is a product of two primes
of the same length.8

2.4.3.3. The Factoring Permutations

For a special subclass of the integers, known by the name of Blum integers, the function
RabinN (·) defined earlier induces a permutation on the quadratic residues modulo N .
We say that r is a quadratic residue mod N if there exists an integer x such that r ≡ x2

(mod N). We denote by QN the set of quadratic residues in the multiplicative group mod
N . For purposes of this paragraph, we say that N is a Blum integer if it is the product of
two primes, each congruent to 3 mod 4. It can be shown that when N is a Blum integer,
each element in QN has a unique square root that is also in QN , and it follows that
in this case the function RabinN (·) induces a permutation over QN . This leads to the
introduction of the collection SQR def= (IBI, DQR, FSQR) of permutations. On input 1n ,
algorithm IBI selects uniformly two primes, P and Q, such that 2n−1 ≤ P < Q < 2n and
P ≡ Q ≡ 3 (mod 4), and outputs N = P · Q. On input N , algorithm DQR uniformly
selects an element of QN by uniformly selecting an element of the multiplicative
group modulo N and squaring it mod N . Algorithm FSQR is defined exactly as in
the Rabin collection. The resulting collection is one-way, provided that factoring is
intractable.

2.4.3.4. Discrete Logarithms

Another computational number-theoretic problem that is widely believed to be in-
tractable is that of extracting discrete logarithms in a finite field (and, in particular, of
prime cardinality). The DLP collection of functions, which borrows its name (and its
conjectured one-wayness) from the discrete-logarithm problem, is defined by the triplet
of algorithms (IDLP, DDLP, FDLP).

On input 1n , algorithm IDLP selects uniformly a prime P , such that 2n−1 ≤ P < 2n ,
and a primitive element G in the multiplicative group modulo P (i.e., a generator

8In fact, the latter case is believed to be the hardest.

57

COMPUTATIONAL DIFFICULTY

of this cyclic group), and outputs (P,G). There exists a probabilistic polynomial-
time algorithm for uniformly generating primes, together with the prime factorization
of P − 1, where P is the prime generated (see Appendix A). Alternatively, one can
uniformly generate a prime P of the form 2Q + 1, where Q is also a prime. (In the
latter case, however, one has to assume the intractability of DLP with respect to such
primes. We remark that such primes are commonly believed to be the hardest for
DLP.) Using the factorization of P − 1, we can find a primitive element by selecting
an element of the group at random and checking whether or not it has order P − 1
(by raising the candidate to powers that non-trivially divide P − 1, and comparing the
result to 1).

Regarding algorithm DDLP, on input (P,G) it selects uniformly a residue modulo
P − 1. Algorithm FDLP, on input ((P,G), x), outputs

DLPP,G(x) def= Gx mod P (2.12)

Hence, inverting DLPP,G amounts to extracting the discrete logarithm (to base G)
modulo P . For every (P,G) of the foregoing form, the function DLPP,G induces a 1-1
and onto mapping from the additive group mod P − 1 to the multiplicative group mod
P . Hence, DLPP,G induces a permutation on the set {1, . . . , P − 1}.

Exponentiation in other groups is also a reasonable candidate for a one-way function,
provided that the discrete-logarithm problem for the group is believed to be hard. For
example, it is believed that the logarithm problem is hard in the group of points on an
elliptic curve.

2.4.4. Trapdoor One-Way Permutations

We shall define trapdoor (one-way) permutations and review a popular candidate (i.e.,
the RSA).

2.4.4.1. Definitions

The formulation of collections of one-way functions is convenient as a starting point
to the definition of trapdoor permutations. Loosely speaking, these are collections of
one-way permutations, { fi }, with the extra property that fi is efficiently inverted once
it is given as auxiliary input a “trapdoor” for the index i . The trapdoor for index i ,
denoted by t(i), cannot be efficiently computed from i , yet one can efficiently generate
corresponding pairs (i, t(i)).

Definition 2.4.4 (Collection of Trapdoor Permutations): Let I : 1∗ → {0, 1}∗ ×
{0, 1}∗ be a probabilistic algorithm, and let I1(1n) denote the first element of the
pair output by I (1n). A triple of algorithms, (I, D, F), is called a collection of
strong (resp., weak) trapdoor permutations if the following two conditions
hold:

1. The algorithms induce a collection of one-way permutations: The triple (I1, D, F)
constitutes a collection of strong (resp., weak) one-way permutations.

(Recall that, in particular, F(i, x) = fi (x).)

58

2.4. ONE-WAY FUNCTIONS: VARIATIONS

2. Easy to invert with trapdoor: There exists a (deterministic) polynomial-time al-
gorithm, denoted F−1, such that for every (i, t) in the range of I and for every
x ∈ Di , it holds that F−1(t, fi (x)) = x.

A useful relaxation of these conditions is to require that they be satisfied with over-
whelmingly high probability. Namely, the index-generating algorithm I is allowed to
output, with negligible probability, pairs (i, t) for which either fi is not a permutation or
F−1(t, fi (x)) = x does not hold for all x ∈ Di . On the other hand, one typically requires
that the domain-sampling algorithm (i.e., D) produce an almost uniform distribution
on the corresponding domain. Putting all these modifications together, we obtain the
following version, which is incomparable to Definition 2.4.4. We take the opportunity
to present a slightly different formulation, as well as to introduce a non-uniformly
one-way version.

Definition 2.4.5 (Collection of Trapdoor Permutations, Revisited): Let Ī ⊆
{0, 1}∗ and Ī n

def= Ī ∩ {0, 1}n. A collection of permutations with indices in Ī is
a set { fi : Di → Di }i∈ Ī such that each fi is 1-1 on the corresponding Di . Such
a collection is called a trapdoor permutation if there exist four probabilistic
polynomial-time algorithms I, D, F, and F−1 such that the following five condi-
tions hold:

1. Index and trapdoor selection: For every n,

Pr[I (1n) ∈ Ī n × {0, 1}∗] > 1− 2−n

2. Selection in domain: For every n ∈ N and i ∈ Ī n ,
(a) Pr[D(i) ∈ Di] > 1− 2−n.

(b) Conditioned on D(i) ∈ Di , the output is uniformly distributed in Di . That is,
for every x ∈ Di ,

Pr[D(i) = x | D(i) ∈ Di] = 1

|Di |
Thus, Di ⊆ ∪m≤poly(|i |){0, 1}m. Without loss of generality, Di ⊆ {0, 1}poly(|i |).

3. Efficient evaluation: For every n ∈ N, i ∈ Ī n , and x ∈ Di ,

Pr[F(i, x) = fi (x)] > 1− 2−n

4. Hard to invert: Let In be a random variable describing the distribution of the first
element in the output of I (1n), and Xn

def= D(In). We consider two versions:
Standard/uniform-complexity version: For every probabilistic polynomial-time

algorithm A′, every positive polynomial p(·), and all sufficiently large n’s,

Pr[A′(In, f In (Xn)) = Xn] <
1

p(n)

Non-uniform-complexity version: For every family of polynomial-size circuits
{Cn}n∈N, every positive polynomial p(·), and all sufficiently large n’s,

Pr[Cn(In, f In (Xn)) = Xn] <
1

p(n)

59

COMPUTATIONAL DIFFICULTY

5. Inverting with trapdoor: For every n ∈ N, any pair (i, t) in the range of I (1n) such
that i ∈ Ī n , and every x ∈ Di ,

Pr[F−1(t, fi (x)) = x] > 1− 2−n

We comment that an exponentially vanishing measure of indices for which any of
Items 2, 3, and 5 does not hold can be omitted from Ī (and accounted for by the error
allowed in Item 1). Items 3 and 5 can be relaxed by taking the probabilities also over
all possible x ∈ Di with uniform distribution.

2.4.4.2. The RSA (and Factoring) Trapdoor

The RSA collection presented earlier can be easily modified to have the trapdoor
property. To this end, algorithm IRSA should be modified so that it outputs both the
index (N , e) and the trapdoor (N , d), where d is the multiplicative inverse of e mod-
ulo (P − 1) · (Q − 1) (note that e has such inverse because it has been chosen to be
relatively prime to (P − 1) · (Q − 1)). The inverting algorithm F−1

RSA is identical to
the algorithm FRSA (i.e., F−1

RSA((N , d), y) = yd mod N). The reader can easily verify
that

F−1
RSA ((N , d), FRSA ((N , e), x)) = xed mod N

indeed equals x , for every x in the multiplicative group modulo N . In fact, one can
show that xed ≡ x (mod N) for every x (even in case x is not relatively prime to N).

The Rabin collection presented earlier can be easily modified in a similar manner,
enabling one to efficiently compute all four square roots of a given quadratic residue
(mod N). The trapdoor in this case is the prime factorization of N . The square roots
mod N can be computed by extracting a square root modulo each of the prime factors
of N and combining the results using the Chinese Remainder Theorem. Efficient algo-
rithms for extracting square roots modulo a given prime are known (see Appendix A).
Furthermore, in case the prime P is congruent to 3 mod 4, the square roots of x mod
P can be computed by raising x to the power P+1

4 (while reducing the intermediate
results mod P). Furthermore, in case N is a Blum integer, the collection SQR, presented
earlier, forms a collection of trapdoor permutations (provided, of course, that factoring
is hard).

2.4.5.∗Claw-Free Functions

The formulation of collections of one-way functions is also a convenient starting point
for the definition of a collection of claw-free pairs of functions.

2.4.5.1. The Definition

Loosely speaking, a claw-free collection consists of a set of pairs of functions that are
easy to evaluate, that have the same range for both members of each pair, and yet for
which it is infeasible to find a range element together with a pre-image of it under each
of these functions.

60

2.4. ONE-WAY FUNCTIONS: VARIATIONS

Definition 2.4.6 (Claw-Free Collection): A collection of pairs of functions
consists of an infinite set of indices, denoted Ī , two finite sets D0

i and D1
i for each

i ∈ Ī , and two functions f 0
i and f 1

i defined over D0
i and D1

i , respectively. Such
a collection is called claw-free if there exist three probabilistic polynomial-time
algorithms I , D, and F such that the following conditions hold:

1. Easy to sample and compute: The random variable I (1n) is assigned values in
the set Ī ∩ {0, 1}n. For each i ∈ Ī and σ ∈ {0, 1}, the random variable D(σ, i) is
distributed over Dσ

i , and F(σ, i, x) = f σi (x) for each x ∈ Dσ
i .

2. Identical range distribution: For every i in the index set Ī , the random variables
f 0
i (D(0, i)) and f 1

i (D(1, i)) are identically distributed.

3. Hard to form claws: A pair (x, y) satisfying f 0
i (x) = f 1

i (y) is called a claw for
index i . Let Ci denote the set of claws for index i . It is required that for every
probabilistic polynomial-time algorithm A′, every positive polynomial p(·), and
all sufficiently large n’s,

Pr[A′(In) ∈ CIn] <
1

p(n)

where In is a random variable describing the output distribution of algorithm I
on input 1n.

The first requirement in Definition 2.4.6 is analogous to what appears in Definition 2.4.3.
The other two requirements in Definition 2.4.6 are conflicting in nature. On one hand, it
is required that claws do exist (to say the least), whereas on the other hand it is required
that claws cannot be efficiently found. Clearly, a claw-free collection of functions yields
a collection of strong one-way functions (see Exercise 22). A case of special interest

arises when the two domains are identical (i.e., Di
def= D0

i = D1
i), the random variable

D(σ, i) is uniformly distributed over Di , and the functions f 0
i and f 1

i are permutations
over Di . Such a collection is called a collection of claw-free pairs of permutations.

Again, a useful relaxation of the conditions of Definition 2.4.6 is obtained by allow-
ing the algorithms (i.e., I , D, and F) to fail with negligible probability. An additional
property that a (claw-free) collection may (or may not) have is an efficiently recogniz-
able index set (i.e., a probabilistic polynomial-time algorithm for determining whether
or not a given string is in Ī).

2.4.5.2. The DLP Claw-Free Collection

We now seek to show that claw-free collections do exist under specific reasonable in-
tractability assumptions. We start by presenting such a collection under the assumption
that the discrete-logarithm problem (DLP) for fields of prime cardinality is intractable.

Following is the description of a collection of claw-free pairs of permutations (based
on the foregoing assumption). The index set consists of triples, (P,G, Z), where P is a
prime, G is a primitive element mod P , and Z is an element in the field (of residues mod
P). The index-sampling algorithm selects P and G as in the DLP collection presented
in Section 2.4.3, and Z is selected uniformly among the residues mod P . The domain
is the same for both functions with index (P,G, Z) and equals the set {1, . . . , P − 1},

61

COMPUTATIONAL DIFFICULTY

and the domain-sampling algorithm selects uniformly from this set. As for the functions
themselves, we set

f σP,G,Z (x) def= Zσ · Gx mod P (2.13)

The reader can easily verify that both functions are permutations over {1, . . . , P − 1}. In
fact, the function f 0

P,G,Z coincides with the function DLPP,G presented in Section 2.4.3.
Furthermore, the ability to form a claw for the index (P,G, Z) yields the ability to
find the discrete logarithm of Z mod P to base G (since Gx ≡ Z · G y (mod P)
yields Gx−y ≡ Z (mod P)). Thus, the ability to form claws for a non-negligible
fraction of the index set translates to the ability to invert the DLP collection presented
in Section 2.4.3. Put in other words, if the DLP collection is one-way, then the collection
of pairs of permutations defined in Eq. (2.13) is claw-free.

The foregoing collection does not have the additional property of having an ef-
ficiently recognizable index set, because it is not known how to efficiently recognize
primitive elements modulo a prime. This can be remedied by making a slightly stronger
assumption concerning the intractability of DLP. Specifically, we assume that DLP is
intractable even if one is given the factorization of the size of the multiplicative group
(i.e., the factorization of P − 1) as additional input. Such an assumption allows one to
add the factorization of P − 1 into the description of the index. This makes the index
set efficiently recognizable (since one can test whether or not G is a primitive element
by raising it to powers of the form (P − 1)/Q, where Q is a prime factor of P − 1). If
DLP is hard also for primes of the form 2Q + 1, where Q is also a prime, life is even
easier: To test whether or not G is a primitive element mod P , one simply computes
G2 mod P and G(P−1)/2 mod P and checks whether or not both of them are different
from 1.

2.4.5.3. Claw-Free Collections Based on Factoring

We now show that a claw-free collection (of functions) does exist under the assumption
that integer factorization is infeasible. In the following description, we use the structural
properties of Blum integers (i.e., products of two primes both congruent to 3 mod 4),
which are further discussed in Appendix A. In particular, for a Blum integer N , it holds
that

• the Jacobi symbol of −1 mod N equals 1, and

• half of the square roots of each quadratic residue have Jacobi symbol 1.

Let J+1
N (resp., J−1

N) denote the set of residues in the multiplicative group modulo N
with Jacobi symbol +1 (resp., −1).

The index set of the collection consists of all Blum integers that are composed of
two primes of the same length. The index-selecting algorithm, on input 1n , uniformly
selects such an integer by uniformly selecting two (n-bit) primes, each congruent to 3
mod 4, and outputting their product, denoted N . Both functions of index N , denoted f 0

N

and f 1
N , consist of squaring modulo N , but their corresponding domains are disjoint.

The domain of function f σN equals the set J (−1)σ

N . The domain-sampling algorithm,
denoted D, uniformly selects an element of the corresponding domain in the natural

62

2.4. ONE-WAY FUNCTIONS: VARIATIONS

manner. Specifically, on input (σ, N), algorithm D uniformly selects polynomially
many residues mod N and outputs the first residue with Jacobi symbol (−1)σ .

The reader can easily verify that both f 0
N (D(0, N)) and f 1

N (D(1, N)) are uniformly
distributed over the set of quadratic residues mod N . The difficulty of forming claws
follows from the fact that a claw yields two residues, x ∈ J+1

N and y ∈ J−1
N , such that

their squares modulo N are equal (i.e., x2 ≡ y2 (mod N)). Since −1 ∈ J+1
N (and

the latter is a multiplicative subgroup), it follows that y �≡ ±x (mod N), and so the
greatest common divisor (g.c.d.) of y ± x and N yields a factorization of N .

The foregoing collection consists of pairs of functions that are 2-to-1 (and are defined
over disjoint domains). To obtain a collection of claw-free permutations, we slightly
modify the collection as follows. The index set consists of Blum integers that are the
products of two primes P and Q of the same length, so that P ≡ 3 (mod 8) and
Q ≡ 7 (mod 8). For such composites, neither 2 nor−2 is a quadratic residue modulo
N = P · Q (and in fact±2 ∈ J−1

N). Consider the functions f 0
N and f 1

N defined over the
set, denoted QN , of quadratic residues modulo N :

f σN (x) def= 4σ · x2 mod N (2.14)

Clearly, both f 0
N and f 1

N are permutations over QN . The difficulty of forming claws
follows from the fact that a claw yields two quadratic residues, x and y, so that x2 ≡
4y2 (mod N). Thus, (x/y)2 ≡ 4 (mod N), and so (2− (x/y)) · (2+ (x/y)) ≡ 0
(mod N). Since ±2 /∈ QN (and the latter is a multiplicative subgroup), it follows that
(x/y) �≡ ±2 (mod N), and so the g.c.d. of (2± x · y−1 mod N) and N yields the
factorization of N .

The foregoing collections are not known to possess the additional property of having
an efficiently recognizable index set. In particular, it is not even known how to efficiently
distinguish products of two primes from products of more than two primes.

2.4.6.∗On Proposing Candidates

Although we do believe that one-way functions exist, their mere existence does not
suffice for practical applications. Typically, an application that is based on one-way
functions requires the specification of a concrete (candidate one-way) function.9 Hence,
the problem of proposing reasonable candidates for one-way functions is of great
practical importance. Everyone understands that such a reasonable candidate (for a
one-way function) should have a very efficient algorithm for evaluating the function.
In case the “function” is presented as a collection of one-way functions, the domain
sampler and function-evaluation algorithm should be very efficient (whereas for index
sampling, “moderate efficiency” may suffice). However, people seem less careful about
seriously considering the difficulty of inverting the candidates that they propose. We
stress that the candidate has to be difficult to invert on “the average” and not only
in the worst case, and “the average” is taken with respect to the instance-distribution
determined by the candidate function. Furthermore, “hardness on the average” (unlike

9As explained in Section 2.4.1, the observation concerning the existence of a universal one-way function is of
little practical significance.

63

COMPUTATIONAL DIFFICULTY

worst-case analysis) is extremely sensitive to the instance-distribution. Hence, one
has to be extremely careful in deducing average-case complexity with respect to one
distribution from the average-case complexity with respect to another distribution. The
short history of the field contains several cases in which this point has been ignored,
and consequently bad suggestions have been made.

Consider, for example, the following (bad) suggestion to base one-way functions
on the conjectured difficulty of the Graph Isomorphism problem. Let FGI(G, π) =
(G, πG), where G is an undirected graph, π is a permutation on its vertex set, and πG
denotes the graph resulting by renaming the vertices of G using π (i.e., (π (u), π (v))
is an edge in πG if and only if (u, v) is an edge in G). Although it is indeed believed
that Graph Isomorphism cannot be solved in polynomial time, it is easy to see that FGI

is easy to invert in most instances (e.g., use vertex-degree statistics to determine the
isomorphism). That is, the conjectured worst-case hardness does not imply an average-
case hardness for the uniform distribution. Furthermore, even if the problem is hard on
the average with respect to some distribution, one has to specify this distribution and
propose an efficient algorithm for sampling according to it.

2.5. Hard-Core Predicates

Loosely speaking, saying that a function f is one-way implies that given y, it is infea-
sible to find a pre-image of y under f . This does not mean that it is infeasible to find
some partial information about the pre-image of y under f . Specifically, it may be easy
to retrieve half of the bits of the pre-image (e.g., given a one-way function f , consider
the function g defined by g(x, r) def= (f (x), r) for every |x | = |r |). The fact that one-
way functions do not necessarily hide partial information about their pre-images limits
their “direct applicability” to tasks such as secure encryption. Fortunately, assuming
the existence of one-way functions, it is possible to construct one-way functions that
hide specific partial information about their pre-images (which is easy to compute from
the pre-image itself). This partial information can be considered as a “hard-core” of the
difficulty of inverting f .

2.5.1. Definition

Loosely speaking, a polynomial-time predicate b is called a hard-core of a function f
if every efficient algorithm, given f (x), can guess b(x) with success probability that is
only negligibly better than one-half.

Definition 2.5.1 (Hard-Core Predicate): A polynomial-time-computable predi-
cate b : {0, 1}∗ → {0, 1} is called a hard-core of a function f if for every prob-
abilistic polynomial-time algorithm A′, every positive polynomial p(·), and all
sufficiently large n’s,

Pr[A′(f (Un)) = b(Un)] <
1

2
+ 1

p(n)

64

2.5. HARD-CORE PREDICATES

Note that for every b : {0, 1}∗ → {0, 1} and f : {0, 1}∗ → {0, 1}∗ there exist obvious
algorithms that guess b(Un) from f (Un) with success probability at least one-half (e.g.,
the algorithm that, obliviously of its input, outputs a uniformly chosen bit). Also, if b
is a hard-core predicate (for any function), then b(Un) must be almost unbiased (i.e.,
|Pr[b(Un) = 0]− Pr[b(Un) = 1]| must be a negligible function in n).

Since b itself is polynomial-time-computable, the failure of efficient algorithms to
approximate b(x) from f (x) (with success probability non-negligibly higher than one-
half) must be due either to an information loss of f (i.e., f not being one-to-one) or
to the difficulty of inverting f . For example, the predicate b(σα) = σ is a hard-core
of the function f (σα) def= 0α, where σ ∈ {0, 1} and α ∈ {0, 1}∗. Hence, in this case the
fact that b is a hard-core of the function f is due to the fact that f loses information
(specifically, the first bit σ). On the other hand, in case f loses no information (i.e., f
is one-to-one), hard-cores for f exist only if f is one-way (see Exercise 25). We shall
be interested in the case where the hardness of approximating b(x) from f (x) is due to
computational reasons and not to information-theoretic ones (i.e., information loss).

Hard-core predicates for collections of one-way functions are defined in an analo-
gous way. Typically, the predicate may depend on the index of the function, and both
algorithms (i.e., the one for evaluating it, as well as the one for predicting it based
on the function value) are also given this index. That is, a polynomial-time algorithm
B : {0, 1}∗ × {0, 1}∗ → {0, 1} is called a hard-core of the one-way collection (I, D, F)
if for every probabilistic polynomial-time algorithm A′, every positive polynomial p(·),
and all sufficiently large n’s,

Pr[A′(In, f In (Xn)) = B(In, Xn)] <
1

2
+ 1

p(n)

where In
def= I (1n) and Xn

def= D(In).

Some Natural Candidates. Simple hard-core predicates are known for the RSA, Rabin,
and DLP collections (presented in Section 2.4.3), provided that the corresponding
collections are one-way. Specifically, the least significant bit is a hard-core for the RSA
collection, provided that the RSA collection is one-way. Namely, assuming that the RSA
collection is one-way, it is infeasible to guess (with success probability significantly
greater than 1

2) the least significant bit of x from RSAN ,e(x) = xe mod N . Similarly,
assuming the intractability of integer factorization, it is infeasible to guess the least
significant bit of x ∈ QN from RabinN (x) = x2 mod N , where N is a Blum integer
(and QN denotes the set of quadratic residues modulo N). Finally, assuming that the
DLP collection is one-way, it is infeasible to guess whether or not x < P

2 when given
DLPP,G(x) = Gx mod P . In the next subsection we present a general result of this type.

2.5.2. Hard-Core Predicates for Any One-Way Function

Actually, the title is inaccurate: We are going to present hard-core predicates only for
(strong) one-way functions of a special form. However, every (strong) one-way function
can be easily transformed into a function of the required form, with no substantial loss
in either “security” or “efficiency.”

65

COMPUTATIONAL DIFFICULTY

Theorem 2.5.2: Let f be an arbitrary strong one-way function, and let g be de-

fined by g(x, r) def= (f (x), r), where |x | = |r |. Let b(x, r) denote the inner product
mod 2 of the binary vectors x and r. Then the predicate b is a hard-core of the
function g.

In other words, the theorem states that if f is strongly one-way, then it is infeasible
to guess the exclusive-OR (XOR) of a random subset of the bits of x when given f (x)
and the subset itself. We stress that the theorem requires that f be strongly one-way
and that the conclusion is false if f is only weakly one-way (see Exercise 25). Clearly,
g is also strongly one-way. We point out that g maintains other properties of f, such
as being length-preserving and being one-to-one. Furthermore, an analogous statement
holds for collections of one-way functions with/without trapdoor, etc.

The rest of this section is devoted to proving Theorem 2.5.2. Again we use a re-
ducibility argument: Here, inverting the function f is reduced to guessing b(x, r) from
(f (x), r). Hence, we assume (for contradiction) the existence of an efficient algorithm
guessing the inner product with an advantage that is non-negligible, and we derive
an algorithm that inverts f with related (i.e., non-negligible) success probability. This
contradicts the hypothesis that f is a one-way function.

We start with some preliminary observations and a motivating discussion and then
turn to the main part of the actual proof. We conclude with more efficient implementa-
tions of the reducibility argument that assert “higher levels of security.”

2.5.2.1. Preliminaries

Let G be a (probabilistic polynomial-time) algorithm that on input f (x) and r tries to
guess the inner product (mod 2) of x and r . Denote by εG(n) the (overall) advantage of
algorithm G in guessing b(x, r) from f (x) and r , where x and r are uniformly chosen
in {0, 1}n . Namely,

εG(n) def= Pr[G(f (Xn), Rn) = b(Xn, Rn)]− 1

2
(2.15)

where here and in the sequel Xn and Rn denote two independent random variables, each
uniformly distributed over {0, 1}n . Assuming, to the contrary, that b is not a hard-core
of g means that there exists an efficient algorithm G, a polynomial p(·), and an infinite
set N such that for every n ∈ N , it holds that εG(n) > 1

p(n) . We restrict our attention to
this algorithm G and to n’s in this set N . In the sequel, we shorthand εG by ε.

Our first observation is that on at least an ε(n)
2 fraction of the x’s of length n, al-

gorithm G has at least an ε(n)
2 advantage in guessing b(x, Rn) from f (x) and Rn .

Namely:

Claim 2.5.2.1: There exists a set Sn ⊆ {0, 1}n of cardinality at least ε(n)
2 · 2n such

that for every x ∈ Sn , it holds that

s(x) def= Pr[G(f (x), Rn) = b(x, Rn)] ≥ 1

2
+ ε(n)

2

66

2.5. HARD-CORE PREDICATES

Here the probability is taken over all possible values of Rn and all internal coin tosses
of algorithm G, whereas x is fixed.

Proof: The claim follows by an averaging argument. Namely, write E(s(Xn)) =
1
2 + ε(n), and apply Markov’s inequality. �

In the sequel, we restrict our attention to x’s in Sn . We shall show an efficient
algorithm that on every input y, with y = f (x) and x ∈ Sn , finds x with very high
probability. Contradiction to the (strong) one-wayness of f will follow by recalling
that Pr[Un ∈ Sn] ≥ ε(n)

2 .
We start with a motivating discussion. The inverting algorithm that uses algorithm

G as subroutine will be formally described and analyzed later.

2.5.2.2. A Motivating Discussion

Consider a fixed x ∈ Sn . By definition, s(x) ≥ 1
2 + ε(n)

2 > 1
2 + 1

2p(n) . Suppose, for a
moment, that s(x) > 3

4 + 1
2p(n) . Of course there is no reason to believe that such is

the case; we are just doing a mental experiment. Still, in this case (i.e., of s(x) >
3
4 + 1

poly(|x |)), retrieving x from f (x) is quite easy. To retrieve the i th bit of x , denoted
xi , we randomly select r ∈ {0, 1}n and compute G(f (x), r) and G(f (x), r ⊕ ei), where
ei is an n-dimensional binary vector with 1 in the i th component, and 0 in all the others,
and v ⊕ u denotes the addition mod 2 of the binary vectors v and u. (The process is
actually repeated polynomially many times, using independent random choices of such
r ’s, and xi is determined by a majority vote.)

If both G(f (x), r) = b(x, r) and G(f (x), r ⊕ ei) = b(x, r ⊕ ei), then

G(f (x), r)⊕ G(f (x), r ⊕ ei) = b(x, r)⊕ b(x, r ⊕ ei)

= b(x, ei)

= xi

where the second equality uses

b(x, r)⊕ b(x, s) ≡
n∑

i=1

xiri +
n∑

i=1

xi si ≡
n∑

i=1

xi (ri + si) ≡ b(x, r ⊕ s) (mod 2)

The probability that both G(f (x), r) = b(x, r) and G(f (x), r ⊕ ei) = b(x, r ⊕ ei)
hold, for a random r , is at least 1− 2 · (1

4 − 1
poly(|x |)) >

1
2 + 1

poly(|x |) . Hence, repeat-
ing the foregoing procedure sufficiently many times and ruling by majority, we re-
trieve xi with very high probability. Similarly, we can retrieve all the bits of x and
hence invert f on f (x). However, the entire analysis was conducted under (the un-
justifiable) assumption that s(x) > 3

4 + 1
2p(|x |) , whereas we know only that s(x) >

1
2 + 1

2p(|x |) .
The problem with the foregoing procedure is that it doubles the original error prob-

ability of algorithm G on inputs of the form (f (x), ·). Under the unrealistic assumption
that G’s average error on such inputs is non-negligibly smaller than 1

4 , the error-doubling
phenomenon raises no problems. However, in general (and even in the special case

67

COMPUTATIONAL DIFFICULTY

where G’s error is exactly 1
4), the foregoing procedure is unlikely to invert f . Note

that the average error probability of G (which is averaged over all possible inputs of
the form (f (x), ·)) cannot be decreased by repeating G several times (e.g., G may
always answer correctly on 3

4 of the inputs and always err on the remaining 1
4). What

is required is an alternative way of using the algorithm G, a way that does not double
the original error probability of G. The key idea is to generate the r ’s in a way that
requires applying algorithm G only once per each r (and i), instead of twice. Specifi-
cally, we shall use algorithm G to obtain a “guess” for b(x, r ⊕ ei) and obtain b(x, r)
in a different way. The good news is that the error probability is no longer doubled,
since we use G only to get a “guess” of b(x, r ⊕ ei). The bad news is that we still
need to know b(x, r), and it is not clear how we can know b(x, r) without applying
G. The answer is that we can guess b(x, r) by ourselves. This is fine if we need to
guess b(x, r) for only one r (or logarithmically in |x | many r ’s), but the problem is
that we need to know (and hence guess) the values of b(x, r) for polynomially many
r ’s. An obvious way of guessing these b(x, r)’s yields an exponentially vanishing
success probability. Instead, we generate these polynomially many r ’s such that, on
one hand, they are “sufficiently random,” whereas, on the other hand, we can guess
all the b(x, r)’s with noticeable success probability. Specifically, generating the r ’s
in a particular pairwise-independent manner will satisfy both (seemingly contradic-
tory) requirements. We stress that in case we are successful (in our guesses for all the
b(x, r)’s), we can retrieve x with high probability. Hence, we retrieve x with noticeable
probability.

A word about the way in which the pairwise-independent r ’s are generated (and
the corresponding b(x, r)’s are guessed) is indeed in order. To generate m = poly(n)
many r ’s, we uniformly (and independently) select l

def= log2(m + 1) strings in {0, 1}n .
Let us denote these strings by s1, . . . , sl . We then guess b(x, s1) through b(x, sl). Let
us denote these guesses, which are uniformly (and independently) chosen in {0, 1},
by σ 1 through σ l . Hence, the probability that all our guesses for the b(x, si)’s are
correct is 2−l = 1

poly(n) . The different r ’s correspond to the different non-empty subsets
of {1, 2, . . . , l}. Specifically, we let r J def= ⊕ j∈J s j . The reader can easily verify that the
r J ’s are pairwise independent, and each is uniformly distributed in {0, 1}n . The key
observation is that

b(x, r J) = b(x,⊕ j∈J s j) = ⊕ j∈J b(x, s j)

Hence, our guess for the b(x, r J)’s is ⊕ j∈Jσ
j , and with noticeable probability all our

guesses are correct.

2.5.2.3. Back to the Actual Proof

Following is a formal description of the inverting algorithm, denoted A. We assume, for
simplicity, that f is length-preserving (yet this assumption is not essential). On input y
(supposedly in the range of f), algorithm A sets n

def= |y| and l
def=)log2(2n · p(n)2 +

1)*, where p(·) is the polynomial guaranteed earlier (i.e., ε(n) > 1
p(n) for the infinitely

many n’s in N). Algorithm A proceeds as follows:

68

2.5. HARD-CORE PREDICATES

1. It uniformly and independently selects s1, . . . , sl ∈ {0, 1}n and σ 1, . . . , σ l ∈ {0, 1}.
2. For every non-empty set J ⊆ {1, 2, . . . , l}, it computes a string r J ←⊕ j∈J s j and a bit
ρ J ←⊕ j∈Jσ

j .

3. For every i ∈ {1, . . . , n} and every non-empty J ⊆ {1, . . . , l}, it computes

z J
i ← ρ J ⊕ G(y, r J ⊕ ei).

4. For every i ∈ {1, . . . , n}, it sets zi to be the majority of the z J
i values.

5. It outputs z = z1 · · · zn .

Remark: An Alternative Implementation. In an alternative implementation of these
ideas, the inverting algorithm tries all possible values for σ 1, . . . , σ l , computes a string
z for each of these 2l possibilities, and outputs only one of the resulting z’s, with an ob-
vious preference for a string z satisfying f (z) = y. For later reference, this alternative
algorithm is denoted A′. (See further discussion in the next subsection.)

Following is a detailed analysis of the success probability of algorithm A on inputs
of the form f (x), for x ∈ Sn , where n ∈ N . One key observation, which is extensively
used, is that for x, α, β ∈ {0, 1}n , it holds that

b(x, α ⊕ β) = b(x, α)⊕ b(x, β)

It follows that b(x, r J) = b(x,⊕ j∈J s j) = ⊕ j∈J b(x, s j). The main part of the analysis is
showing that in case the σ j ’s are correct (i.e., σ j = b(x, s j) for all j ∈ {1, . . . , l}), with
constant probability, zi = xi for all i ∈ {1, . . . , n}. This is proved by bounding from
below the probability that the majority of the z J

i ’s equal xi , where z J
i = b(x, r J)⊕

G(f (x), r J ⊕ ei) (due to the hypothesis that σ j = b(x, s j) for all j ∈ {1, . . . , l}).
Claim 2.5.2.2: For every x ∈ Sn and every 1 ≤ i ≤ n,

Pr

[∣∣{J : b(x, r J)⊕ G(f (x), r J ⊕ ei) = xi

}∣∣ > 1

2
· (2l − 1)

]
> 1− 1

2n

where r J def= ⊕ j∈J s j and the s j ’s are independently and uniformly chosen in
{0, 1}n .

Proof: For every J , define a 0-1 random variable ζ J such that ζ J equals 1 if and
only if b(x, r J)⊕ G(f (x), r J ⊕ ei) = xi . Since b(x, r J)⊕ b(x, r J ⊕ ei) = xi , it
follows that ζ J = 1 if and only if G(f (x), r J ⊕ ei) = b(x, r J ⊕ ei).

The reader can easily verify that each r J is uniformly distributed in {0, 1}n , and
the same holds for each r J ⊕ ei . It follows that each ζ J equals 1 with probability
s(x), which by x ∈ Sn is at least 1

2 + 1
2p(n) . We show that the ζ J ’s are pairwise

independent by showing that the r J ’s are pairwise independent. For every J �= K ,
without loss of generality, there exist j ∈ J and k ∈ K − J . Hence, for every
α, β ∈ {0, 1}n , we have

Pr[r K = β | r J = α] = Pr[sk = β | s j = α]

= Pr[sk = β]

= Pr[r K = β]

69

COMPUTATIONAL DIFFICULTY

and pairwise independence of the r J ’s follows. Let m
def= 2l − 1, and let ζ represent

a generic ζ J (which are all identically distributed). Using Chebyshev’s inequality
(and m ≥ 2n · p(n)2), we get

Pr

[∑
J

ζ J ≤ 1

2
· m

]
≤ Pr

[∣∣∣∣∣∑
J

ζ J −
(

1

2
+ 1

2p(n)

)
· m

∣∣∣∣∣ ≥ 1

2p(n)
· m

]

≤ m · Var[ζ](
1

2p(n) · m
)2

= Var[ζ](
1

2p(n)

)2 · (2n · p(n)2)

<

1
4(

1
2p(n)

)2 · (2n · p(n)2)

= 1

2n

The claim follows. �

Recall that if σ j = b(x, s j) for all j’s, then ρ J = ⊕ j∈Jσ
j = ⊕ j∈J b(x, s j) =

b(x, r J) for all non-empty J ’s. In this case, with probability at least 1
2 , the string

z output by algorithm A equals x . However, the first event (i.e., σ j = b(x, s j)
for all j’s) happens with probability 2−l = 1

2n·p(n)2+1 independently of the events
analyzed in Claim 2.5.2.2. Hence, in case x ∈ Sn , algorithm A inverts f on
f (x) with probability at least 1

2 · 2−l = 1
4n·p(|x |)2+2 (whereas the alternative algo-

rithm A′ succeeds with probability at least 1
2). Recalling that (by Claim 2.5.2.1)

|Sn| > 1
2p(n) · 2n , we conclude that for every n ∈ N , algorithm A inverts f on

f (Un) with probability at least 1
8n·p(n)3+4p(n) . Noting that A is polynomial-time

(i.e., it merely invokes G for 2n · p(n)2 = poly(n) times, in addition to making
a polynomial amount of other computations), a contradiction to our hypothesis
that f is strongly one-way follows. �

2.5.2.4.∗ More Efficient Reductions

The preceding proof actually establishes the following:

Proposition 2.5.3: Let G be a probabilistic algorithm with running time tG :
N→N and advantage εG : N → [0, 1] in guessing b (see Eq. (2.15)). Then there
exists an algorithm A that runs in time O(n2/εG(n)2) · tG(n) such that

Pr[A(f (Un)) = Un] ≥ εG(n)

2
· εG(n)2

4n

The alternative implementation, A′, mentioned earlier (i.e., trying all possible values
of the σ j ’s rather than guessing one of them), runs in time O(n3/εG(n)4) · tG(n) and

70

2.5. HARD-CORE PREDICATES

satisfies

Pr[A′(f (Un)) = Un] ≥ εG(n)

2
· 1

2

Below, we provide a more efficient implementation of A′. Combining it with a more
refined averaging argument than the one used in Claim 2.5.2.1, we obtain the following:

Proposition 2.5.4: Let G, tG : N→N, and εG : N → [0, 1] be as before, and de-
fine �(n) def= log2(1/εG(n)). Then there exists an algorithm A′′ that runs in expected
time O(n2 · �(n)3) · tG(n) and satisfies

Pr[A′′(f (Un)) = Un] = �(εG(n)2)

Thus, the time-versus-success ratio of A′′ is poly(n)/εG(n)2, which (in some sense) is
optimal up to a poly(n) factor; see Exercise 30.

Proof Sketch: Let ε(n) def= εG(n), and � def= log2(1/ε(n)). Recall that E[s(Xn)] =
0.5+ ε(n), where s(x) def= Pr[G(f (x), Rn) = b(x, Rn)] (as in Claim 2.5.2.1). We
first replace Claim 2.5.2.1 by a more refined analysis.

Claim 2.5.4.1: There exists an i ∈ {1, . . . , �} and a set Sn ⊆ {0, 1}n of cardinality
at least (2i−1 · ε(n)) · 2n such that for every x ∈ Sn , it holds that

s(x) = Pr[G(f (x), Rn) = b(x, Rn)] ≥ 1

2
+ 1

2i+1 · �
Proof: Let Ai

def= {x : s(x) ≥ 1
2 + 1

2i+1�
}. For any non-empty set S ⊆ {0, 1}n , we

let a(S) def= maxx∈S{s(x)− 0.5}, and a(∅) def= 0. Assuming, to the contrary, that the
claim does not hold (i.e., |Ai | < (2i−1 · ε(n)) · 2n for i = 1, . . . , �), we get

E[s(Xn)− 0.5] ≤ Pr[Xn ∈ A1] · a(A1)

+
�∑

i=2

Pr[Xn ∈ (Ai \ Ai−1)] · a(Ai \ Ai−1)

+Pr[Xn ∈ ({0, 1}n \ A�)] · a({0, 1}n \ A�)

< ε(n) · 1

2
+

�∑
i=2

(2i−1 · ε(n)) · 1

2i�
+ 1 · 1

2�+1�

= ε(n)

2
+ (�− 1) · ε(n)

2�
+ 2−�

2�
= ε(n)

which contradicts E[s(Xn)− 0.5] = ε(n). �

Fixing any i that satisfies Claim 2.5.4.1, we let ε def= 2−i−1/� and consider the
corresponding set Sn

def= {x : s(x) ≥ 0.5+ ε}. By suitable setting of parameters,
we obtain that for every x ∈ Sn , algorithm A′ runs in time O(n3/ε4) · tG(n) and
retrieves x from f (x) with probability at least 1

2 . Our next goal is to provide a

71

COMPUTATIONAL DIFFICULTY

more efficient implementation of A′, specifically, one running in time O(n2/ε2) ·
(tG(n)+ log(n/ε)).

The modified algorithm A′ is given input y = f (x) and a parameter ε and
sets l = log((n/ε2)+ 1). In the actual description (presented later), it will be
more convenient to use arithmetic of reals instead of Boolean. Hence, we denote
b′(x, r) = (−1)b(x,r) and G ′(y, r) = (−1)G(y,r). The verification of the following
facts is left as an exercise:

Fact 1: For every x , it holds that E[b′(x,Un) · G ′(f (x),Un + ei)] = s ′(x) · (−1)xi ,

where s ′(x) def= 2 · (s(x)− 1
2). (Note that for x ∈ Sn , we have s ′(x) ≥ 2ε.)

Fact 2: Let R be a uniformly chosen l-by-n Boolean matrix. Then for every
v �= u ∈ {0, 1}l \ {0}l , it holds that vR and u R are pairwise independent and
uniformly distributed in {0, 1}n .

Fact 3: For every x ∈ {0, 1}n and v ∈ {0, 1}l , it holds that b′(x, vR) = b′(x RT , v).

Using these facts, we obtain the following:

Claim 2.5.4.2: For any x ∈ Sn and a uniformly chosen l-by-n Boolean matrix R,
there exists σ ∈ {0, 1}l such that, with probability at least 1

2 , for every 1 ≤ i ≤ n,
the sign of

∑
v∈{0,1}l b′(σ, v) · G ′(f (x), vR + ei) equals the sign of (−1)xi .

Proof: Let σ = x RT . Combining the foregoing facts, for every v ∈ {0, 1}l \ {0}l ,
we have E[b′(x RT , v) · G ′(f (x), vR + ei)] = s ′(x) · (−1)xi . Thus, for every such
v, it holds that Pr[b′(x RT , v) · G ′(f (x), vR + ei) = (−1)xi] = 1+s′(x)

2 = s(x).
Using Fact 2, l = log((2n/ε2)+ 1), and Chebyshev’s inequality, the claim
follows. �

A last piece of notation: Let B be a 2l -by-2l matrix, with the (σ, v) entry being b′(σ, v),
and let ḡi be a 2l -dimensional vector, with the vth entry equal to G ′(f (x), vR + ei). Thus,
the σ th entry in the vector Bḡi equals

∑
v∈{0,1}l b′(σ, v) · G ′(f (x), vR + ei).

Efficient implementation of algorithm A′: On input y = f (x) and a parameter ε,
the inverting algorithm A′ sets l = log((n/ε2)+ 1) and proceeds as follows:

1. For i = 1, . . . , n, it computes the 2l-dimensional vector ḡi (as defined earlier).

2. For i = 1, . . . , n, it computes z̄i ← Bḡi .

Let Z be a 2l-by-n real matrix in which the i th column equals z̄i .

Let Z ′ be a 2l-by-n Boolean matrix representing the signs of the elements in Z :
Specifically, the (i, j)th entry of Z ′ equals 1 if and only if the (i, j)th entry of
Z is negative.

3. Scanning all rows of Z ′, it outputs the first row z so that f (z) = y.

By Claim 2.5.4.2, for x ∈ Sn , with probability at least 1
2 , the foregoing algorithm

retrieves x from y = f (x). The running time of the algorithm is dominated by

72

2.5. HARD-CORE PREDICATES

Steps 1 and 2, which can be implemented in time n · 2l · O(tG(n)) = O((n/ε)2 ·
tG(n)) and n · O(l · 2l) = O((n/ε)2 · log(n/ε)), respectively.10

Finally, we define algorithm A′′. On input y = f (x), the algorithm selects
j ∈ {1, . . . , �} with probability 2−2 j+1 (and halts with no output otherwise). It
invokes the preceding implementation of algorithm A′ on input y with para-
meter ε def= 2− j−1/� and returns whatever A′ does. The expected running time of
A′′ is

�∑
j=1

2−2 j+1 · O
(

n2

(2− j−1/�)2

)
· (tG(n)+ log(n · 2 j+1�)) = O(n2 · �3) · tG(n)

(assuming tG(n) = �(� log n)). Letting i ≤ � be an index satisfying Claim 2.5.4.1
(and letting Sn be the corresponding set), we consider the case in which j (selected
by A′′) is greater than or equal to i . By Claim 2.5.4.2, in such a case, and for
x ∈ Sn , algorithm A′ inverts f on f (x) with probability at least 1

2 . Using i ≤ �

(= log2(1/ε(n))), we get

Pr[A′′(f (Un)) = Un] ≥ Pr[Un ∈ Sn] · Pr[j ≥ i] · 1

2

≥ 2i−1ε(n) · 2−2i+1 · 1

2

≥ ε(n) · 2−� · 1

2
= ε(n)2

2

The proposition follows. �

Comment. Using an additional trick,11 one can save a factor of �(n) in the running
time, resulting in an expected running time of O(n · log3(1/εG(n))) · tG(n).

10Using the special structure of matrix B, one can show that given a vector w̄, the product Bw̄ can be computed
in time O(l · 2l). Hint: B (known as the Sylvester matrix) can be written recursively as

Sk =
(

Sk−1 Sk−1

Sk−1 Sk−1

)
where S0 = +1 and M̄ means flipping the +1 entries of M to −1 and vice versa. So(

Sk−1 Sk−1

Sk−1 Sk−1

)[
w′

w′′

]
=
[

Sk−1w
′ + Sk−1w

′′

Sk−1w
′ − Sk−1w

′′

]
Thus, letting T (k) denote the time used in multiplying Sk by a 2k -dimensional vector, we have T (k) = 2 ·
T (k − 1)+ O(2k), which solves to T (k) = O(k2k).

11We further modify algorithm A′ by setting 2l = O(1/ε2) (rather than 2l = O(n/ε2)). Under the new setting,
with constant probability, we recover correctly a constant fraction of the bits of x (rather than all of them).
If x were a codeword under an asymptotically good error-correcting code (cf. [138]), this would suffice. To
avoid this assumption, we modify algorithm A′ so that it tries to recover certain XORs of bits of x (rather than
individual bits of x). Specifically, we use an asymptotically good linear code (i.e., having constant rate, correcting
a constant fraction of errors, and having efficient decoding algorithm). Thus, the modified A′ recovers correctly
a constant fraction of the bits in the encoding of x under such a code, and using the decoding algorithm it
recovers x .

73

COMPUTATIONAL DIFFICULTY

2.5.3.∗Hard-Core Functions

We have just seen that every one-way function can be easily modified to have a hard-
core predicate. In other words, the result establishes one bit of information about the
pre-image that is hard to approximate from the value of the function. A stronger result
may say that several bits of information about the pre-image are hard to approximate.
For example, we may want to say that a specific pair of bits is hard to approximate, in the
sense that it is infeasible to guess this pair with probability non-negligibly larger than
1
4 . Actually, in general, we take a slightly different approach and require that the true
value of these bits be hard to distinguish from a random value. That is, a polynomial-
time function h is called a hard-core of a function f if no efficient algorithm can
distinguish (f (x), h(x)) from (f (x), r), where r is a random string of length |h(x)|. For
further discussion of the notion of efficient distinguishability, the reader is referred to
Section 3.2. We assume for simplicity that h is length-regular (see next).

Definition 2.5.5 (Hard-Core Function): Let h : {0, 1}∗ → {0, 1}∗ be a
polynomial-time-computable function satisfying |h(x)| = |h(y)| for all |x | = |y|,
and let l(n) def= |h(1n)|. The function h is called a hard-core of a function f if
for every probabilistic polynomial-time algorithm D′, every positive polynomial
p(·), and all sufficiently large n’s,∣∣Pr[D′(f (Xn), h(Xn)) = 1]− Pr

[
D′(f (Xn), Rl(n)

) = 1
]∣∣ < 1

p(n)

where Xn and Rl(n) are two independent random variables, the first uniformly
distributed over {0, 1}n and the second uniformly distributed over {0, 1}l(n).

For l ≡ 1, Definition 2.5.5 is equivalent to Definition 2.5.1; see the discussion following
Lemma 2.5.8. See also Exercise 31.

Simple hard-core functions with logarithmic lengths (i.e., l(n) = O(log n)) are
known for the RSA, Rabin, and DLP collections, provided that the corresponding col-
lections are one-way. For example, the function that outputs logarithmically many least
significant bits is a hard-core function for the RSA collection, provided that the RSA
collection is one-way. Namely, assuming that the RSA collection is one-way, it is in-
feasible to distinguish, given RSAN ,e(x) = xe mod N , the O(log |N |) least significant
bit of x from a uniformly distributed O(log |N |)-bit-long string. (Similar statements
hold for the Rabin and DLP collections.) A general result of this type follows.

Theorem 2.5.6: Let f be an arbitrary strong one-way function, and let g2 be
defined by g2(x, s) def= (f (x), s), where |s| = 2|x |.12 Let bi (x, s) denote the in-
ner product mod 2 of the binary vectors x and (si+1, . . . , si+n), where s =
(s1, . . . , s2n). Then, for any constant c > 0, the function h(x, s) def= b1(x, s) · · ·
bl(|x |)(x, s) is a hard-core of the function g2, where l(n) def= min{n,)c log2 n*}.
12In fact, we can use |s| = |x | + l(|x |)− 1, where l(n) = O(log n). In the current description, s1 and

sn+l(n)+1, . . . , s2n are not used. However, the current formulation makes it unnecessary to specify l when
defining g2.

74

2.5. HARD-CORE PREDICATES

The proof of the theorem follows by combining a proposition that capitalizes on the
structure of the specific function h and a general lemma concerning hard-core functions.
Loosely speaking, the proposition “reduces” the problem of approximating b(x, r)
given g(x, r) to the problem of approximating the XOR of any non-empty set of the
bits of h(x, s) given g2(x, s), where b and g are the hard-core and the one-way function
presented in the preceding subsection. Since we know that the predicate b(x, r) cannot
be approximated from g(x, r), we conclude that no XOR of the bits of h(x, s) can be
approximated from g2(x, s). The general lemma implies that for every “logarithmically
shrinking” function h′ (i.e., h′ satisfying |h′(x)| = O(log |x |)), the function h′ is a hard-
core of a function f ′ if and only if the XOR of any non-empty subset of the bits of h′

cannot be approximated from the value of f ′. Following are the formal statements and
proofs of both claims.

Proposition 2.5.7: Let f , g2, l, and the bi ’s be as in Theorem 2.5.6. Let
{In ⊆ {1, 2, . . . , l(n)}}n∈N be an arbitrary sequence of non-empty sets, and let
bI|x |(x, s) def= ⊕i∈I|x |bi (x, s). Then for every probabilistic polynomial-time algo-
rithm A′, every positive polynomial p(·), and all sufficiently large n’s,

Pr[A′(In, g2(U3n)) = bIn (U3n)] <
1

2
+ 1

p(n)

where U3n is a random variable uniformly distributed over {0, 1}3n.

Proof: The proof is by a reducibility argument. Let Xn , Rn , and S2n be indepen-
dent random variables uniformly distributed over {0, 1}n , {0, 1}n , and {0, 1}2n , re-
spectively. We show that the problem of approximating b(Xn, Rn) given
(f (Xn), Rn) is reducible to the problem of approximating bIn (Xn, S2n) given
(f (Xn), S2n). The underlying observation is that for every |s| = 2 · |x | and every
I ⊆ {1, . . . , l(n)},

bI (x, s) = ⊕i∈I bi (x, s) = b(x,⊕i∈I subi (s))

where subi (s1, . . . , s2n) def= (si+1, . . . , si+n). Furthermore, the reader can verify that
for every non-empty I ⊆ {1, . . . , l(n)}, the random variable⊕i∈I subi (S2n) is uni-
formly distributed over {0, 1}n , and that given a string r ∈ {0, 1}n and such a set
I , one can efficiently select a string uniformly in the set {s : ⊕i∈I subi (s) = r}.
Verification of both claims is left as an exercise.13

Now assume, to the contrary, that there exists an efficient algorithm A′, a
polynomial p(·), and an infinite sequence of sets (i.e., In’s) and n’s such that

Pr[A′(In, g2(U3n)) = bIn (U3n)] ≥ 1

2
+ 1

p(n)

13Given any non-empty I and any r = r1 · · · rn ∈ {0, 1}n , consider the following procedure, where k is the
largest element in I . First, uniformly select s1, . . . , sk , sk+n+1, . . . , s2n ∈ {0, 1}. Next, going from i = 1 to i = n,
determine sk+i so that ⊕ j∈I si+ j = ri (i.e., sk+i ← ri ⊕ (⊕ j∈I\{k}s j+i), where the relevant si+ j ’s are already
determined, since j < k). This process determines a string s1 · · · s2n uniformly among 2n strings s that satisfy
⊕i∈I subi (s) = r . Since there are 2n possible r ’s, both claims follow.

75

COMPUTATIONAL DIFFICULTY

We first observe that for n’s satisfying the foregoing inequality we can easily find
a set I satisfying

pI
def= Pr[A′(I, g2(U3n)) = bI (U3n)] ≥ 1

2
+ 1

2p(n)

Specifically, we can try all possible I ’s and estimate pI for each of them (via
random experiments), picking an I for which the estimate is highest. (Note
that using poly(n) many experiments, we can approximate each of the possi-
ble 2l(n) − 1 = poly(n) different pI ’s up to an additive deviation of 1/4p(n) and
error probability of 2−n .)

We now present an algorithm for approximating b(x, r) from y
def= f (x) and

r . On input y and r , the algorithm first finds a set I as described earlier (this

stage depends only on n
def= |x |, which equals |r |). Once I is found, the algorithm

uniformly selects a string s such that ⊕i∈I subi (s) = r and returns A′(I, (y, s)).
Note that for uniformly distributed r ∈ {0, 1}n , the string s selected by our

algorithm is uniformly distributed in {0, 1}2n and b(x, r) = bI (x, s). Evaluation
of the success probability of this algorithm is left as an exercise. �

The following lemma provides a generic transformation of algorithms distinguish-
ing between (f (Xn), h(Xn)) and (f (Xn), Rl(n)) to algorithms that, given f (Xn) and
a random non-empty subset I of {1, . . . , l(n)}, predict the XOR of the bits of Xn at
locations I .

Lemma 2.5.8 (Computational XOR Lemma): Let f and h be arbitrary length-
regular functions, and let l(n) def= |h(1n)|. Let D be any algorithm, and denote

p
def= Pr [D(f (Xn), h(Xn)) = 1] and q

def= Pr
[
D
(

f (Xn), Rl(n)

) = 1
]

where Xn and Rl(n) are independent random variables uniformly distributed
over {0, 1}n and {0, 1}l(n), respectively. We consider a specific algorithm, de-
noted G

def= G D, that uses D as a subroutine. Specifically, on input and y, and
S ⊆ {1, . . . , l(n)} (and l(n)), algorithm G selects r = r1 · · · rl(n) uniformly in
{0, 1}l(n) and outputs D(y, r)⊕ 1⊕ (⊕i∈Sri). Then,

Pr[G(f (Xn), Il, l(n)) = ⊕i∈Il (hi (Xn))] = 1

2
+ p − q

2l(n) − 1

where Il is a randomly chosen non-empty subset of {1, . . . , l(n)}, and hi (x) denotes
the i th bit of h(x).

It follows that for logarithmically shrinking h’s, the existence of an efficient algo-
rithm that distinguishes (with a gap that is not negligible in n) the random variables
(f (Xn), h(Xn)) and (f (Xn), Rl(n)) implies the existence of an efficient algorithm that
approximates the XOR of a random non-empty subset of the bits of h(Xn) from the
value of f (Xn) with an advantage that is not negligible. On the other hand, it is clear that
any efficient algorithm that approximates an XOR of a random non-empty subset of the

76

2.5. HARD-CORE PREDICATES

bits of h from the value of f can be easily modified to distinguish (f (Xn), h(Xn)) from
(f (Xn), Rl(n)). Hence, for logarithmically shrinking h’s, the function h is a hard-core
of a function f if and only if the XOR of any non-empty subset of the bits of h cannot
be approximated from the value of f .

Proof: All that is required is to evaluate the success probability of algorithm
G (as a function of p − q). We start by fixing an x ∈ {0, 1}n and evaluating
Pr[G(f (x), Il, l) = ⊕i∈Il (hi (x))], where Il is a uniformly chosen non-empty sub-
set of {1, . . . , l} and l

def= l(n). The rest is an easy averaging (over the x’s).
Let C denote the set (or class) of all non-empty subsets of {1, . . . , l}. Define,

for every S ∈ C, a relation ≡S such that y ≡S z if and only if ⊕i∈S yi = ⊕i∈Szi ,
where y = y1 · · · yl and z = z1 · · · zl . Note that for every S ∈ C and z ∈ {0, 1}l ,
the relation y ≡S z holds for exactly 2l−1 of the y’s. Recall that by definition of
G, on input (f (x), S, l) and random choice r = r1 · · · rl ∈ {0, 1}l , algorithm G
outputs D(f (x), r)⊕ 1⊕ (⊕i∈Sri). The latter equals ⊕i∈S(hi (x)) if and only if
one of the following two disjoint events occurs:

event 1: D(f (x), r) = 1 and r ≡S h(x).

event 2: D(f (x), r) = 0 and r �≡S h(x).

By the preceding discussion and elementary manipulations, we get

s(x) def= Pr[G(f (x), Il, l) = ⊕i∈Il (hi (x))]

= 1

|C| ·
∑
S∈C

Pr[G(f (x), S, l) = ⊕i∈S(hi (x)]

= 1

|C| ·
∑
S∈C

(Pr[event 1]+ Pr[event 2])

= 1

2 · |C| ·
∑
S∈C

(Pr[�(Rl) = 1 | Rl ≡S h(x)]+Pr[�(Rl) = 0 | Rl �≡S h(x)])

where Rl is uniformly distributed over {0, 1}l (representing the random choice of
algorithm G), and�(r) is shorthand for the random variable D(f (x), r). The rest
of the analysis is straightforward but tedious and can be skipped with little loss.

s(x) = 1

2
+ 1

2|C| ·
∑
S∈C

(Pr[�(Rl) = 1 | Rl ≡S h(x)]− Pr[�(Rl)

= 1 | Rl �≡S h(x)])

= 1

2
+ 1

2|C| ·
1

2l−1
·
∑

S∈C

∑
r≡S h(x)

Pr[�(r) = 1]−
∑
S∈C

∑
r �≡S h(x)

Pr[�(r) = 1]

= 1

2
+ 1

2l · |C| ·
(∑

r

∑
S∈EQ(r,h(x))

Pr[�(r) = 1]

−
∑

r

∑
S∈NE(r,h(x))

Pr[�(r) = 1]

)

77

COMPUTATIONAL DIFFICULTY

where EQ(r, z) def= {S ∈ C : r ≡S z} and NE(r, z) def= {S ∈ C : r �≡S z}. Observe
that for every r �= z, it holds that |NE(r, z)| = 2l−1 (and |EQ(r, z)| = 2l−1 − 1).
On the other hand, EQ(z, z) = C (and NE(z, z) = ∅) holds for every z. Hence,
we get

s(x) = 1

2
+ 1

2l |C|
∑

r �=h(x)

((2l−1 − 1) · Pr[�(r) = 1]− 2l−1 · Pr[�(r) = 1])

+ 1

2l |C| · |C| · Pr[�(h(x)) = 1]

= 1

2
− 1

2l |C|
∑

r �=h(x)

Pr[�(r) = 1]+
(

1

|C| −
1

2l |C|
)
· Pr[�(h(x)) = 1]

where the last equality uses |C| = 2l − 1 (i.e., 1
2l = 1

|C| − 1
2l |C|). Rearranging the

terms and substituting for �, we get

s(x) = 1

2
+ 1

|C| · Pr[�(h(x)) = 1]− 1

2l |C|
∑

r

Pr[�(r) = 1]

= 1

2
+ 1

|C| · (Pr[D(f (x), h(x)) = 1]− Pr[D(f (x), Rl) = 1])

Finally, taking the expectation over the x’s, we get

E[s(Xn)] = 1

2
+ 1

|C| · (Pr[D(f (Xn), h(Xn)) = 1]− Pr[D(f (Xn), Rl) = 1])

= 1

2
+ 1

2l − 1
· (p − q)

and the lemma follows. �

2.6.∗ Efficient Amplification of One-Way Functions

The amplification of weak one-way functions into strong ones, presented in
Theorem 2.3.2, has no practical value. Recall that this amplification transforms a func-
tion f that is hard to invert on a noticeable fraction (i.e., 1

p(n)) of the strings of length
n into a function g that is hard to invert on all but a negligible fraction of the strings
of length n2 p(n). Specifically, it is shown that an algorithm running in time T (n) that
inverts g on a ε(n) fraction of the strings of length n2 p(n) yields an algorithm running
in time poly(p(n), n, 1

ε(n)) · T (n) that inverts f on a 1− 1
p(n) fraction of the strings of

length n. Hence, if f is hard to invert in practice on 1% of the strings of length 1000,
then all we can say is that g is hard to invert in practice on almost all strings of length
100,000,000. In contrast, an efficient amplification of one-way functions, as given later,
should relate the difficulty of inverting the (weak one-way) function f on strings of
length n to the difficulty of inverting the (strong one-way) function g on the strings
of length O(n), rather than relating it to the difficulty of inverting the function g on
the strings of length poly(n). Consequently, we may get assertions such as this: If f is

78

2.6.∗∗ EFFICIENT AMPLIFICATION OF ONE-WAY FUNCTIONS

hard to invert in practice on 1% of the strings of length 1000, then g is hard to invert
in practice on almost all strings of length 5000. The following definition is natural for
a general discussion of amplification of one-way functions.

Definition 2.6.1 (Quantitative One-Wayness): Let T : N → N and ε : N → R

be polynomial-time-computable functions. A polynomial-time-computable func-
tion f : {0, 1}∗ → {0, 1}∗ is called ε(·)-one-way with respect to time T (·) if for
every algorithm A′, with running time bounded by T (·) and all sufficiently large
n’s,

Pr[A′(f (Un)) �∈ f −1(f (Un))] > ε(n)

Using this terminology, we review what we already know about amplification of one-
way functions. A function f is weakly one-way if there exists a polynomial p(·) such
that f is 1

p(·) -one-way with respect to polynomial time.14 A function f is strongly
one-way if for every polynomial q(·), the function f is (1− 1

q(·))-one-way with respect
to polynomial time. (The identity function is only 0-one-way with respect to linear
time, whereas no function is (1− exp(·))-one-way with respect to linear time.15) The
amplification result of Theorem 2.3.2 can be generalized and restated as follows: If there
exist a polynomial p and a (polynomial-time-computable) function f that is 1

p(·) -one-
way with respect to time T (·), then there exists a (polynomial-time-computable) function
g that is strongly one-way with respect to respect to time T ′(·), where T ′(n2 · p(n)) =
T (n), or, in other words, T ′(n) = T (nε) for some ε > 0 satisfying (n2 · p(n))ε ≤ n. In
contrast, an efficient amplification of one-way functions, as given later, should state
that the foregoing holds with respect to T ′(O(n)) = T (n) (in other words, T ′(n) =
T (ε · n) for some ε > 0). Such a result can be obtained for regular one-way functions.
A function f is called regular if there exists a polynomial-time-computable function
m : N → N and a polynomial p(·) such that for every y in the range of f , the number
of pre-images (of length n) of y under f is between m(n)

p(n) and m(n) · p(n). In this
book we review the result only for one-way permutations (i.e., length-preserving 1-1
functions).

Theorem 2.6.2 (Efficient Amplification of One-Way Permutations): Let p(·)
be a polynomial, and T : N → N. function. Suppose that f is a polynomial-
time-computable permutation that is 1

p(·) -one-way with respect to time T (·). Then
there exists a constant γ > 1, a polynomial q, and a polynomial-time-computable
permutation F such that for every polynomial-time-computable function ε : N →
[0, 1], the function F is (1− ε(·))-one-way with respect to time T ′

ε (·), where

T ′
ε (γ · n) def= ε(n)2

q(n) · T (n).

The constant γ depends only on the polynomial p(·).
14 Here and later, with respect to polynomial time means with respect to time T , for every polynomial T .
15 The identity function can be “inverted” with failure probability zero in linear time. On the other hand, for

every function f , the algorithm that, given y, outputs 0|y| inverts f on f (Un) with failure probability of at most
1− 2−n < 1− exp(−n).

79

COMPUTATIONAL DIFFICULTY

2.6.1. The Construction

The key to the amplification of a one-way permutation f is to apply f on many different
arguments. In the proof of Theorem 2.3.2, f is applied to unrelated arguments (which
are disjoint parts of the input). This makes the proof relatively easy, but also makes
the construction very inefficient. Instead, in the construction presented in the proof of
the current theorem, we apply the one-way permutation f to related arguments. The
first idea that comes to mind is to apply f iteratively many times, each time to the
value resulting from the previous application. This will not help if easy instances for
the inverting algorithm continue to be mapped, by f , to themselves. We cannot just
hope that this will not happen. So the second idea is to use randomization between
successive applications of f . It is important that we use only a small amount of random-
ization, since the “randomization” will be encoded into the argument of the constructed
function. The randomization between successive applications of f takes the form of a
random step on an expander graph. Hence a few words about these graphs and random
walks on them are in order.

A graph G = (V, E) is called an (n, d, c)-expander if it has n vertices (i.e., |V | =
n), every vertex in V has degree d (i.e., G is d-regular), and G has the following
expansion property (with expansion factor c > 0): For every subset S ⊂ V , if |S| ≤ n

2 ,
then |N (S)| ≥ (1+ c) · |S|, where N (S) denotes the set of neighbors of vertices in
S (i.e., N (S) def= {u ∈ V : ∃v ∈ S s.t. (u, v) ∈ E}).16 By explicitly constructed (d, c)-
expanders we mean a family of graphs {Gn}n∈N such that each Gn is a (2n, d, c)-expander
and such that there exists a polynomial-time algorithm that on input a description of
a vertex in an expander outputs the list of its neighbors, where vertices in Gn are
represented by binary strings of length n. We stress that the constants d ∈ N and c > 0,
as well as the algorithm, are fixed for all graphs in the family. Such expander families
do exist. By a random walk on a graph we mean the sequence of vertices visited by
starting at a uniformly chosen vertex and randomly selecting at each step one of the
neighboring vertices of the current vertex, with uniform probability distribution. The
expanding property implies (via a non-trivial proof) that the vertices along random
walks on an expander have surprisingly strong “random properties.” In particular, for
every subset of constant density within the vertex set and every l, the probability
that no vertex along an O(l)-step-long random walk will hit the subset is at most
2−l (i.e., as would have been the case if we had chosen O(l) vertices independently),
where the constant in the O-notation depends only on the expansion factor of the
graph.

We remind the reader that we are interested in successively applying the per-
mutation f , while interleaving randomization steps between successive applications.
Hence, before applying permutation f to the result of the previous application, we
take one random step on an expander. Namely, we associate the domain of the given

16 We use a somewhat non-standard definition. The standard definition of expansion with factor c > 0 is that for
every such S (i.e., S ⊂ V and |S| ≤ n

2), it holds that |N ′(S)| ≥ c · |S|, where N ′(S) denotes the vertices in V \ S that

have neighbors in S (i.e., N ′(S)
def= {u ∈ V \ S : ∃v ∈ S s.t. (u, v) ∈ E}). Every (n, d, c)-expander under the stan-

dard definition can be easily transformed into an (n, d + 1, c)-expander under our definition (e.g., by adding
self-loops).

80

2.6.∗∗ EFFICIENT AMPLIFICATION OF ONE-WAY FUNCTIONS

x f g f g f g f g y

σ σ σ σ1 2 3 4

Figure 2.3: The essence of Construction 2.6.3.

one-way permutation with the vertex set of the expander. Our construction alter-
nately applies the given one-way permutation f and randomly moves from the ver-
tex just reached to one of its neighbors. A key observation is that the composi-
tion of an expander with any permutation on its vertices yields an expander (with
the same expansion properties). Combining the properties of random walks on ex-
panders and a “reducibility” argument, the following construction is used to am-
plify the one-wayness of the given permutation in an efficient manner. (We warn that
Theorem 2.6.2 is not proved by direct application of the following construction; see
Section 2.6.2.)

Construction 2.6.3: Let {Gn}n∈N be a family of d-regular graphs, so that Gn

has vertex set {0, 1}n and self-loops at every vertex. Consider a labeling of
the edges incident to each vertex (using the labels 1, 2, . . . , d). Define gl(x)
to be the vertex reachable from vertex x by following the edge labeled l. Let
f : {0, 1}∗→{0, 1}∗ be a 1-1 length-preserving function, and let λ denote the
empty sequence (over {1, 2, . . . , d}). Then for every k ≥ 0, x ∈ {0, 1}n and
σ1, σ2, . . . , σk ∈ {1, 2, . . . , d}, define F(x, λ) = x and

F(x, σ1σ2 · · · σk) = σ1, F(gσ1 (f (x)), σ2, . . . , σk)

That is,

F(x, σ1σ2 · · · σk) = σ1, σ2, . . . , σk , y

where y = gσk (f (· · · (gσ2 (f (gσ1 (f (x))))) · · ·))
For every k : N → N, define Fk(α) def= F(x, σ1, . . . , σt), where α is parsed into

(x, σ1, . . . , σt), so that t = k(|x |) and σi ∈ {1, 2, . . . , d}.

Clearly, Fk is 1-1 and length-preserving. The process in which y is obtained from x
is depicted in Figure 2.3 (for k = 4): A circle marked f denotes application of the
one-way permutation f , whereas a box marked g denotes taking a step on the expander
(in the direction specified by the auxiliary input σi).

2.6.2. Analysis

The “hardness-amplification” property of Construction 2.6.3 is stated in the following
proposition.

Proposition 2.6.4: Let {Gn}, f : {0, 1}∗ → {0, 1}∗, k : N → N, and Fk be as in
Construction 2.6.3. Let d ∈ N, c > 0, and � be constants, and let α : N → R and
T : N → N be functions such that the following conditions hold:

81

COMPUTATIONAL DIFFICULTY

1. The family of graphs {Gn}n∈N is an explicitly constructed family of (d, c)-expanders.

2. The permutation f is polynomial-time-computable as well as α′(·)-one-way with
respect to time T : N → N, where α′(n) = α(n)+ 2−n.

3. The function α : N → R is polynomial-time-computable.

4. � ≥ 4+c2

c2 · d.

Then the permutation Fk is polynomial-time-computable, and for every poly-
nomial-time-computable ε : N → R, the permutation Fk is ((1− ε(·))β(·))-one-
way with respect to time T ′ : N → N, where

β(n + k(n) · log2 d) def= 1−
(

1− α(n)

2

)k(n)/�

T ′(n + k(n) · log2 d) def= (ε(n) · α(n))2

O(n + k(n))3
· T (n)

For k(n) = 3� · n and α(n) = 1/poly(n), we get β(O(n)) = 1− (1− 0.5 · α(n))3n and
T ′(O(n)) = poly(ε(n)/n) · T (n). In particular, for α(n) = o(1/n) we have β(O(n)) ≈
1.5n · α(n), for α(n) ≤ 1/2n we have β(O(n)) > 1.02n · α(n), and for constant α we
have β(O(n)) > 1− 2−�(n).

Proof of Theorem 2.6.2: Theorem 2.6.2 follows by applying Proposition 2.6.2
δ + 1 times, where δ is the degree of the polynomial p(·) (specified in the hy-
pothesis that f is 1

p(·) -one-way). In all applications of the proposition, we use

k(n) def= 3�n. In the first δ applications we use ε(n) = 0.01. For i ≤ δ, the func-
tion resulting from the i th application of the proposition is 1

2nδ−i -one-way. In
particular, after δ applications, the resulting function is 1

2 -one-way. (It seems that
the notion of 1

2 -one-wayness is worthy of special attention and deserves a name
such as mostly one-way.) In the last (i.e., δ + 1) application we use ε(n) = ε(n).
The function resulting from the last (i.e., δ + 1) application of the proposition
satisfies the statement of Theorem 2.6.2. �

Overview of the Proof of Proposition 2.6.4. The proposition itself is proved by
combining two different types of arguments, the main parts of which are stated in
Lemmata 2.6.5 and 2.6.6, below. Lemma 2.6.5 is a purely combinatorial lemma re-
garding the behavior of random walks on expander graphs. Lemma 2.6.6 presup-
poses such behavior (of random walks on the graphs {G f,n}, defined below) and
uses it in order to establish Proposition 2.6.4. The proof of Lemma 2.6.6 is by a re-
ducibility argument, which generalizes the proof of Theorem 2.3.2. We start with the
combinatorics.

The Combinatorics. First note that we are not interested in random walks on Gn ,
but rather in random walks on the graph G f,n

def= ({0, 1}n, E f,n) obtained from Gn =
({0, 1}n, En) by letting E f,n

def= {(u, v) : (f (u), v) ∈ En}. The first observation is that
G f,n preserves the expansion property of Gn , since f is a permutation over {0, 1}n .

82

2.6.∗∗ EFFICIENT AMPLIFICATION OF ONE-WAY FUNCTIONS

(In general, for any graph G = (V, E), if f : V → V is 1-1, then G f = (V, E f),
defined analogously, preserves the expansion property of G.17) The next combina-
torial step consists of showing that, for c and d as in the proposition, the ratio of
the two largest eigenvalues (in absolute value) of the adjacency matrix of each Gn

is bounded away from 1. That is, for some ρ < 1 and all n, this eigenvalue ratio
for Gn is at most ρ. (This is shown using the known relation between the expansion
constant of a regular graph and the eigenvalue ratio of its adjacency matrix; specifi-
cally, ρ ≤ 1− c2

(4+c2)·d .) The next observation is that in the graph G�
f,n = ({0, 1}n, P�)

obtained from G f,n by letting P� equal the set of �-edge-long paths in G f,n , the
eigenvalue ratio is at most ρ�. By the hypothesis regarding � and the bound on ρ,
it follows that ρ� < 1

2 . The main combinatorial step is captured by the following
lemma.18

Lemma 2.6.5 (Random Walk Lemma): Let G be a regular graph having an
adjacency matrix for which the ratio of the absolute values of the first and second
eigenvalues is smaller than 1

2 . Let S be a subset of measure µ of the graph’s
vertices. Then a random walk of length t on G will hit S with probability at least
1− (1− 0.5 · µ)t .

Proof Idea: Because it is of little relevance to the topic of this book, we pro-
vide only a rough idea of what is involved in this proof. The proof refers to
the stochastic matrix obtained from the adjacency matrix of G by division with
G’s degree, and it views probability distributions over the graph’s vertex set as
linear combinations of the (orthogonal) eigenvectors of this matrix. The ratio of
eigenvalues in the new matrix is as in the adjacency matrix of G. Furthermore,
the largest eigenvalue is 1, and the eigenvector associated with it is the uniform
distribution.

Going step-by-step along the random walk, we bound from above the proba-
bility mass assigned to random walks that do not pass through the set S. At each
step, the component of the current distribution that is in the direction of the first
eigenvector loses a factor µ of its weight (where this loss is due to the fraction of
the paths that enter S in the current step). Using the bound on the second eigen-
value, it can be shown that in each step the L2-norm of the other components is
decreased by a factor of 2 (so that the residual distribution is “pushed” toward the
direction of the first eigenvector). Intuitively, the event passing through the set S
acts as a sieve on the residual distribution, but this sieve is effective only when
the residual distribution is close to uniform, which is being preserved by the next
random step on the expander.

17That is, we let E f
def= {(u, v) : (f (u), v) ∈ E} and denote N (S)

def= {v ∈ V : ∃u ∈ S s.t. (u, v) ∈ E}
and N f (S)

def= {v ∈ V : ∃u ∈ S s.t. (u, v) ∈ E f }. Then N f (S) = {v ∈ V : ∃ f (u) ∈ f (S) s.t. (f (u), v) ∈ E} =
N (f (S)), where f (S)

def= { f (u) : u ∈ S}. Using the 1-1 property of f , we have | f (S)| = |S|, and the claim follows
(i.e., if G has expansion factor c, then so does G f).

18Below, a random walk of length t means a sequence of t vertices generated as follows. First, a start vertex
is selected uniformly in the vertex set. For i = 2, . . . , t , the i th vertex is selected uniformly among the neighbors
of the i − 1 vertex. We stress that if a vertex has a self-loop, then it is considered a neighbor of itself.

83

COMPUTATIONAL DIFFICULTY

Next we provide a (sketch of a) formal analysis that closely follows the fore-
going intuition. Unfortunately, this simple analysis only establishes a weaker
bound than the one claimed. This weaker bound does not suffice for our purposes,
since it is meaningful only for µ ≥ 1

4 (whereas we also need to relate to much
smaller values of µ, specifically, 1/µ, being poly-logarithmic in the size of the
graph).

Proof sketch for a weaker bound: Let us denote by M the stochastic matrix
representing a random step on the graph G = (V, E), and let ρ denote a bound on
the absolute value of the second largest eigenvalue of M (where the largest eigenvalue
is 1). Let P be a 0-1 “sieving matrix” that has 1-entries only on its diagonal and further-
more only in entries (i, i) that correspond to i �∈ S. We represent (residual) probability
distributions, over V , by vectors. For such a vector ,v, the vector M,v represents the
distribution obtained from the distribution ,v by taking one random step on the graph G,
and P,v is the (residual) distribution obtained from ,v by setting to zero all entries that
correspond to vertices in S. We represent the uniform distribution over V by the vector
,π (in which each entry equals 1/|V |) and observe that M ,π = ,π (since the uniform
distribution is the eigenvector associated with the eigenvalue 1).

One key observation is that the probability that a random t-step walk does not pass
through S equals the sum of the elements of the (non-negative) vector (P M)t−1 P ,π =
(P M)t ,π . Since the vector (P M)t ,π is non-negative, we can evaluate its L1-norm in-
stead, which in turn is bounded from above by

√|V | · ‖(P M)t ,π‖, where ‖·‖ denotes
the Euclidean norm (i.e., L2-norm). Later, we shall prove that for every vector ,z it
holds that ‖P M,z‖ ≤ ((1− µ)+ ρ2)1/2 · ‖,z‖, and we obtain

‖(P M)t ,π‖ ≤ ((1− µ)+ ρ2
)t/2 · ‖,π‖ = (

(1− µ)+ ρ2
)t/2 ·

√
|V | · 1

|V |2

It follows that the probability that a random t-step walk does not pass through S is
at most

(
(1− µ)+ ρ2

)t/2
, which for µ ≥ 2ρ2 (e.g., µ ≥ 1/2 and ρ ≤ 1/2) yields an

upper bound of (1− 0.5 · µ)t/2.
In order to prove that ‖P M,z‖ ≤ ((1− µ)+ ρ2)1/2 · ‖,z‖, we write ,z = ,z1 + ,z2 such

that ,z1 is the component of ,z that is in the direction of the first eigenvector (i.e., ,π), and
,z2 is the component that is orthogonal to it. Using M ,π = ,π , ‖P ,π‖ = √

1− µ · ‖,π‖,
‖M,z2‖ ≤ ρ · ‖,z2‖, and ‖P,v‖ ≤ ‖,v‖ (for every ,v), we have

‖P M(,z1 + ,z2)‖ ≤ ‖P M,z1‖ + ‖P M,z2‖
≤
√

1− µ · ‖,z1‖ + ρ · ‖,z2‖
≤
√

(1− µ)+ ρ2 ·
√
‖,z1‖2 + ‖,z2‖2

= ((1− µ)+ ρ2
)1/2 · ‖,z1 + ,z2‖

where the last inequality uses the Cauchy-Schwarz inequality (i.e.,
∑

i ai · bi ≤(∑
i a2

i

)1/2 · (∑i b2
i

)1/2
), and the last equality uses the fact that ,z1 and ,z2 are

orthogonal.

We comment that the lower bound claimed in the lemma can be generalized to
1− (1− µ+ µ · ρ)t , where ρ is an upper bound on the eigenvalue ratio. �

84

2.6.∗∗ EFFICIENT AMPLIFICATION OF ONE-WAY FUNCTIONS

The Algorithmics. The second lemma (stated next) is analogous to the essence of the
proof of Theorem 2.3.2 (i.e., the simple amplification). However, there are two key
differences between the two proofs:

1. In the proof of Theorem 2.3.2, we used a trivial combinatorial statement regarding the
number of k-sequences over {0, 1}n that each has an element in some set S (i.e., the
probability that such a uniformly chosen k-sequence has no element in the set S is
(1− 2−n · |S|)k). Here we use a generic hypothesis regarding the relationship between
the density of S and the fraction of k-sequences of a certain type that pass through it. That
is, here we consider only k-sequences that result from a k-step walk on a fixed regular
graph.

2. More importantly, the proof of Theorem 2.3.2 refers to inverting the original function f
on a sequence of (independently distributed) instances, whereas here we refer to inverting
successive applications of f (interleaved with gσ -moves) on a single instance (and the
sequence in question is the one of intermediate results).

Thus the proof that follows is more complex than the proof of Theorem 2.3.2. The
following lemma will be used, with β(n + k(n) log2 d) = 1− (1− 0.5 · α(n))k(n)/�, as
provided by the earlier combinatorial argument.

Lemma 2.6.6 (Reducibility Lemma): Let d, {Gn = ({0, 1}n, En)}, f : {0, 1}∗
→ {0, 1}∗, k : N → N, and Fk be as in Construction 2.6.3.

� Let G f,n
def= ({0, 1}n, E f,n), where E f,n

def= {(u, v) : (f (u), v) ∈ En}.
� Let α, α′, β : N → [0, 1], and k : N→N be such that β(n + k(n) log2 d) > α(n)

and α′(n) ≥ α(n)+ 2−n.

Suppose that G f,n satisfies the following random-path property:

� For every measure-α(n) subset S of G f,n’s nodes, at least a fraction β(n + k(n) ·
log2 d) of the paths of length k(n) will pass through a node in S.

Suppose that f is α′(·)-one-way with respect to time T (·). Then for every
polynomial-time-computable ε : N → R, the function Fk is (1− ε(·))β(·)-
one-way with respect to time T ′ : N → N, where T ′(n + k(n) log2 d) def=
ε(n)2α(n)2

O(n+k(n))3 · T (n).

Note that the lemma is of no interest in case β(n + k(n) log2 d) ≤ α(n).

Proof Sketch: The proof, as suggested by the name of the lemma, is by a reducibil-
ity argument. This argument is similar in flavor to the one used in the proof of
Theorem 2.3.2. Assume, to the contradiction, that for m

def= n + k(n) log2 d, the
permutation Fk can be inverted on Fk(Um) in time T ′(·) with success probability
at least

1− (1− ε(m)) · β(m) = 1− β(m)+ ε(m)β(m)

85

COMPUTATIONAL DIFFICULTY

Modify the inverting algorithm so that it inverts Fk with overwhelming proba-
bility on a 1− β(m)+ ε′(m) fraction of the inputs of length m, where ε′(m) =
ε(m)β(m)/2. (This can be done by first observing that the inverting algorithm must
invert at least a 1− β(m)+ ε′(m) fraction of the inputs with probability at least
ε′(m) and then increasing its success on such inputs by m/ε′(m) independent tries.)
Denote the resulting algorithm, which has running time (2m · T ′(m))/(ε(m)β(m)),
by A. Note that inputs to A correspond to k(n)-long paths on the graph Gn .
Consider the set, denoted In , of paths (x, p) such that A inverts Fk(x, p) with
overwhelming probability (e.g., probability at least 1− 2−n).

In the sequel, we use the shorthand k
def= k(n), m

def= n + k log2 d, ε def= ε(m),
ε′ def= ε′(m),β def= β(m),α def= α(n), and I

def= In . Recall that |I | ≥ (1− β + ε′) · 2m .
Let Pv be the set of all k-long paths that pass through v, and let Iv be the subset
of I containing paths that pass through v (i.e., Iv = I ∩ Pv). Define v as good
if |Iv|/|Pv| ≥ ε′/k (and bad otherwise). Intuitively, a vertex v is called good
if at least a ε′/k fraction of the paths going through it can be inverted by A.
Let I ′ = I \ ∪v bad Iv; namely, I ′ contains all “invertible” paths that pass solely
through good nodes. Clearly, we have the following:

Claim 2.6.6.1: The density of I ′ in the set of all paths is greater than 1− β.

Proof: Denote by µ(S) = |S|/|P| the density of the set S in the set of all paths.
Then

µ(I ′) = µ(I)− µ(∪v bad Iv)

≥ (1− β + ε′)−
∑
v bad

µ(Iv)

> 1− β + ε′ −
∑
v

ε′

k
· µ(Pv)

≥ 1− β

where the last inequality is due to the fact that each path in P contributes to at
most k of the Pv’s. �

Using the random-path property, we have the following:

Claim 2.6.6.2: The density of good nodes is greater than 1− α.

Proof: Otherwise, let S be the set of bad nodes, and suppose that |S| ≥ α · 2n .
By the random-path property, since S has measure (at least) α, the fraction of
paths that pass through vertices of S is at least β. That is, the fraction of paths
that pass through a bad vertex is at least β. But I ′ does not contain paths that pass
through bad vertices, and so I ′ can contain at most a 1− β fraction of all paths,
in contradiction to Claim 2.6.6.1. �

The following algorithm for inverting f is quite natural. The algorithm uses as
subroutine an algorithm, denoted A, for inverting Fk . Inverting f on y is done by
placing y on a random point along a randomly selected path p̄, taking a walk from

86

2.6.∗∗ EFFICIENT AMPLIFICATION OF ONE-WAY FUNCTIONS

y according to the suffix of p̄, and asking A for the pre-image of the resulting
pair under Fk .

Algorithm for inverting f : On input y, repeat 2nk
εβ

times:

1. Select randomly i ∈ {1, 2, . . . , k} and σ1, σ2, . . . , σk ∈ {1, 2, . . . , d}.
2. Compute y′ = F(gσi (y), σi+1 . . . σk).

3. Invoke A to obtain x ′ ← A(σ1σ2, . . . , σk, y′).

4. Compute x = F(x ′, σ1 . . . σi−1).

5. If f (x) = y, then halt and output x .

Analysis of the inverting algorithm (for a good x): Since x is good, a random path
going through it (selected as before) corresponds to an “invertible path” with probability
at least ε′/k = εβ/2k. If such a good path is selected, then we obtain the inverse of
f (x) with overwhelming probability. The algorithm for inverting f repeats the process
sufficiently many times to guarantee overwhelming probability of selecting an “invertible
path.”

By Claim 2.6.6.2, the good x’s constitute at least a 1− α fraction of all n-bit strings.
Thus, the success probability of our inverting algorithm on input f (Un) is at least

(1− α(n)) · (1− 2−n) > 1− α(n)− 2−n ≥ 1− α′(n)

The running time of our inverting algorithm is

2nk(n)

ε(m)β(m)
· 2m · T ′(m)

ε(m)β(m)
= 4nmk(n)

ε(m)2β(m)2
· T ′(m) ≤ T (n)

where the last inequality uses β(m) ≥ α(n). Hence, the existence of an algorithm
inverting Fk in time T ′(·) with probability at least 1− (1− ε(·))β(·) implies the
existence of an algorithm inverting f in time T (·) with probability at least 1−
α′(·). The latter constitutes a contradiction to the hypothesis of the lemma, and
hence the lemma follows. �

Finishing the Proof of Proposition 2.6.4. When Lemma 2.6.5 is applied to the graph
G�

f,n , it follows that, for every set S ⊆ V of measure α(n), a random walk of length t
on G�

f,n hits S with probability at least 1− (1− 0.5 · α(n))t . Recall that edges in G�
f,n

represent �-edge paths in G f,n , and so the vertices visited in a k-step walk on G f,n are a
subset of those visited in a corresponding (k/�)-step walk on G�

f,n . It follows that a ran-
dom walk of length k(n) on G f,n hits S with probability at least 1− (1− 0.5 · α(n))k(n)/�.
Applying Lemma 2.6.6, with α′(n) = α(n)+ 2−n and β(n + k(n) · log2 d) = 1− (1−
0.5 · α(n))k(n)/�, we conclude that if f is α′(n)-one-way with respect to time T (·), then
Fk is ((1− ε(·))β(·))-one-way with respect to time T ′(·), where β and T ′ are as in
Proposition 2.6.4. This completes the proof.

An Alternative Analysis. Our analysis of Construction 2.6.3 is conducted using the
eigenvalue ratio of expander graphs, rather than their natural combinatorial definition (in

87

COMPUTATIONAL DIFFICULTY

terms of expansion properties). Because the transformation between the two formulation
is not tight, we lose by stating our results in terms of expansion properties. Hence, for
a tighter analysis, we replace Condition 1 of Proposition 2.6.4 by the requirement
that for some ρ < 1, each graph in the explicitly constructible family {Gn} has an
eigenvalue ratio of at most ρ, and we replace Condition 4 by � ≥ max(1,)logρ(1/2)*).
The modified proposition is proved as the original one, except that here we observe that
the eigenvalue ratio of {G f,n} is smaller than or equal to the eigenvalue ratio of {Gn}.19

The modified proposition allows to use an explicitly constructible family {Gn} having
degree 18 and eigenvalue ratio below 1

2 , which in turn allows us to set � = 1. Thus, for
k(n) = 3n and every polynomial-time-computable ε : N → R, the permutation Fk is
((1− ε(·))β(·))-one-way with respect to time T ′ : N → N, where

β(15n) ≈ 1−
(

1− α(n)

2

)3n

T ′(15n) ≈ (ε(n) · α(n))2

O(n)3
· T (n) .

In particular, for α(n) ≤ 1/2n we have β(15n) > 1.02n · α(n), whereas for constant α
we have β(15n) > 1− 2−�(n). Regarding the example mentioned at the beginning of
this section, using n = 1000 and k ≈ 960 it follows that if f is hard to invert in practice
on 1% of the strings of length 1000, then Fk is hard to invert in practice on 99% of the
strings of length 5000.

2.7. Miscellaneous

We stress that the aforementioned relationships among the various forms of one-way
functions are the only ones that are known to hold. Specifically:

• Weak one-way functions (resp., permutations (resp., with trapdoor)) can be transformed
into strong one-way functions (resp., permutations (resp., with trapdoor)). The other
direction is trivial.

• Non-uniform hardness implies uniform hardness, but not the other way around.

• Trapdoor permutations are special cases of one-way permutations, which in turn are
special cases of one-way functions. We do not know if it is possible to transform arbitrary
one-way functions into one-way permutations or the latter into trapdoor permutations.20

19 Letting M be as in the proof of Lemma 2.6.5, and letting R be a matrix representing the mapping v �→ f (v),
observe that the first eigenvalue and eigenvector of M R are exactly as those of M (i.e., 1 and a uniform vector,
respectively).Furthermore, the subspace orthogonal to the uniform vector is preserved by R, and so this subspace
must contain all the other eigenvectors of M R (whereas each vector in this subspace is a linear combination of the
other eigenvectors of M). Let ,e be some orthogonal-to-uniform eigenvector of M R, and let ρ′ be the eigenvalue
corresponding to it. Then ρ′ · ‖,e‖ = ‖M R,e‖ ≤ ρ · ‖R,e‖ ≤ ρ · ‖,e‖, where ‖S,v‖ ≤ ‖,v‖ holds for every stochastic
matrix S (and in particular for the matrix R).

20 We mention that trapdoor functions (in which given the trapdoor, one can retrieve some pre-image) can
be constructed from arbitrary one-way functions (cf. [18]), but the number of pre-images of each image of the
constructed function is exponential.

88

2.7. MISCELLANEOUS

Evidence to the contrary has been presented ([140] and [133], respectively, where it is
shown that “black-box” reductions are unlikely to provide such transformations).

• Collections of claw-free function (resp., permutation) pairs yield collections of one-way
functions (resp., permutations), but the other direction is not known.

2.7.1. Historical Notes

The notions of a one-way function and a trapdoor permutation originate from the semi-
nal paper of Diffie and Hellman [63]. Weak one-way functions were introduced by
Yao [210]. The RSA function was introduced by Rivest, Shamir, and Adleman [191],
whereas squaring modulo a composite was suggested and studied by Rabin [187].
Other authors have suggested basing one-way functions on the believed intractability
of decoding random linear codes [29, 108] and on the subset-sum problem [132].

The equivalence of the existence of weak and strong one-way functions (i.e.,
Theorem 2.3.2) is implicit in Yao’s work [210], with the first proof appearing in [91].
The efficient amplification of one-way functions presented in Section 2.6 is taken
from Goldreich et al. [104], which in turn uses a technical tool originating in [4]
(see also [55, 135]). The existence of universal one-way functions is stated in Levin’s
work [150].

The concept of hard-core predicates originates from the work of Blum and
Micali [36]. They also proved that a particular predicate constitutes a hard-core for
the “DLP function” (i.e., exponentiation in a finite field), provided that the latter func-
tion is one-way. Consequently, Yao showed how to transform any one-way function
into a hard-core predicate (i.e., the result is not stated in [210], but is rather due to oral
presentations of that work). A proof first appeared in Levin’s work [150] (see details
in [114]). However, Yao’s construction, which is analogous to the construction used in
the proof of Theorem 2.3.2, is of little practical value.

The fact that the inner product mod 2 is a hard-core for any one-way function (of the
form g(x, r) = (f (x), r)) was proved by Goldreich and Levin [110]. The proof pre-
sented in this book, which follows ideas originating in [5], was discovered independently
by Leonid Levin and Charles Rackoff. The improvement captured by Proposition 2.5.4
is due to Levin [151].

Theorem 2.5.6 (hard-core functions of logarithmically many bits based on any one-
way function) is also due to [110]. The Computational XOR Lemma (Lemma 2.5.8)
is due to [208], but the proof presented here is due to Leonid Levin. (An alternative
construction of hard-core functions is presented in [117].)

Hard-core predicates (and functions) for specific collections of permutations have
been suggested [36, 141, 5, 208]. Specifically, Alexi et al. [5] proved that the intractabil-
ity of factoring yields hard-core predicates for permutations induced by squaring mod-
ulo a composite number. A simpler and tighter proof has subsequently been found [82].

2.7.2. Suggestions for Further Reading

Our exposition of the RSA and Rabin functions is quite sparse in details. In particular,
the computational problems of generating uniformly distributed “certified primes” and

89

COMPUTATIONAL DIFFICULTY

of “primality checking” deserve much more attention. A probabilistic polynomial-time
algorithm for generating uniformly distributed primes together with corresponding
certificates of primality has been presented by Bach [9]. The certificate produced by
this algorithm for a prime P consists of the prime factorization of P − 1, together with
certificates for primality of these factors. This recursive form of certificates for primality
originates in Pratt’s proof [184] that the set of primes is inNP . However, the foregoing
procedure is not very practical. Instead, when using the RSA (or Rabin) function in
practice, one is likely to prefer an algorithm that generates integers at random and checks
them for primality using fast primality checkers, such as the algorithms presented in
[203, 185]. One should note, however, that these algorithms do not produce certificates
for primality and that with some (small) parameterized probability they may assert
that a composite number is a prime. Probabilistic polynomial-time algorithms (yet
not practical ones) that, given a prime, produce a certificate for primality have been
presented [121, 1].

The common belief that the RSA, Rabin, and DLP functions are one-way is based on
the failure of researchers to come up with probabilistic polynomial-time algorithms for
factoring and discrete logarithms. (It is debatable whether this record of failure should
be traced back a couple of centuries or “only” a few decades.) For a survey of the
best algorithms known for the factoring and discrete-logarithm problems, the reader is
directed to Odlyzko’s surveys ([178] and [179], respectively).

The subset-sum problem is known to be easy in two special cases. One case is
that in which the input sequence is constructed based on a simple “hidden sequence.”
For example, Merkle and Hellman [163] suggested the construction of an instance of
the subset-sum problem based on a “hidden super-increasing sequence” as follows.
Let s1, . . . , sn, sn+1

def= M be a sequence satisfying si >
∑i−1

j=1 s j , for i = 2, . . . , n + 1.
Such a sequence is called super-increasing. For w relatively prime to M , consider the
instance of the subset-sum problem consisting of (x1, . . . , xn) and

∑
i∈I xi , where xi

def=
w · si mod M and I ⊆ {1, . . . , n}. Clearly, knowledge of both w and M allows one to
easily solve the subset-sum problem for the foregoing instance (e.g., simply retrieve the
super-increasing sequence and iteratively determine if i ∈ I for i = n, n − 1, . . . , 1).
The hope was that when w and M were not given, solving the subset-sum problem
would be hard (even for instances generated based on a super-increasing sequence).
(That would have led to a trapdoor one-way function.) Unfortunately, that hope was not
realized. Shamir presented an efficient algorithm for solving the subset-sum problem
for instances with a hidden super-increasing sequence [197]. Another case for which the
subset-sum problem is known to be easy is the case of low-density instances. In these
instances, the lengths of the elements in binary representations are considerably larger
than the numbers of elements (i.e., |x1| = · · · = |xn| = (1+ ε)n for some constant
ε > 0). For further details, consult the work of Lagarias and Odlyzko [145] and the
later survey of Brickell and Odlyzko [43].

Two computational problems that are seemingly related to the subset-sum problem
are the decoding of random linear codes and the finding of closest vectors in integer
lattices. In all three cases the problem is to find a linear combination of given ele-
ments such that the sum equals or is close to a target value. However, the similarity
is superficial, because the arithmetic is different in the three cases. In the case of the

90

2.7. MISCELLANEOUS

subset sum, we refer to addition over integers; in the case of linear codes, we have
addition in vector spaces over a finite field (typically of two elements); and in the case
of integer lattices, the addition is of real vectors (or of rational or integer vectors).
We mention that the decoding of random linear codes is a long-standing open prob-
lem in coding theory [207]. Regarding the complexity of lattice problems, there seems
to be a huge gap between the theoretical upper bounds [148] and the performance in
practice [195].

We refer the reader to a fascinating result by Ajtai [3] (cf. [101]): If certain com-
putational problems regarding integer lattices are hard in the worst case, then one-way
functions exist. This result is unique in translating possible worst-case hardness into
average-case hardness.

In view of the general efficient transformation of one-way functions to hard-core
predicates presented in Section 2.5, we did not present proofs that certain natural
predicates are hard-cores for specific popular candidates for one-way functions. Details
on hard-core predicates for the RSA and Rabin functions are available [82; cf. 5], as
are details on hard-core predicates for various “DLP functions” [141; cf. 36].

Tradition attributes to Yao a proof of the existence of hard-core predicates based on
any one-way function. The alleged proof proceeds in two steps. First, one proves the
existence of a mild form of a hard-core predicate; specifically, given a one-way function
f , one construct a one-way function f ′ and a polynomial-time-computable predicate b′

such that any probabilistic polynomial-time predictor given f ′(Un) fails to guess b′(Un)
with probability at least 1/2n (e.g., let f ′(x, i) = (f (x), i) and b′(x, i) be the i th bit of
x). The second step, which is the main one and is called Yao’s XOR Lemma, is to prove
that taking many independent copies of such a “mild hard-core predicate” and XORing
them together will yield a hard-core predicate. That is, for t = |w1|2 = · · · = |wt |2,
we let b′′(w1, . . . , wt) = ⊕t

i=1b′(wi) and f ′′(w1, . . . , wt) = (f ′(w1), . . . , f ′(wt)) and
prove that b′′ is a hard-core of f ′′. Yao’s XOR Lemma has found other applications in
complexity theory [114, 134].

The theory of average-case complexity, initiated by Levin [149], is somewhat related
to the notion of one-way functions. Surveys of this theory are available [24, 96]. Loosely
speaking, the difference is that in our context hard (on the average) instances can easily
be solved by the (efficient) “generator” of those instances, whereas in Levin’s work
the instances are hard (on the average) to solve even for the “generator.” However,
the notion of average-case reducibility introduced by Levin is also relevant in our
context.

Further details about expander graphs and random walks on them are available
from [6, 167]. In particular, Lemma 2.6.5 is a special case of Kahale’s Corollary 6.1
[139]. Explicit constructions of expander graphs have been published [85, 154], as has
the specific construction mentioned at the end of Section 2.6 [154].

2.7.3. Open Problems

As discussed in Section 2.1,NP \ BPP �= ∅ is a necessary condition for the existence
of one-way functions. However,NP \ BPP �= ∅ is not known to imply any practical
consequences (i.e., it may be that hard instances exist but occur very rarely with respect

91

COMPUTATIONAL DIFFICULTY

to any simple distribution). Any progress in showing that NP \ BPP �= ∅ implies
some form of average-case hardness, and that the latter implies the existence of one-
way functions would be of great interest.

Turning to relatively less ambitious goals, we mention two open problems that pertain
to extending the results of the type presented in this chapter. We believe that a resolution
for either of these problems will require the discovery of new important paradigms.
Firstly, in a continuation of the efficient amplification of one-way permutations (pre-
sented in Section 2.6), we seek an analogous transformation that can be applied to
arbitrary (weak) one-way functions. Currently, we know of such transformations only
for special types of functions (e.g., regular ones [104]). We believe that providing an ef-
ficient amplification of arbitrary one-way functions is a very important open problem. It
may also be instrumental for more efficient constructions of pseudorandom generators
based on arbitrary one-way functions (see Section 3.5).

An open problem of more acute practical importance is to try to present hard-core
functions of larger range for the RSA and Rabin functions. Specifically, assuming that
squaring mod N is one-way, is the function that returns the first half of x a hard-core
of squaring mod N? Some support for an affirmative answer has been provided [130].
An affirmative answer would allow us to construct extremely efficient pseudorandom
generators and public-key encryption schemes based on the conjectured intractability
of the factoring problem.

2.7.4. Exercises

Exercise 1: Closing the gap between the motivating discussion and the definition of
one-way functions: We say that a function h : {0, 1}∗ → {0, 1}∗ is hard on the average
but easy with auxiliary input if there exists a probabilistic polynomial-time algorithm G
such that
1. there exists a polynomial-time algorithm A such that A(x, y) = h(x) for every (x, y) in the

range of G (i.e., for every (x, y) such that (x, y) is a possible output of G(1n) for some
input 1n), and

2. for every probabilistic polynomial-time algorithm A′ every positive polynomial p(·), and
all sufficiently large n’s,

Pr[A′ (Xn) = h(Xn)] <
1

p(n)

where (Xn, Yn)
def
= G(1n) is a random variable assigned the output of G.

Prove that if there exist functions that are “hard on the average but easy with auxiliary
input,” then one-way functions exist.

Guideline: Define a function mapping the coins used by G to its first output.

Exercise 2: One-way functions and the P-versus-NP question (Part 1): Prove that
the existence of one-way functions implies P �= NP .

Guideline: For any polynomial-time-computable function f , define a set L f ∈ NP such
that if L f ∈ P, then there exists a polynomial-time algorithm for inverting f .

92

2.7. MISCELLANEOUS

Exercise 3: One-way functions and the P-versus-NP question (Part 2): Assuming
that P �= NP , construct a function f such that the following three claims hold:
1. Function f is polynomial-time-computable.
2. There is no polynomial-time algorithm that always inverts f (i.e., successfully inverts f

on every y in the range of f).
3. Function f is not one-way. Furthermore, there exists a polynomial-time algorithm that

inverts f with exponentially small failure probability, where the probability space is (as
usual) uniform over all possible choices of input (i.e., f (x)) and the internal coin tosses
for the algorithm.
Guideline: Consider the function fsat defined so that fsat(φ, τ) = (φ, 1) if τ is a satisfying
assignment to propositional formulae φ, and fsat(φ, τ) = (φ, 0) otherwise. Modify this
function so that it is easy to invert in most instances, yet inverting fsat is reducible to
inverting its modification. (Hint: The modified function f ′ coincides with fsat on a negligible
fraction of the domain of f ′ and is easy to invert on the rest of the domain.)

Exercise 4: Suppose that f is a one-way function and that for some function � : N → N

the following conditions hold:
1. | f (x)| = �(|x |) for all x’s;
2. �(n) = �(m) only if n = m (i.e., � is 1-1);
3. �(n) ≥ n for all n’s.
Show that given f (x), one can generate 1|x |, in time polynomial in |x |.

Guideline: The foregoing conditions guarantee that |x | ≤ | f (x)| and that |x | is uniquely
determined by | f (x)| = | f (1|x |)|.

Exercise 5: Let f be a strongly one-way function. Prove that for every probabilistic
polynomial-time algorithm A and for every positive polynomial p(·), the set

BA, p
def
=

{
x : Pr

[
A(f (x)) ∈ f −1(f (x))

]
≥ 1

p(|x |)
}

has negligible density in the set of all strings (i.e., for every polynomial q(·) and all
sufficiently large n, it holds that |BA, p ∩{0,1}n|

2n < 1
q(n) .

Exercise 6: Another definition of non-uniformly one-way functions: Consider the defi-
nition resulting from Definition 2.2.6 by allowing the circuits to be probabilistic (i.e., have
an auxiliary input that is uniformly selected). Prove that the resulting new definition is
equivalent to the original one.

Exercise 7: Addition is easily reversible: We associate bit strings with positive integers
in some natural manner (e.g., the n-bit-long string σn−1 · · · σ0 is associated with the
integer 2n +

∑n−1
i=0 σi · 2i):

1. Define fadd : {0, 1}∗ → {0, 1}∗ such that fadd(xy) = x + y, where |x | = |y |. Prove that
fadd is not a one-way function (not even in the weak sense).

2. Redefine fadd : {0, 1}∗ → {0, 1}∗ such that fadd(xy) = prime(x) + prime(y), where |x | =
|y | and prime(z) is the smallest prime that is larger than z. Prove that fadd is not a one-way
function.

93

COMPUTATIONAL DIFFICULTY

As a warm-up, prove that fXOR(xy) = x ⊕ y, where |x | = |y |, is not one-way.
Guideline (Part 2): Do not try to capitalize on the possibility that prime(N) is too
large (e.g., larger than N + poly(log N)). It is unlikely that such a (number-theoretic)
result can be proved. Furthermore, it is generally believed that there exists a constant c
such that for all integer N ≥ 2, it holds that prime(N) < N + (log2 N)c. Hence, it is likely
that fadd is polynomial-time-computable. The point is that it can be shown to be easily
invertible.

Exercise 8: One-way functions based on hardness of factoring: Throughout this
exercise, assume that it is infeasible to factor composite numbers that are the products
of two primes of polynomially related lengths. That is, for every probabilistic polynomial-
time algorithm A, for every positive polynomial p, for all sufficiently large n’s, and for
every

√
n < m< n2,

Pr[A(Pm · Qn) = Pm] <
1

p(n)

where Pm and Qn are uniformly and independently distributed primes of length m and
n, respectively. (Recall the density-of-primes theorem, which guarantees that at least a
1/n fraction of the n-bit integers are primes [7].)
1. Let fmult(x, y) = x · y, where |x | = |y |.

(a) (Easy) Prove that fmult is weakly one-way.
(b) (Hard) Prove that fmult is strongly one-way.

Guideline: Use the fact that, with overwhelmingly high probability, when uniformly se-
lecting an n-bit-long integer and considering the product of all its prime factors that
are smaller than 2

√
n, this product is smaller than 2n/3. Next, argue that if fmult can be

inverted with non-negligible probability, then with non-negligible probability this hap-
pens when each of the two parts of the pre-image has a prime factor of size at least
2
√

n. At this point, a reducibility argument can be applied. (The number-theoretic fact
used earlier can be proved by relying on known results regarding the distribution of
smooth numbers; see [47] for the latter.)

2. Let fmmult(x1, . . . , xn2) =
∏n2

i=1, where |xi | = n for all i ’s. Prove that fmmult is strongly one-
way.
Guideline: Show how to use an algorithm that inverts fmmult with non-negligible probability
in order to factor the products of two n-bit primes. Remember the need to feed the former
algorithm with a distribution as in the hypothesis (or sufficiently close to it).

Exercise 9 (suggested by Bao Feng): Refute the following conjecture:

For every (length-preserving) one-way function f , the function f ′ (x)
def
= f (x)⊕ x

is also one-way.

Guideline: Let g be a (length-preserving) one-way function, and consider f defined on

pairs of strings of the same length, so that f (y, z)
def
= (g(y)⊕ z, z).

Exercise 10: Prove that one-way functions cannot have polynomial-size ranges.
Namely, prove that if f is (even weakly) one-way, then for every polynomial p(·) and all
sufficiently large n’s, it holds that |{f (x) : x ∈ {0, 1}n}| > p(n).

94

2.7. MISCELLANEOUS

Guideline: Suppose that |{f (x) : x ∈ {0, 1}n}| ≤ p(n). To invert f on y = f (Un), with
success probability 1/p(n), it suffices to select uniformly r ∈ {0, 1}n and hope that f (r) =
y. To invert f on y = f (Un) with success probability 1− ε(n), we select uniformly many
such ri ’s, with the hope that y is “heavy” and that all “heavy” f -images are hit by some
f (ri). (Extra hint: y ′ is heavy if Pr[f (Un) = y ′] ≥ ε(n)

2p(n) .)

Exercise 11: Prove that length-preserving one-way functions cannot have polynomi-
ally bounded cycles. Namely, for every function f , define cyc f (x) to be the smallest
positive integer i such that f i (x) = x, where f j+1(x) = f (f j (x)) and f 0(x) = x. Prove
that if f is (even weakly) one-way, then for every polynomial p(·) and all sufficiently
large n’s, the expected value of cyc f (Un) is greater than p(n), where Un is a random
variable uniformly distributed over {0, 1}n.

Guideline: Note that if Ecyc f (Un)] > p(n), then for every polynomial q, it holds that
Pr[cyc f (Un) > q(n) · p(n)] < 1/q(n). Why is the length-preserving condition needed?

Exercise 12: Assuming the existence of one-way functions (resp., permutations), con-
struct one-way functions (resp., permutations) in which there are no sub-exponential
cycles. That is, let cyc f (x) be defined as in Exercise 11; then the constructed f should
satisfy cyc f (x) ≥ 2|x|/2 for all x’s.

Guideline: Given a one-way function (resp., permutation) f ′ , construct f (x′ , x′′)
def
=

(f ′ (x′), h(x′′)) for some suitable h and |x′ | = |x′′ |. What is a suitable h?

Exercise 13: One-way function with a “fixed point”: Prove that if one-way functions
exist, then there exists a one-way function f such that f (0n) = 0n for every n. Do the
same for one-way permutations.

Guideline: The first part is trivial. For the second part, using any one-way permutation f ′ ,
let f (x, y) = (f ′ (x), y) if y ∈ {0, 1}|x | \ {0}|x |, and f (x, 0|x |) = (x, 0|x |) otherwise.

Exercise 14: Let {(an, bn) : n ∈ N} be recognizable in (deterministic) polynomial time,
where an, bn ∈ {0, 1}n. Prove that if one-way functions exist, then there exists a one-way
function f such that f (an) = bn for every n. Do the same for one-way permutations.

Guideline: The first part is trivial. For the second part, consider any one-way permu-
tation f ′ , and suppose f ′ (an) �= bn. Construct a one-way permutation f as required by
switching two values of f ′ .

Exercise 15: On the improbability of strengthening Theorem 2.3.2 (Part 1): Suppose
that the definition of a weak one-way function is further weakened so that it is required
that every probabilistic polynomial-time algorithm fails to invert the function with notice-
able probability. That is, the order of quantifiers in Definition 2.2.2 is reversed (we now
have “for every algorithm there exists a polynomial” rather than “there exists a polyno-
mial such that for every algorithm”). Demonstrate the difficulty of extending the proof of
Theorem 2.3.2 to this case.

Guideline: Suppose that there exists a family of algorithms, one per each polynomial
p(·), such that an algorithm with time bound p(n) fails to invert the function with probability
1/p(n). Demonstrate the plausibility of such a family.

95

COMPUTATIONAL DIFFICULTY

Exercise 16: On the improbability of strengthening Theorem 2.3.2 (Part 2) (due to
Steven Rudich): Suppose that the definition of a strong one-way function is further
strengthened such that it is required that every probabilistic polynomial-time algorithm
fails to invert the function with some specified negligible probability (e.g., 2−

√
n). Demon-

strate the difficulty of extending the proof of Theorem 2.3.2 to this case.
Guideline: Suppose that we construct the strong one-way function g as in the original
proof. Further suppose that there exists an inverting algorithm A that inverts the function
g on g(Un) with probability ε(n). Show that any inverting algorithm for the weakly one-way
function f that uses algorithm A as a black box must invoke it at least 1

poly(n)·ε(n) times.

Exercise 17: Advanced topic: distributionally one-way functions [131]: We say that a
polynomial-time-computable function f :{0, 1}∗ → {0, 1}∗ is distributionally one-way
if there exists a positive polynomial p such that for every probabilistic polynomial-time
algorithm A and all sufficiently large n’s, the statistical difference between (Un, f (Un))
and (A(1n, f (Un)), f (Un)) is greater than 1/p(n). (That is, the inverting task is to provide
a uniformly distributed pre-image rather than an arbitrary one, and failure is measured
in terms of the deviation of A’s output from this distribution.)
1. Prove that if f is weakly one-way (as in Definition 2.2.2), then it is distributionally one-way.
2. Prove that if there exist distributionally one-way functions, then there exist one-way func-

tions.
Guideline (Part 2): Use hashing ideas as in Section 3.5. Specifically, given a distribu-
tionally one-way function f , consider the function F(x, i , h) = (f (x), hi (x), i , h), where
x ∈ {0, 1}n, i ∈ {1, . . . , n}, h : {0, 1}n → {0, 1}n is a hashing function, and hi (x) de-
notes the i -bit-long prefix of h(x). Prove that F is weakly one-way.
Guideline (Part 2, extra help): Suppose, to the contrary, that F can be inverted on at
least a 1− ε(n) > 1− (2n)−1 fraction of the inputs (x, i , h), where |x| = n. Then for any
� : N→ N, the function F can be inverted on at least a 1− nε(n) fraction of the inputs
(x, � log2 | f −1(f (x))|� + �(n), h). Given y = f (x), we generate a random pre-image of y
under f as follows. First, for �(n) = O(log n), we find an i such that i = � log2 | f −1(f (x))|�+
�(n)± O(1). (This is done by trying to invert F on (y, i , r, h), where h and r ∈ {0, 1} i are
uniformly chosen, and choosing i if a pre-image is found with probability approximately
2−�(n).) Next, using this i , we output a pre-image of (y, i , r, h) under F, where (again) h
and r ∈ {0, 1} i are uniformly chosen. (In case inversion fails, we try again.) Show that
the output distribution of this algorithm deviates from the desired distribution by at most
O(2�(n) + 22�(n)+2 log2 n) · ε(n)), and so the claim follows.

Exercise 18: One-way functions and collections of one-way functions:
1. Given any collection of one-way functions (I , D, F), represent it as a single one-way

function.
2. Given any one-way function f , represent it as a collection of one-way functions. (Remark:

This direction is quite trivial.)

Exercise 19: A convention for collections of one-way functions: Show that without loss
of generality, algorithms I and D of a collection (of one-way functions) can be modified
so that each of them uses a number of coins that exactly equals the input length.

Guideline: Apply padding.

96

2.7. MISCELLANEOUS

Exercise 20: Justification for a convention concerning one-way collections: Show that
giving the index of the function to the inverting algorithm is essential for a meaningful
definition of a collection of one-way functions.

Guideline: Consider a collection { fi : {0, 1}|i | → {0, 1}|i |}, where fi (x) = x ⊕ i .

Exercise 21: Rabin’s collection and factoring: Show that the Rabin collection is one-
way if and only if the factoring of integers that are the products of two primes of equal
binary expansions is intractable in a strong sense (i.e., every efficient algorithm suc-
ceeds with negligible probability).

Guideline: See Appendix A.

Exercise 22: Claw-free collections imply one-way functions: Let (I , D, F) be a claw-
free collection of functions (see Section 2.4.5). Prove that for every σ ∈ {0, 1}, the
triplet (I , D, Fσ), where Fσ (i , x)

def
= F(σ, i , x), is a collection of strong one-way functions.

Repeat the exercise, replacing the word “functions” with “permutations.”

Exercise 23: More on the inadequacy of graph isomorphism as a basis for one-way
functions: In continuation of the discussion in Section 2.4.6, consider another sug-
gestion to base one-way functions on the conjectured difficulty of the Graph Isomor-
phism problem. This time we present a collection of functions defined by the algorith-
mic triplet (IGI, DGI, FGI). On input 1n, algorithm IGI selects uniformly a d(n)-regular
graph on n vertices (i.e., each of the n vertices in the graph has degree d(n)). On
input a graph on n vertices, algorithm DGI randomly selects a permutation in the
symmetric group of n elements (i.e., the set of permutations of n elements). On in-
put an (n-vertex) graph G and an (n-element) permutation π , algorithm FGI returns

fG(π)
def
= πG.

1. Present a polynomial-time implementation of IGI.
2. In light of the known algorithms for the Graph Isomorphism problem, which values of d(n)

should definitely be avoided?
3. Using a known algorithm, prove that the foregoing collection does not have a one-way

property, no matter which function d(·) one uses.
Guideline: A search of the relevant literature is indeed required for Items 2 and 3. Specif-
ically, for certain values of d(n), there exists a polynomial-time algorithm for deciding
isomorphism. Furthermore, for proving 3, it suffices to have an algorithm that runs fast
on randomly selected pairs of d-regular graphs.

Exercise 24: Assuming the existence of one-way functions, prove that there exists
a one-way function f such that no single bit of the pre-image constitutes a hard-core
predicate.

Guideline: Given a one-way function f , construct a function g such that g(x, I)
def
=

(f (xI), xĪ , I), where I ⊆ {1, 2, . . . |x|}, and xS denotes the string resulting by taking only
the bits of x with positions in the set S (i.e., x{ i1,...,is}

def
= xi1 · · · xis, where x = x1 · · · x|x |).

How well can you predict each bit? To obtain more “dramatic” predictability, consider
g (x, I1, . . . , It)

def
= (f (x∩ t

j=1 I j), x∪ t
j=1 Ī j , I1, . . . , It). What value of t (as a function of |x |)

should be used?

97

COMPUTATIONAL DIFFICULTY

Exercise 25: A hard-core predicate for a 1-1 function implies that the function is one-
way: Let f be a 1-1 function (you may assume for simplicity that it is length-preserving),
and suppose that b is a hard-core for f .
1. Prove that if f is polynomial-time-computable, then it is strongly one-way.
2. Prove that (regardless of whether or not f is polynomial-time-computable) the func-

tion f must be at least “weakly hard to invert”; that is, for some positive polynomial p,
every probabilistic polynomial-time algorithm A must satisfy Pr[A(f (Un)) �= Un] > 1/p(n)
for all sufficiently large n’s. Furthermore, prove that for every positive polynomial p, every
probabilistic polynomial-time algorithm A must satisfy Pr[A(f (Un)) = Un] < 1

2 + 1
p(n) for

all sufficiently large n’s.
Guideline: Use the inverting algorithm for predicting the hard-core. Distinguish the case
in which you can check that the inverting algorithm is correct (i.e., in Item 1) from the case
in which you cannot do so (i.e., in Item 2).

Exercise 26: An unbiased hard-core predicate (suggested by Erez Petrank):
Assuming the existence of one-way functions, prove the existence of hard-core
predicates (for such functions) that are unbiased (i.e., the predicate b satisfies
Pr[b(Un) = 1] = 1

2).
Guideline: Slightly modify the predicate defined in Theorem 2.5.2 (i.e., you need to modify
it only on all-zero x). Alternatively, convert any hard-core b for a function f into b ′ (x, σ) =
σ ⊕ b(x) for f ′ (x, σ) = (f (x), σ).

Exercise 27: Universal hard-core predicate: A polynomial-time-computable predicate
b : {0, 1}∗ → {0, 1} is called a universal hard-core predicate if for every one-way
function f , the predicate b is a hard-core of f . Note that the predicate presented in
Theorem 2.5.2 is “almost universal” (i.e., for every one-way function f , that predicate is
a hard-core of f ′ (x, r) = (f (x), r), where |x | = |r |). Prove that there exists no universal
hard-core predicate.

Guideline: Let b be a candidate universal hard-core predicate, and let f be an arbitrary
one-way function. Then define the (one-way) function f ′ (x) = (f (x), b(x)).

Exercise 28: Theorem 2.5.2, an alternative perspective (suggested by Russell
Impagliazzo, Madhu Sudan, and Luca Trevisan): The hard-core predicate of
Theorem 2.5.2 can be viewed as b(x, i) equaling the i th bit in the Hadamard code
of x, where the Hadamard code is the most redundant (non-repeating) linear code
(i.e., a string x ∈ {0, 1}n is mapped to the values obtained from all possible 2n lin-
ear combinations of its bits). Let H(x) denote the codeword associated with x by the
Hadamard code. The argument presented in the proof of Theorem 2.5.2 actually pro-
vides a “list-decoding” algorithm for the Hadamard code. Specifically, given oracle ac-
cess to the bits of a string y ∈ {0, 1}2n

and a parameter ε > 0, we recover, within
poly(n/ε) time, all strings x ∈ {0, 1}n such that H(x) and y differ on at most (1

2 − ε) · 2n

locations.
1. Verify the foregoing claim, that is, that a “list-decoding” algorithm (for the Hadamard code)

with the stated features is implicit in the proof of Theorem 2.5.2.
2. Let C be an error-correcting code mapping n-bit strings to �(n)-bit strings. What require-

ments should C satisfy so that b(x, i), defined as the i th bit in C(x), would constitute a
hard-core predicate of f ′ (x, i) = (f (x), i) for every one-way function f .

98

2.7. MISCELLANEOUS

Guideline: Note that we should support any ε of the form 1/poly(n), and remember
that b has to be polynomial-time-computable. Also note that |i | = poly(|x|). Why?

3. Using a list-decoding algorithm for Reed-Solomon codes [203], present such a hard-
core predicate. Specifically, you should be able to have |i | = �(|x|) for any “nice” super-
logarithmic function � : N→ N (e.g., �(n) = (log2 n)2 will do).

Exercise 29: In contrast to the last item of Exercise 28, prove that if b(x, y) is a
hard-core for every one-way function of the form f ′ (x, y) = (f (x), y), then |y | must be
greater than the logarithm of |x|.

Guideline: Extend the argument of Exercise 27 using the fact that if |y | = O(log |x |),
then y = 0|y | occurs with probability 1/poly(|x |).

Exercise 30: Abstracting the proof of Theorem 2.5.2: Suppose you are given oracle
access to an arbitrary predicate Px : {0, 1}|x| → {0, 1} satisfying

Pr[Px(U|x|) = b(x, U|x|)] ≥
1
2

+ ε

1. Present a probabilistic oracle machine that runs for poly(|x|)/ε2 steps and, given oracle
access to any such Px, outputs a list of strings that with probability at least 1

2 contains x.
2. Let M be an oracle machine that for any oracle Px, as before, outputs a list of strings that

with probability at least 1
2 contains x. Prove that M must make min(2�(n),�(n/ε2)) steps.

Guideline (Part 1): Let n = |x|, and assume that ε ≥ 2−n. Implicit in the proof of Theo-
rem 2.5.2 is a machine that runs for poly(n)/ε2 steps and outputs a single string that with
probability at least ε2/poly(n) equals x. This yields a machine running in time poly(n)/ε4

and outputting a list as desired. A machine running in time poly(n)/ε2 and outputting a
list as desired is implicit in the proof of Proposition 2.5.4.
Guideline (Part 2): Consider a probabilistic oracle (or process) defined as follows. First,
x is selected uniformly in {0, 1}n and fixed for the rest of the process. Next, each time
a query q is made (regardless of whether it is made for the first time or not), the oracle
answers b(x, q) with probability 1

2 + ε, and answers 1− b(x, q) otherwise. Show that the
amount of information about x obtained by each query is O(ε2). On the other hand, a
list of � strings containing x has at least n− log2 � bits of information about x. Use the
obvious fact that the length of the list output by M and the number of queries that M
makes are both bounded above by the running time of M.

Exercise 31: An alternative definition of hard-core functions: Let h : {0, 1}∗ → {0, 1}∗
and l : N→ N satisfy |h(x)| = l (|x|) for all x ∈ {0, 1}∗ . We say that h is hard to ap-
proximate from f if for every probabilistic polynomial-time algorithm A, every positive
polynomial p, and all sufficiently large n’s, it holds that

Pr[A(f (Xn)) = h(Xn)] < 2− l (n) +
1

p(n)
(2.16)

where Xn is uniformly distributed over {0, 1}n.
1. Prove that for l : N→ N satisfying l (n) = O(log n) and a polynomial-time-computable h :
{0, 1}∗ → {0, 1}∗ , the function h is a hard-core of f if and only if h is hard to approximate
from f .

99

COMPUTATIONAL DIFFICULTY

2. Show that one direction in Part 1 does not hold in general (i.e., for super-logarithmically
growing l).
Comment: This exercise is related to Section 3.3.5.
Guideline (mainly for Part 1): Assuming that there exists an algorithm A that violates
Eq. (2.16), construct an algorithm D′ as in Definition 2.5.5 such that D′ (y, α) = 1 if
and only if A(y) = α. Show that the distinguishing gap of D′ is at least s(n)− 2− l (n),
where s(·) represents the success probability of A. On the other hand, assuming that
there exists an algorithm D′ violating the condition in Definition 2.5.5, construct an al-
gorithm A that violates Eq. (2.16). Specifically, suppose, without loss of generality, that
Pr[D′ (f (Xn), h(Xn)) = 1] = Pr[D′ (f (Xn), Rl (n)) = 1] + ε(n), where ε(n) > 1

p(n) . Then, on

input y, algorithm A uniformly selects r ∈ {0, 1} l (n) and r ′ ∈ ({0, 1} l (n) \ {r }), invokes
D′ , and outputs r if D′ (y, r) = 1, and r ′ otherwise. Show that the success probability of
D′ is at least ε(n)

2l (n)−1
.

100

CHAPTER 3

Pseudorandom Generators

In this chapter we discuss pseudorandom generators. Loosely speaking, these are ef-
ficient deterministic programs that expand short, randomly selected seeds into much
longer “pseudorandom” bit sequences (see illustration in Figure 3.1). Pseudorandom se-
quences are defined as computationally indistinguishable from truly random sequences
by efficient algorithms. Hence the notion of computational indistinguishability (i.e.,
indistinguishability by efficient procedures) plays a pivotal role in our discussion. Fur-
thermore, the notion of computational indistinguishability plays a key role also in sub-
sequent chapters, in particular in the discussions of secure encryption, zero-knowledge
proofs, and cryptographic protocols.

The theory of pseudorandomness is also applied to functions, resulting in the notion
of pseudorandom functions, which is a useful tool for many cryptographic applications.

In addition to definitions of pseudorandom distributions, pseudorandom generators,
and pseudorandom functions, this chapter contains constructions of pseudorandom
generators (and pseudorandom functions) based on various types of one-way functions.
In particular, very simple and efficient pseudorandom generators are constructed based
on the existence of one-way permutations. We highlight the hybrid technique, which
plays a central role in many of the proofs. (For the first use and further discussion of
this technique, see Section 3.2.3.)

Organization. Basic discussions, definitions, and constructions of pseudorandom gen-
erators appear in Sections 3.1–3.4: We start with a motivating discussion (Section 3.1),
proceed with a general definition of computational indistinguishability (Section 3.2),
next present and discuss definitions of pseudorandom generators (Section 3.3), and fi-
nally present some simple constructions (Section 3.4). More general constructions are
discussed in Section 3.5. Pseudorandom functions are defined and constructed (based
on any pseudorandom generator) in Section 3.6. Pseudorandom permutations are dis-
cussed in Section 3.7.

Teaching Tip. The hybrid technique, first used to show that computational indistin-
guishability is preserved under multiple samples (Section 3.2.3), plays an important

101

PSEUDORANDOM GENERATORS

Gen
seed output sequence

a truly random sequence

?

Figure 3.1: Pseudorandom generators: an illustration.

role in many of the proofs that refer to computational indistinguishability. Thus, in
case you choose to skip this specific proof, do incorporate a discussion of the hybrid
technique in the first place you use it.

3.1. Motivating Discussion

The nature of randomness has puzzled thinkers for centuries. We believe that the notion
of computation, and in particular that of efficient computation, provides a good basis
for understanding the nature of randomness.

3.1.1. Computational Approaches to Randomness

One computational approach to randomness was initiated by Solomonov and
Kolmogorov in the early 1960s (and rediscovered by Chaitin in the early 1970s). This
approach is “ontological” in nature. Loosely speaking, a string s is considered
Kolmogorov-random if its length (i.e., |s|) equals the length of the shortest program pro-
ducing s. This shortest program can be considered the “simplest” “explanation” for the
phenomenon described by the string s. Hence the string s is considered Kolmogorov-
random if it does not possess a “simple” explanation (i.e., an explanation that is sub-
stantially shorter than |s|). We stress that one cannot determine whether or not a given
string is Kolmogorov-random (and, more generally, Kolmogorov complexity is a func-
tion that cannot be computed). Furthermore, this approach seems to have no application
to the issue of “pseudorandom generators.”

An alternative computational approach to randomness is presented in the rest of this
chapter. This approach was initiated in the early 1980s. In contrast to the approach
of Kolmogorov, this new approach is behavioristic in nature. Instead of considering
the “explanation” for a phenomenon, we consider the phenomenon’s effect on the
environment. Loosely speaking, a string is considered pseudorandom if no efficient
observer can distinguish it from a uniformly chosen string of the same length. The
underlying postulate is that objects that cannot be differentiated by efficient proce-
dures are considered equivalent, although they may be very different in nature (e.g.,
can have fundamentally different (Kolmogorov) complexities). Furthermore, the new
approach naturally leads to the concept of a pseudorandom generator, which is a

102

3.2. COMPUTATIONAL INDISTINGUISHABILITY

fundamental concept with lots of practical applications (particularly in the field of
cryptography).

3.1.2. A Rigorous Approach to Pseudorandom Generators

The approach to pseudorandom generators presented in this book stands in contrast to
the heuristic approach that is still common in discussions concerning “pseudorandom
generators” that are being used in real computers. The heuristic approach considers
“pseudorandom generators” as programs that produce bit sequences that can “pass”
some specific statistical tests. The choices of statistical tests to which these programs
are subjected are quite arbitrary and lack any systematic foundation. Furthermore, it is
possible to construct efficient statistical tests that will foil the “pseudorandom genera-
tors” commonly used in practice (and in particular will distinguish their output from a
uniformly chosen string of equal length). Consequently, before using a “pseudorandom
generator” in a new application that requires “random” sequences, extensive tests have
to be conducted in order to determine whether or not the behavior of the application
when using the “pseudorandom generator” will be the same as its behavior when using
a “true source of randomness.” Any modification of the application will require a new
comparison of the “pseudorandom generator” against the “random source,” because
the non-randomness of the “pseudorandom generator” may adversely affect the modi-
fied application (even if it did not affect the original application). Things become even
worse with respect to cryptographic applications, because in such cases an application
is fully determined only after the adversary is fixed. That is, one cannot test the effect of
the “pseudorandom generator” on the performance of a yet-unspecified adversary, and
it is unreasonable to assume that the adversary is going to employ a specific strategy
known to the designer. Thus, using such a “pseudorandom generator” for cryptographic
purposes is highly risky.

In contrast, the concept of pseudorandom generators presented herein is a robust one:
By definition, these pseudorandom generators produce sequences that look random to
any efficient observer. It follows that the output of a pseudorandom generator can
be used instead of “random sequences” in any efficient application requiring such
(i.e., “random”) sequences. In particular, no efficient adversary can capitalize on the
replacement of “truly random sequences” by pseudorandom ones.

3.2. Computational Indistinguishability

As stated earlier, the concept of computational indistinguishability is the basis for our
definition of pseudorandomness. Thus, we start with a general definition and discussion
of this fundamental concept.

The concept of efficient computation leads naturally to a new kind of equivalence be-
tween objects: Objects are considered to be computationally equivalent if they cannot
be differentiated by any efficient procedure. We note that considering indistinguish-
able objects as equivalent is one of the basic paradigms of both science and real-life

103

PSEUDORANDOM GENERATORS

situations. Hence, we believe that the notion of computational indistinguishability is a
very natural one.

3.2.1. Definition

The notion of computational indistinguishability is formulated in a way that is standard
in the field of computational complexity: by considering objects as infinite sequences
of strings. Hence, the sequences {xn}n∈N and {yn}n∈N are said to be computationally
indistinguishable if no efficient procedure can tell them apart. In other words, no efficient
algorithm D can accept infinitely many xn’s while rejecting their y counterparts (i.e.,
for every efficient algorithm D and all sufficiently large n’s, it holds that D accepts xn

iff D accepts yn). Objects that are computationally indistinguishable in this sense can
be considered equivalent as far as any practical purpose is concerned (because practical
purposes are captured by efficient algorithms, and they cannot distinguish these objects).

The foregoing discussion extends naturally to the probabilistic setting. Furthermore,
as we shall see, this extension yields very useful consequences. Loosely speaking, two
distributions are called computationally indistinguishable if no efficient algorithm can
tell them apart. Given an efficient algorithm D, we consider the probability that D
accepts (e.g., outputs 1 on input) a string taken from the first distribution. Likewise, we
consider the probability that D accepts a string taken from the second distribution. If
these two probabilities are close, we say that D does not distinguish the two distribu-
tions. Again, the formulation of this discussion is with respect to two infinite sequences
of distributions (rather than with respect to two fixed distributions). Such sequences are
called probability ensembles.

Definition 3.2.1 (Probability Ensemble): Let I be a countable index set. An
ensemble indexed by I is a sequence of random variables indexed by I . Namely,
any X = {Xi }i∈I , where each Xi is a random variable, is an ensemble indexed
by I .

We shall use either N or a subset of {0, 1}∗ as the index set. Typically in our applica-
tions, an ensemble of the form X = {Xn}n∈N has each Xn ranging over strings of length
poly(n), whereas an ensemble of the form X = {Xw}w∈{0,1}∗ will have each Xw ranging
over strings of length poly(|w|). In the rest of this chapter we shall deal with ensembles
indexed by N, whereas in other chapters (e.g., in the definition of secure encryption and
zero-knowledge) we shall deal with ensembles indexed by strings. To avoid confusion,
we shall present variants of the definition of computational indistinguishability for each
of these two cases. The two formulations can be unified if one associates the natural
numbers with their unary representations (i.e., associate N and {1n :n∈N}).

Definition 3.2.2 (Polynomial-Time Indistinguishability):

1. Variant for ensembles indexed by N: Two ensembles, X
def= {Xn}n∈N and

Y
def= {Yn}n∈N, are indistinguishable in polynomial time if for every probabi-

listic polynomial-time algorithm D, every positive polynomial p(·), and all

104

3.2. COMPUTATIONAL INDISTINGUISHABILITY

sufficiently large n’s,

|Pr[D(Xn, 1n)=1]− Pr[D(Yn, 1n)=1]| < 1

p(n)

2. Variant for ensembles indexed by a set of strings S: Two ensembles, X
def= {Xw}w∈S

and Y
def= {Yw}w∈S, are indistinguishable in polynomial time if for every prob-

abilistic polynomial-time algorithm D, every positive polynomial p(·), and all
sufficiently long w ∈ S,

|Pr[D(Xw,w)=1]− Pr[D(Yw,w)=1]| < 1

p(|w|)
We often say computational indistinguishability instead of indistinguishability in
polynomial time.

The probabilities in the foregoing definition are taken over the corresponding random
variables Xi (or Yi) and the internal coin tosses of algorithm D (which is allowed
to be a probabilistic algorithm). The second variant of this definition will play a key
role in subsequent chapters, and further discussion of it is postponed to those places. In
the rest of this chapter, we refer to only the first variant of the foregoing definition. The
string 1n is given as auxiliary input to algorithm D in order to make the first variant
consistent with the second one. We comment that in typical cases, the length of Xn

(resp., Yn) and n are polynomially related (i.e., |Xn| < poly(n) and n < poly(|Xn|)) and
furthermore can be computed one from the other in poly(n) time. In such cases, giving
1n as auxiliary input is redundant. Indeed, throughout this chapter we typically omit
this auxiliary input and assume that n can be efficiently determined from Xn .

The following mental experiment may be instructive. For each α ∈ {0, 1}∗, consider
the probability, hereafter denoted d(α), that algorithm D outputs 1 on input α. Consider
the expectation of d taken over each of the two ensembles: That is, let dX (n) = E[d(Xn)]
and dY (n) = E[d(Yn)]. Then X and Y are said to be indistinguishable by D if the
difference (function) δ(n) def= |dX (n)− dY (n)| is negligible in n. Recall that a function
µ : N → [0, 1] is called negligible if for every positive polynomial p and all sufficiently
large n’s, µ(n) < 1/p(n).

A couple of examples may help to clarify the definition. Consider an algorithm D1

that, obliviously of the input, flips a (0–1-valued) coin and outputs its outcome. Clearly,
on every input, algorithm D1 outputs 1 with probability exactly 1

2 and hence does not
distinguish any pair of ensembles. Next, consider an algorithm D2 that outputs 1 if and
only if the input string contains more zeros than ones. Because D2 can be implemented
in polynomial time, it follows that if X and Y are polynomial-time-indistinguishable,
then the difference |Pr[wt(Xn)< n

2]− Pr[wt(Yn)< n
2]| is negligible (in n), where wt(α)

denotes the number of ones in the stringα. Similarly, polynomial-time-indistinguishable
ensembles must exhibit the same “profile” (up to negligible error) with respect to any
“string statistics” that can be computed in polynomial time. However, it is not required
that polynomial-time-indistinguishable ensembles have similar “profiles” with respect
to quantities that cannot be computed in polynomial time (e.g., Kolmogorov complexity,
or the function presented immediately after Proposition 3.2.3).

105

PSEUDORANDOM GENERATORS

3.2.2. Relation to Statistical Closeness

Computational indistinguishability is a coarsening of a traditional notion from proba-

bility theory. We call two ensembles X
def= {Xn}n∈N and Y

def= {Yn}n∈N statistically close
if their statistical difference is negligible, where the statistical difference (also known
as variation distance) between X and Y is defined as the function

�(n) def= 1

2
·
∑
α

|Pr[Xn = α]− Pr[Yn = α]| (3.1)

Clearly, if the ensembles X and Y are statistically close, then they are also polynomial-
time-indistinguishable (see Exercise 6). The converse, however, is not true. In particular:

Proposition 3.2.3: There exists an ensemble X = {Xn}n∈N such that X is not
statistically close to the uniform ensemble U

def= {Un}n∈N, and yet X and U are
polynomial-time-indistinguishable. Furthermore, Xn assigns all its probability
mass to at most 2n/2 strings (of length n).

Recall that Un is uniformly distributed over strings of length n. Although X and U are
polynomial-time-indistinguishable, one can define a function f : {0, 1}∗→{0, 1} such
that f has average 1 over X while having average almost 0 over U (e.g., f (x) = 1 if
and only if Pr[X= x] > 0). Hence, X and U have different “profiles” with respect to
the function f , yet it is (necessarily) impossible to compute f in polynomial time.

Proof: We claim that for all sufficiently large n, there exists a random variable
Xn , distributed over some set of at most 2n/2 strings (each of length n), such that
for every circuit Cn of size (i.e., number of gates) 2n/8, it holds that

|Pr[Cn(Un)=1]− Pr[Cn(Xn)=1]| < 2−n/8 (3.2)

The proposition follows from this claim, because polynomial-time-distinguishers
(even probabilistic ones; see Exercise 10 (Part 1)) yield polynomial-size circuits
with at least as large a distinguishing gap.

The foregoing claim is proved using a probabilistic argument. That is, we
actually show that most distributions of a certain class can “fool” all circuits of
size 2n/8. Specifically, we show that if we select uniformly a multi-set of 2n/2

strings in {0, 1}n and let Xn be uniform over this multi-set, then Eq. (3.2) holds
with overwhelmingly high probability (over the choices of the multi-set).

Let Cn be some fixed circuit with n inputs, and let pn
def= Pr[Cn(Un)=1]. We

select, independently and uniformly, 2n/2 strings, denoted s1, . . . , s2n/2 , in {0, 1}n .
We define random variables ζi ’s such that ζi = Cn(si); that is, these random
variables depend on the random choices of the corresponding si ’s. Using the
Chernoff bound, we get that

Pr

[∣∣∣∣∣pn − 1

2n/2
·

2n/2∑
i=1

ζi

∣∣∣∣∣ ≥ 2−n/8

]
≤ 2e−2·2n/2·(2−n/8)2

< 2−2n/4
(3.3)

106

3.2. COMPUTATIONAL INDISTINGUISHABILITY

Because there are at most 22n/4
different circuits of size (number of gates) 2n/8,

it follows that there exists a sequence s1, . . . , s2n/2 ∈ {0, 1}n such that for every
circuit Cn of size 2n/8 it holds that∣∣∣∣∣Pr[Cn(Un)=1]−

∑2n/2

i=1 Cn(si)

2n/2

∣∣∣∣∣ < 2−n/8

Fixing such a sequence of si ’s, and letting Xn be distributed uniformly over the
elements in the sequence, the claim follows. �

High-Level Comment. Proposition 3.2.3 presents a pair of ensembles that are com-
putationally indistinguishable, although they are statistically far apart. One of the two
ensembles is not constructible in polynomial time (see Definition 3.2.5). Interestingly,
a pair of polynomial-time-constructible ensembles that are both computationally indis-
tinguishable and have a noticeable statistical difference can exist only if pseudorandom
generators exist. Jumping ahead, we note that this necessary condition is also sufficient.
(The latter observation follows from the fact that pseudorandom generators give rise
to a polynomial-time-constructible ensemble that is computationally indistinguishable
from the uniform ensemble and yet statistically far from it.)

Low-Level Comment. A closer examination of the foregoing proof reveals that all but
a negligible fraction of the sequences of length 2n/2 can be used to define the random
variable Xn . Specifically, the second inequality in Eq. (3.3) is a gross overestimate, and
an upper bound of 2−2�(n) · 2−2n/4

actually holds. Observing that most sequences contain
no repetitions, we can fix such a sequence. Consequently, Xn will be uniform over the
2n/2 distinct elements of the sequence.

3.2.3. Indistinguishability by Repeated Experiments

By Definition 3.2.2, two ensembles are considered computationally indistinguishable
if no efficient procedure can tell them apart based on a single sample. We now show that
for “efficiently constructible” ensembles, computational indistinguishability (based on
a single sample) implies computational indistinguishability based on multiple samples.
We start by presenting definitions of “indistinguishability by multiple samples” and
“efficiently constructible ensembles.”

Definition 3.2.4 (Indistinguishability by Repeated Sampling): Two ensem-
bles, X

def= {Xn}n∈N and Y
def= {Yn}n∈N, are indistinguishable by polynomial-time

sampling if for every probabilistic polynomial-time algorithm D, every two posi-
tive polynomials m(·) and p(·), and all sufficiently large n’s,∣∣Pr

[
D
(

X (1)
n , . . . , X (m(n))

n

)=1
]− Pr

[
D
(
Y (1)

n , . . . , Y (m(n))
n

)=1
]∣∣ < 1

p(n)

where X (1)
n through X (m(n))

n and Y (1)
n through Y (m(n))

n are independent random
variables, with each X (i)

n identical to Xn and each Y (i)
n identical to Yn.

107

PSEUDORANDOM GENERATORS

Definition 3.2.5 (Efficiently Constructible Ensembles): An ensemble X
def=

{Xn}n∈N is said to be polynomial-time-constructible if there exists a proba-
bilistic polynomial-time algorithm S such that for every n, the random variables
S(1n) and Xn are identically distributed.

Theorem 3.2.6: Let X
def= {Xn}n∈N and Y

def= {Yn}n∈N be two polynomial-time-
constructible ensembles, and suppose that X and Y are indistinguishable in
polynomial time (as in Definition 3.2.2). Then X and Y are indistinguishable
by polynomial-time sampling (as in Definition 3.2.4).

An alternative formulation of Theorem 3.2.6 proceeds as follows. For every ensemble
Z

def= {Zn}n∈N and every polynomial m(·), define the m(·)-product of Z as the ensemble
{(Z (1)

n , . . . , Z (m(n))
n)}n∈N, where the Z (i)

n ’s are independent copies of Zn . Theorem 3.2.6
asserts that if the ensembles X and Y are polynomial-time-indistinguishable and each
is polynomial-time-constructible, then for every polynomial m(·) the m(·)-product of X
and the m(·)-product of Y are polynomial-time-indistinguishable.

The information-theoretic analogue of the foregoing theorem is quite obvious: If
two ensembles are statistically close, then their polynomial-products are statistically
close (see Exercise 7). Adapting the proof to the computational setting requires, as
usual, a reducibility argument. This argument uses, for the first time in this book,
the hybrid technique. The hybrid technique plays a central role in demonstrating the
computational indistinguishability of complex ensembles, constructed on the basis of
simpler (computationally indistinguishable) ensembles. Subsequent applications of the
hybrid technique will involve more technicalities. Hence the reader is urged not to skip
the following proof.

Proof: The proof is by a reducibility argument. We show that the existence of an
efficient algorithm that distinguishes the ensembles X and Y using several samples
implies the existence of an efficient algorithm that distinguishes the ensembles
X and Y using a single sample. The implication is proved using the following
argument, which will later be called a “hybrid argument.”

Suppose, to the contrary, that there is a probabilistic polynomial-time algorithm
D, as well as polynomials m(·) and p(·), such that for infinitely many n’s it holds
that

�(n) def= ∣∣Pr
[
D
(

X (1)
n , . . . , X (m)

n

)=1
]− Pr

[
D
(
Y (1)

n , . . . , Y (m)
n

)=1
]∣∣ (3.4)

>
1

p(n)

where m
def= m(n), and the X (i)

n ’s and Y (i)
n ’s are as in Definition 3.2.4. In the se-

quel, we shall derive a contradiction by presenting a probabilistic polynomial-
time algorithm D′ that distinguishes the ensembles X and Y (in the sense of
Definition 3.2.2).

For every k, with 0 ≤ k ≤ m, we define the hybrid random variable H k
n as a

(m-long) sequence consisting of k independent copies of Xn followed by m − k

108

3.2. COMPUTATIONAL INDISTINGUISHABILITY

independent copies of Yn . Namely,

H k
n

def= (X (1)
n , . . . , X (k)

n , Y (k+1)
n , . . . , Y (m)

n

)
where X (1)

n through X (k)
n and Y (k+1)

n through Y (m)
n are independent random vari-

ables, with each X (i)
n identical to Xn and each Y (i)

n identical to Yn . Clearly,
H m

n = (X (1)
n , . . . , X (m)

n), whereas H 0
n = (Y (1)

n , . . . , Y (m)
n).

By our hypothesis, algorithm D can distinguish the extreme hybrids (i.e., H 0
n

and H m
n). Because the total number of hybrids is polynomial in n, a non-negligible

gap between (the “accepting” probability of D on) the extreme hybrids translates
into a non-negligible gap between (the “accepting” probability of D on) a pair
of neighboring hybrids. It follows that D, although not “designed to work on
general hybrids,” can distinguish a pair of neighboring hybrids. The punch line is
that algorithm D can be easily modified into an algorithm D′ that distinguishes
X and Y . Details follow.

We construct an algorithm D′ that uses algorithm D as a subroutine. On input
α (supposedly in the range of either Xn or Yn), algorithm D′ proceeds as fol-
lows. Algorithm D′ first selects k uniformly in the set {0, 1, . . . ,m − 1}. Using
the efficient sampling algorithm for the ensemble X , algorithm D′ generates k
independent samples of Xn . These samples are denoted x1, . . . , xk . Likewise, us-
ing the efficient sampling algorithm for the ensemble Y , algorithm D′ generates
m − k − 1 independent samples of Yn , denoted yk+2, . . . , ym . Finally, algorithm
D′ invokes algorithm D and halts with output D(x1, . . . , xk, α, yk+2, . . . , ym).

Clearly, D′ can be implemented in probabilistic polynomial time. It is also
easy to verify the following claims.

Claim 3.2.6.1:

Pr[D′(Xn)=1] = 1

m

m−1∑
k=0

Pr
[
D
(

H k+1
n

)=1
]

and

Pr[D′(Yn)=1] = 1

m

m−1∑
k=0

Pr
[
D
(

H k
n

)=1
]

Proof: By construction of algorithm D′, we have

D′(α) = D
(

X (1)
n , . . . , X (k)

n , α, Y (k+2)
n , . . . , Y (m)

n

)
where k is uniformly distributed in {0, 1, . . . ,m − 1}. Using the definition of the
hybrids H k

n , the claim follows. �

Claim 3.2.6.2: For �(n) as in Eq. (3.4),

|Pr[D′(Xn)=1]− Pr[D′(Yn)=1]| = �(n)

m(n)

109

PSEUDORANDOM GENERATORS

Proof: Using Claim 3.2.6.1 for the first equality, we get

|Pr[D′(Xn)=1]−Pr[D′(Yn)=1]| = 1

m
·
∣∣∣∣∣
m−1∑
k=0

Pr
[
D
(

H k+1
n

)=1
]−Pr

[
D
(

H k
n

)=1
]∣∣∣∣∣

= 1

m
·∣∣Pr

[
D
(

H m
n

)=1
]−Pr

[
D
(

H 0
n

)=1
]∣∣

= �(n)

m

where the last equality follows by recalling that H m
n = (X (1)

n , . . . , X (m)
n) and H 0

n =
(Y (1)

n , . . . , Y (m)
n) and using the definition of �(n). �

Since by our hypothesis �(n)> 1
p(n) for infinitely many n’s, it follows that the

probabilistic polynomial-time algorithm D′ distinguishes X and Y in contradic-
tion to the hypothesis of the theorem. Hence, the theorem follows. �

The Hybrid Technique: A Digest

It is worthwhile to give some thought to the hybrid technique (used for the first time in
the preceding proof). The hybrid technique constitutes a special type of a “reducibility
argument” in which the computational indistinguishability of complex ensembles is
proved using the computational indistinguishability of basic ensembles. The actual
reduction is in the other direction: Efficiently distinguishing the basic ensembles is
reduced to efficiently distinguishing the complex ensembles, and hybrid distributions
are used in the reduction in an essential way. The following properties of the construction
of the hybrids play an important role in the argument:

1. Extreme hybrids collide with the complex ensembles: This property is essential because
what we want to prove (i.e., indistinguishability of the complex ensembles) relates to
the complex ensembles.

2. Neighboring hybrids are easily related to the basic ensembles: This property is essential
because what we know (i.e., indistinguishability of the basic ensembles) relates to the
basic ensembles. We need to be able to translate our knowledge (i.e., computational
indistinguishability) of the basic ensembles to knowledge (i.e., computational indistin-
guishability) of any pair of neighboring hybrids. Typically it is required to efficiently
transform strings in the range of a basic distribution into strings in the range of a hy-
brid, so that the transformation maps the first basic distribution to one hybrid and the
second basic distribution to the neighboring hybrid. (In the proof of Theorem 3.2.6, the
hypothesis that both X and Y are polynomial-time-constructible is instrumental for such
an efficient transformation.)

3. The number of hybrids is small (i.e., polynomial): This property is essential in order
to deduce the computational indistinguishability of extreme hybrids from the computa-
tional indistinguishability of each pair of neighboring hybrids. Typically, the provable
“distinguishability gap” is inversely proportional to the number of hybrids.

We remark that during the course of a hybrid argument a distinguishing algorithm
referring to the complex ensembles is being analyzed and even executed on arbitrary

110

3.2. COMPUTATIONAL INDISTINGUISHABILITY

hybrids. The reader may be annoyed by the fact that the algorithm “was not designed to
work on such hybrids” (but rather only on the extreme hybrids). However, an algorithm
is an algorithm: Once it exists, we can apply it to any input of our choice and analyze
its performance on arbitrary input distributions.

Advanced Comment on the Non-triviality of Theorem 3.2.6:. Additional indication
of the non-triviality of Theorem 3.2.6 is provided by the fact that the conclusion may
fail in case the individual ensembles are not both efficiently constructible. Indeed, the
hypothesis that both ensembles are efficiently constructible plays a central role in the
proof of Theorem 3.2.6. Contrast this fact with the fact that an information-theoretic
analogue of Theorem 3.2.6 asserts that for any two ensembles, statistical closeness
implies statistical closeness of multiple samples.

3.2.4.∗ Indistinguishability by Circuits

A stronger notion of computational indistinguishability is the notion of computational
indistinguishability by non-uniform families of polynomial-size circuits. This notion
will be used in subsequent chapters.

Definition 3.2.7 (Indistinguishability by Polynomial-Size Circuits):

1. Variant for ensembles indexed by N: Two ensembles, X
def= {Xn}n∈N and

Y
def= {Yn}n∈N, are indistinguishable by polynomial-size circuits if for every

family {Cn}n∈N of polynomial-size circuits, every positive polynomial p(·),
and all sufficiently large n’s,

|Pr[Cn(Xn)=1]− Pr[Cn(Yn)=1]| < 1

p(n)

2. Variant for ensembles indexed by a set of strings S: Two ensembles, X
def= {Xw}w∈S

and Y
def= {Yw}w∈S, are indistinguishable by polynomial-size circuits if for every

family {Cn}n∈N of polynomial-size circuits, every positive polynomial p(·), and all
sufficiently long w’s,∣∣Pr

[
C|w|(Xw)=1

]− Pr
[
C|w|(Yw)=1

]∣∣ < 1

p(|w|)

We comment that the variant for ensembles indexed by S is equivalent to the following
(seemingly stronger) condition:

For every polynomial s(·), every collection {Cw}w∈S of circuits such that Cw has size at
most s(|w|), every positive polynomial p(·), and all sufficiently long w’s,

|Pr[Cw(Xw)=1]− Pr[Cw(Yw)=1]| < 1

p(|w|) (3.5)

We show that the second requirement is not stronger than the requirement in the defini-
tion: That is, we show that if the second requirement is not satisfied, then neither is the

111

PSEUDORANDOM GENERATORS

first. Suppose that for some polynomials s and p there exist infinitely many w’s violat-
ing Eq. (3.5). Then there exists an infinite set N such that for every n ∈ N , there exists
a string wn ∈ {0, 1}n violating Eq. (3.5). Letting C ′

n
def= Cwn , we obtain a contradiction

to the requirement of the definition.
We note that allowing probabilistic circuits in the preceding definition does not

increase its power (see Exercise 8). Consequently, in accordance with our meta-
theorem (see Section 1.3.3), indistinguishability by polynomial-size circuits (as per
Definition 3.2.7) implies indistinguishability by probabilistic polynomial-time ma-
chines (as per Definition 3.2.2); see Exercise 10. The converse is false (see Exercise 10).
Finally, we note that indistinguishability by polynomial-size circuits is preserved
under repeated experiments, even if both ensembles are not efficiently constructible
(see Exercise 9).

3.2.5. Pseudorandom Ensembles

One special, yet important, case of computationally indistinguishable pairs of ensembles
is the case in which one of the ensembles is uniform. Ensembles that are computationally
indistinguishable from a uniform ensemble are called pseudorandom. Recall that Um

denotes a random variable uniformly distributed over the set of strings of length m.
The ensemble {Un}n∈N is called the standard uniform ensemble. Yet, it will also be
convenient to call uniform those ensembles of the form {Ul(n)}n∈N, where l : N → N.

Definition 3.2.8 (Pseudorandom Ensembles): The ensemble X = {Xn}n∈N is
called pseudorandom if there exists a uniform ensemble U = {Ul(n)}n∈N such
that X and U are indistinguishable in polynomial time.

We stress that |Xn| is not necessarily n (whereas |Um | = m). In fact, for polynomial-
time-computable l : N → N and X = {Xn}n∈N as in Definition 3.2.8, with very high
probability, |Xn| equals l(n).

In the foregoing definition, as well as in the rest of this book, pseudorandomness is
shorthand for pseudorandomness with respect to polynomial time.

3.3. Definitions of Pseudorandom Generators

A pseudorandom ensemble, as defined here, can be used instead of a uniform ensem-
ble in any efficient application, with, at most, negligible degradation in performance
(otherwise the efficient application can be transformed into an efficient distinguisher
of the supposedly pseudorandom ensemble from the uniform one). Such a replace-
ment is useful only if we can generate pseudorandom ensembles at a lower cost than
that required to generate the corresponding uniform ensemble. The cost of generating
an ensemble has several aspects. Standard cost considerations include the time and
space complexities. However, in the context of randomized algorithms, and in particu-
lar in the context of generating probability ensembles, a major cost consideration is the
quantity and quality of the random source used by the algorithm. In particular, in many

112

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS

applications (and especially in cryptography) it is desirable to generate pseudorandom
ensembles using as little true randomness as possible. This leads to the definition of a
pseudorandom generator.

3.3.1. Standard Definition of Pseudorandom Generators

Definition 3.3.1 (Pseudorandom Generator, Standard Definition): A pseudo-
random generator is a deterministic polynomial-time algorithm G satisfying the
following two conditions:

1. Expansion: There exists a function l : N → N such that l(n) > n for all n ∈ N,
and |G(s)| = l(|s|) for all s ∈ {0, 1}∗.

2. Pseudorandomness: The ensemble {G(Un)}n∈N is pseudorandom.

The function l is called the expansion factor of G.

The input s to the generator is called its seed. The expansion condition requires that
the algorithm G map n-bit-long seeds into l(n)-bit-long strings, with l(n) > n. The
pseudorandomness condition requires that the output distribution induced by applying
algorithm G to a uniformly chosen seed be polynomial-time-indistinguishable from a
uniform distribution, although it is not statistically close to uniform. Specifically, using
Exercise 5 (for the first equality), we can bound the statistical difference between G(Un)
and Ul(n) as follows:

1

2
·
∑

x

∣∣Pr
[
Ul(n) = x

]− Pr[G(Un) = x]
∣∣ = max

S

{
Pr
[
Ul(n)∈ S

]−Pr[G(Un)∈ S]
}

≥ Pr
[
Ul(n) �∈ {G(s) : s ∈ {0, 1}n}]

≥ (2l(n) − 2n
) · 2−l(n)

= 1− 2−(l(n)−n) ≥ 1

2

where the last inequality uses l(n) ≥ n + 1. Note that for l(n) ≥ 2n, the statistical
difference is at least 1− 2−n .

The foregoing definition is quite permissive regarding the expansion factor l :N→N.
It asserts only that l(n) ≥ n + 1 and l(n) ≤ poly(n). (It also follows that l(n) is computed
in time polynomial in n; e.g., by computing |G(1n)|.) Clearly, a pseudorandom generator
with expansion factor l(n) = n + 1 is of little value in practice, since it offers no
significant saving in coin tosses. Fortunately, as shown in the next subsection, even
pseudorandom generators with such a small expansion factor can be used to construct
pseudorandom generators with any polynomial expansion factor. Hence, for every two
expansion factors l1 :N→N and l2 :N→N that can be computed in poly(n) time, there
exists a pseudorandom generator with expansion factor l1 if and only if there exists a
pseudorandom generator with expansion factor l2. This statement is proved by using any
pseudorandom generator with expansion factor l1(n) def= n + 1 to construct, for every
polynomial p(·), a pseudorandom generator with expansion factor p(n). Note that a

113

PSEUDORANDOM GENERATORS

pseudorandom generator with expansion factor l1(n) def= n + 1 can be derived from any
pseudorandom generator.

Each pseudorandom generator, as defined earlier, will have a predetermined ex-
pansion function. In Section 3.3.3 we shall consider “variable-output pseudorandom
generators” that, given a random seed, will produce an infinite sequence of bits such
that every polynomially long prefix of it will be pseudorandom.

3.3.2. Increasing the Expansion Factor

Given a pseudorandom generator G1 with expansion factor l1(n) = n + 1, we con-
struct a pseudorandom generator G with arbitrary polynomial expansion factor as
follows.

Construction 3.3.2: Let G1 be a deterministic polynomial-time algorithm map-
ping strings of length n into strings of length n + 1, and let p(·) be a polynomial.
Define G(s) = σ1 · · · σp(|s|), where s0

def= s, the bit σi is the first bit of G1(si−1), and
si is the |s|-bit-long suffix of G1(si−1) for every 1≤ i≤ p(|s|). That is, on input s,
algorithm G proceeds as follows:

Let s0 = s and n = |s|.
For i = 1 to p(n), do

σi si ← G1(si−1), where σi ∈ {0, 1} and |si | = |si−1|.
Output σ1σ2 · · · σp(|s|).

The construction is depicted in Figure 3.2: On input s, algorithm G applies G1 for p(|s|)
times, each time on a new seed. Applying G1 to the current seed yields a new seed (for
the next iteration) as well as one extra bit (which is being output immediately). The seed
in the first iteration is s itself. The seed in the i th iteration is the |s|-bit-long suffix of the
string obtained from G1 in the previous iteration. Algorithm G outputs the concatenation
of the “extra bits” obtained in the p(|s|) iterations. Clearly, G is polynomial-time-
computable and expands inputs of length n into output strings of length p(n).

GS0 Sp(n)

σp(n)

GS GS1 2

σ σ1 2

. . .1 1 1

G

Figure 3.2: Construction 3.3.2, as operating on seed s0 ∈ {0, 1}n.

114

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS

Theorem 3.3.3: Let G1, p(·), and G be as in Construction 3.3.2 such that
p(n) > n. If G1 is a pseudorandom generator, then so is G.

Intuitively, the pseudorandomness of G follows from that of G1 by replacing each
application of G1 by a random process that on input a uniformly distributed n-bit-long
string will output a uniformly distributed (n + 1)-bit-long string. Loosely speaking,
the indistinguishability of a single application of the random process from a single
application of G1 implies that polynomially many applications of the random process
are indistinguishable from polynomially many applications of G1. The actual proof
uses the hybrid technique.

Proof: Suppose, to the contrary, that G is not a pseudorandom generator. It
follows that the ensembles {G(Un)}n∈N and {Up(n)}n∈N are not polynomial-time-
indistinguishable. We shall show that it follows that the ensembles {G1(Un)}n∈N

and {Un+1}n∈N are not polynomial-time-indistinguishable, in contradiction to the
hypothesis that G1 is a pseudorandom generator with expansion factor l1(n) =
n + 1. The implication is proved using the hybrid technique.

For every k, with 0 ≤ k ≤ p(n), we define a hybrid H k
n to be the concatenation

of a uniformly chosen k-bit-long string and the (p(n)− k)-bit-long prefix of
G(Un). Denoting by pref j (α) the j-bit-long prefix of the strings α, where j ≤
|α|, and by x · y the concatenation of the strings x and y, we have

H k
n

def= U (1)
k · prefp(n)−k

(
G
(
U (2)

n

))
(3.6)

where U (1)
k and U (2)

n are independent random variables (the first uniformly dis-
tributed over {0, 1}k , and the second uniformly distributed over {0, 1}n).

A different way of viewing the hybrid H k
n is depicted in Figure 3.3: Start-

ing with Construction 3.3.2, we pick sk uniformly in {0, 1}n and σ1 · · · σk uni-
formly in {0, 1}k , and for i = k + 1, . . . , p(n) we obtain σi si = G1(si−1) as in the
construction.

At this point it is clear that H 0
n equals G(Un), whereas H p(n)

n equals Up(n). It
follows that if an algorithm D can distinguish the extreme hybrids, then D can
also distinguish two neighboring hybrids (since the total number of hybrids is
polynomial in n, and a non-negligible gap between the extreme hybrids translates
into a non-negligible gap between some neighboring hybrids). The punch line

Figure 3.3: Hybrid H k
n as a modification of Construction 3.3.2

115

PSEUDORANDOM GENERATORS

is that, using the structure of neighboring hybrids, algorithm D can be easily
modified to distinguish the ensembles {G1(Un)}n∈N and {Un+1}n∈N.

The core of the argument is the way in which the distinguishability of neigh-
boring hybrids relates to the distinguishability of G1(Un) from Un+1. As stated,
this relation stems from the structure of neighboring hybrids. Let us take a closer
look at the hybrids H k

n and H k+1
n for some 0≤ k ≤ p(n)− 1. Another piece of

notation is useful: We let suff j (α) denote the j-bit-long suffix of the string α,
where j ≤ |α|. First observe (see justification later) that for every x ∈ {0, 1}n ,

pref j+1(G(x)) = pref1(G1(x)) · pref j (G(suffn(G1(x)))) (3.7)

Thus (further justification follows),

H k
n = U (1)

k · pref(p(n)−k−1)+1

(
G
(
U (2)

n

))
≡ U (1)

k · pref1

(
G1

(
U (2)

n

)) · prefp(n)−k−1

(
G
(
suffn

(
G1

(
U (2)

n

))))
H k+1

n = U (1)
k+1 · prefp(n)−(k+1)

(
G
(
U (2)

n

))
≡ U (1)

k · pref1

(
U (3)

n+1

) · prefp(n)−k−1

(
G
(
suffn

(
U (3)

n+1

)))
Thus, the ability to distinguish H k

n and H k+1
n translates to the ability to distinguish

G1(U (2)
n) from U (3)

n+1: On input α ∈ {0, 1}n+1, we uniformly select r ∈ {0, 1}k and
apply the “hybrid distinguisher” to r · pref1(α) · prefp(n)−k−1(G(suffn(α))).
Details follow.

First let us restate and further justify the equalities stated previously. We start
with notation capturing the operator mentioned a few lines earlier. For every
k ∈ {0, 1, . . . , p(n)− 1} and α ∈ {0, 1}n+1, let

f p(n)−k(α) def= pref1(α) · prefp(n)−k−1(G(suffn(α))) ∈ {0, 1}p(n)−k (3.8)

Claim 3.3.3.1 (G1(Un) and Un+1 versus Hk
n and Hk+1

n):

1. H k
n is distributed identically to U (1)

k · f p(n)−k(G1(U (2)
n)).

2. H k+1
n is distributed identically to U (1)

k · f p(n)−k(U (3)
n+1).

Proof: Consider any x ∈ {0, 1}n , and let σ = pref1(G1(x)) and y =
suffn(G1(x)) (i.e., σ y = G1(x)). Then, by construction of G, we have
G(x) = σ · prefp(n)−1(G(y)). This justifies Eq. (3.7); that is, pref j+1(G(x)) =
pref1(G1(x)) · pref j (G(suffn(G1(x)))) for every j ≥ 0. We now establish the
two parts of the claim:

1. Combining the definition of H k
n and Eq. (3.7), we have

H k
n = U (1)

k · pref(p(n)−k−1)+1

(
G
(
U (2)

n

))
= U (1)

k · pref1

(
G1
(
U (2)

n

)) · prefp(n)−k−1

(
G
(
suffn

(
G1
(
U (2)

n

))))
= U (1)

k · f p(n)−k
(
G1
(
U (2)

n

))
which establishes the first part.

116

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS

2. For the second part, combining the definition of H k+1
n and Eq. (3.7), we have

H k+1
n = U (1)

k+1 · prefp(n)−(k+1)

(
G
(
U (2)

n

))
≡ U (1′)

k ·U (1′′)
1 · prefp(n)−k−1

(
G
(
suffn

(
U (2′)

n+1

)))
≡ U (1′)

k · pref1

(
U (2′)

n+1

) · prefp(n)−k−1

(
G
(
suffn

(
U (2′)

n+1

)))
= U (1′)

k · f p(n)−k
(
U (2′)

n+1

)
Thus, both parts are established. �

Hence, distinguishing G1(Un) from Un+1 is reduced to distinguishing the neigh-
boring hybrids (i.e., H k

n and H k+1
n) by applying f p(n)−k to the input, padding the

outcome (in the front) by a uniformly chosen string of length k, and applying the
hybrid-distinguisher to the resulting string. Further details follow.

We assume, contrary to the theorem, that G is not a pseudorandom generator.
Suppose that D is a probabilistic polynomial-time algorithm such that for some
polynomial q(·) and for infinitely many n’s, it holds that

�(n) def= ∣∣Pr[D(G(Un)=1]− Pr
[
D
(
Up(n)

)=1
]∣∣ > 1

q(n)

We derive a contradiction by constructing a probabilistic polynomial-time algo-
rithm D′ that distinguishes G1(Un) from Un+1.

Algorithm D′ uses algorithm D as a subroutine. On input α ∈ {0, 1}n+1,
algorithm D′ operates as follows. First, D′ selects an integer k uniformly in
the set {0, 1, . . . , p(n)− 1}, next it selects β uniformly in {0, 1}k , and finally it
halts with output D(β · f p(n)−k(α)), where f p(n)−k is as defined in Eq. (3.8).

Clearly, D′ can be implemented in probabilistic polynomial time (in particular,
f p(n)−k is implemented by combining the algorithm for computing G with trivial
string operations). It is left to analyze the performance of D′ on each of the
distributions G1(Un) and Un+1.

Claim 3.3.3.2:

Pr[D′(G1(Un))=1] = 1

p(n)

p(n)−1∑
k=0

Pr
[
D
(

H k
n

)=1
]

and

Pr[D′(Un+1)=1] = 1

p(n)

p(n)−1∑
k=0

Pr
[
D
(

H k+1
n

)=1
]

Proof: By construction of D′, we get, for every α ∈ {0, 1}n+1,

Pr[D′(α)=1] = 1

p(n)

p(n)−1∑
k=0

Pr
[
D
(
Uk · f p(n)−k(α)

)=1
]

Using Claim 3.3.3.1, our claim follows. �

117

PSEUDORANDOM GENERATORS

Let dk(n) denote the probability that D outputs 1 on input taken from the hybrid
H k

n (i.e., dk(n) def= Pr[D(H k
n)=1]). Recall that H 0

n equals G(Un), whereas H p(n)
n

equalsUp(n). Hence, d0(n) = Pr[D(G(Un))=1], d p(n)(n) = Pr[D(Up(n))=1], and
�(n) = |d0(n)− d p(n)(n)|. Combining these facts with Claim 3.3.3.2, we get

|Pr[D′(G1(Un))=1]− Pr[D′(Un+1)=1]|

= 1

p(n)
·
∣∣∣∣∣
(

p(n)−1∑
k=0

dk(n)

)
−
(

p(n)−1∑
k=0

dk+1(n)

)∣∣∣∣∣
=
∣∣d0(n)− d p(n)(n)

∣∣
p(n)

= �(n)

p(n)

Recall that by our (contradiction) hypothesis,�(n) > 1
q(n) for infinitely many n’s.

Contradiction to the pseudorandomness of G1 follows. �

3.3.3.∗ Variable-Output Pseudorandom Generators

Pseudorandom generators, as defined earlier (i.e., in Definition 3.3.1), provide a pre-
determined amount of expansion. That is, once the generator is fixed and the seed is
fixed, the length of the pseudorandom sequence that the generator provides is also
determined. A more flexible definition, provided next, allows one to produce a pseudo-
random sequence “on the fly.” That is, for any fixed seed, an infinite sequence is being
defined such that the following two conditions hold:

1. One can produce any prefix of this sequence in time polynomial in the seed and the
length of the prefix.

2. For a uniformly chosen n-bit-long seed, any poly(n)-bit prefix of corresponding output
sequence is pseudorandom.

In other words:

Definition 3.3.4 (Variable-Output Pseudorandom Generator): A variable-
output pseudorandom generator is a deterministic polynomial-time algorithm
G satisfying the following two conditions:

1. Variable output: For all s ∈ {0, 1}∗ and t ∈ N, it holds that |G(s, 1t)| = t and
G(s, 1t) is a prefix of G(s, 1t+1).

2. Pseudorandomness: For every polynomial p, the ensemble {G(Un, 1p(n))}n∈N is
pseudorandom.

By a minor modification of Construction 3.3.2, we have the following:

Theorem 3.3.5: If pseudorandom generators exist, then there exists a variable-
output pseudorandom generator.

118

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS

In a similar manner, one can modify all constructions presented in Section 3.4 to obtain
variable-output pseudorandom generators. In fact, in all constructions one can maintain
a hidden state that allows production of the next bit in the sequence in time polynomial
in the length of the seed, regardless of the number of bits generated thus far. This leads
to the notion of an on-line generator, as defined and studied in Exercise 21.

3.3.4. The Applicability of Pseudorandom Generators

Pseudorandom generators have the remarkable property of being efficient “ampli-
fiers/expanders of randomness.” Using very little randomness (in the form of a randomly
chosen seed) they produce very long sequences that look random with respect to any
efficient observer. Hence, the output of a pseudorandom generator can be used instead
of a “truly random sequence” in any efficient application requiring such (i.e., “random”)
sequences, the reason being that such an application can be viewed as a distinguisher.
In other words, if some efficient algorithm suffers non-negligible degradation in per-
formance when replacing the random sequences it uses by a pseudorandom sequence,
then this algorithm can be easily modified into a distinguisher that will contradict the
pseudorandomness of the latter sequences.

The generality of the notion of a pseudorandom generator is of great importance in
practice. Once we are guaranteed that an algorithm is a pseudorandom generator, we
can use it in every efficient application requiring “random sequences,” without testing
the performance of the generator in the specific new application.

The benefits of pseudorandom generators in cryptography are innumerable (and only
the most important ones will be presented in the subsequent chapters). The reason that
pseudorandom generators are so useful in cryptography is that the implementation of
all cryptographic tasks requires a lot of “high-quality randomness.” Thus the process
of producing, exchanging, and sharing large amounts of “high-quality random bits”
at low cost is of primary importance. Pseudorandom generators allow us to produce
(resp., exchange and/or share) poly(n) pseudorandom bits at the cost of producing
(resp., exchanging and/or sharing) only n random bits!

3.3.5. Pseudorandomness and Unpredictability

A key property of pseudorandom sequences that is used to justify the use of such
sequences in some cryptographic applications is the unpredictability of a sequence.
Loosely speaking, a sequence is unpredictable if no efficient algorithm, given a prefix
of the sequence, can guess its next bit with a non-negligible advantage over 1

2 . Namely:

Definition 3.3.6 (Unpredictability): An ensemble {Xn}n∈N is called unpredict-
able in polynomial time if for every probabilistic polynomial-time algorithm A,
every positive polynomial p(·), and all sufficiently large n’s,

Pr
[
A
(
1|Xn |, Xn

) = nextA(Xn)
]
<

1

2
+ 1

p(n)

where nextA(x) returns the i + 1 bit of x if on input (1|x |, x) algorithm A reads

119

PSEUDORANDOM GENERATORS

only i < |x | of the bits of x, and returns a uniformly chosen bit otherwise (i.e., in
case A reads the entire string x).

The role of the input 1|x | given with x is to allow the algorithm to determine the
length of x (and operate in time polynomial in that length) before reading x . In case A
reads all of x , it must guess a perfectly random bit and certainly cannot succeed with
probability higher than 1

2 . (Alternatively, one may disallow A to read all its input; see
Exercise 20.) The interesting case is, of course, when A chooses not to read the entire
input, but rather tries to guess the i + 1 bit of x based on the first i bits of x . An
ensemble is called unpredictable in polynomial time if no probabilistic polynomial-
time algorithm can succeed in the latter task with probability non-negligibly higher
than 1

2 .
Intuitively, pseudorandom ensembles are unpredictable in polynomial time (since so

are all uniform ensembles). It turns out that the converse holds as well. Namely, only
pseudorandom ensembles are unpredictable in polynomial time.

Theorem 3.3.7 (Pseudorandomness versus Unpredictability): An ensemble
{Xn}n∈N is pseudorandom if and only if it is unpredictable in polynomial time.

Proof for the “Only-if” Direction: The proof that pseudorandomness implies
unpredictability indeed follows the intuition mentioned earlier. Because the en-
semble X

def= {Xn}n∈N is pseudorandom, it is polynomial-time-indistinguishable
from some uniform ensemble. Clearly, the uniform ensemble is unpredictable in
polynomial time; in fact, it is unpredictable regardless of the time bounds imposed
on the predicting algorithm. Thus, the ensemble X must also be polynomial-
time-unpredictable, or else we could distinguish the ensemble X from the uni-
form ensemble in polynomial time (in contradiction to the hypothesis). Details
follow.

For simplicity (and without loss of generality), suppose that the ensemble
X = {Xn}n∈N satisfies |Xn| = n and thus is polynomial-time-indistinguishable
from the standard uniform ensemble {Un}n∈N. Suppose, toward the contradiction,
that {Xn}n∈N is predictable in polynomial time by an algorithm A; that is, for some
polynomial p and infinitely many n’s,

Pr[A(1n, Xn) = nextA(Xn)] ≥ 1

2
+ 1

p(n)

Then A can be easily transformed into a distinguisher, denoted D, operating as
follows. On input y, the distinguisher invokes A on input (1|y|, y) and records the
number of bits that A has actually read, as well as A’s prediction for the next bit.
In case the prediction is correct, D outputs 1, and otherwise it outputs 0. Clearly,

Pr[D(Xn) = 1] = Pr[A(1n, Xn) = nextA(Xn)]

≥ 1

2
+ 1

p(n)

120

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS

whereas

Pr[D(Un)=1] = Pr[A(1n,Un) = nextA(Un)]

≤ 1

2

Thus, Pr[D(Xn)=1]− Pr[D(Un)=1] ≥ 1/p(n), and we reach a contradiction to
the hypothesis that {Xn}n∈N is pseudorandom. The “only-if” direction
follows. �

Proof for the “Opposite” Direction: The proof for the opposite direction (i.e., un-
predictability implies pseudorandomness) is more complex. In fact, the intuition
in this case is less clear. One motivation is provided by the information-theoretic
analogue: The only sequence of 0-1 random variables that cannot be predicted
(when discarding computational issues) is the one in which the random variables
are independent and uniformly distributed over {0, 1}. In the current case, the
computational analogue again holds, but proving it is (again) more complex. The
proof combines the use of the hybrid technique and a special case of the very
statement being proved. Loosely speaking, the special case refers to two ensem-
bles Y

def= {Yn}n∈N and Y ′ def= {Y ′
n}n∈N, where Y ′

n is derived from Yn by omitting the
last bit of Yn . The claim is that if Y ′ is pseudorandom and Y is unpredictable in
polynomial time, then Y is pseudorandom. By this claim, if the i-bit-long prefix
of Xn is pseudorandom and the (i + 1)-bit-long prefix of Xn is polynomial-time-
unpredictable, then the latter is also pseudorandom. We next work this intuition
into a rigorous proof.

Suppose, toward the contradiction, that X = {Xn}n∈N is not pseudorandom.
Again, for simplicity (and without loss of generality), we assume that |Xn| = n.
Thus there exists a probabilistic polynomial-time algorithm D that distinguishes
X from the standard uniform ensemble {Un}n∈N; that is, for some polynomial p
and infinitely many n’s,

|Pr[D(Xn)=1]− Pr[D(Un)=1]| ≥ 1

p(n)
(3.9)

Assume, without loss of generality, that for infinitely many n’s,

Pr[D(Xn)=1]− Pr[D(Un)=1]≥ 1

p(n)
(3.10)

Justification for the dropping of absolute value: Let S be the infinite set of
n’s for which Eq. (3.9) holds. Then S must contain either an infinite subset of n’s for
which Pr[D(Xn)=1]− Pr[D(Un)=1] is positive or an infinite subset for which it is
negative. Without loss of generality, we assume that the former holds. Otherwise, we
modify D by flipping its output.

For each n satisfying Eq. (3.10), we define n + 1 hybrids. The i th hybrid (i =
0, 1, . . . , n), denoted H i

n , consists of the i-bit-long prefix of Xn followed by the
(n − i)-bit-long suffix of Un . The foregoing hypothesis implies that there exists

121

PSEUDORANDOM GENERATORS

a pair of neighboring hybrids that are polynomial-time-distinguishable. Actually,
this holds, on the average, for a “random” pair of neighboring hybrids:

Claim 3.3.7.1: For each n satisfying Eq. (3.10),

1

n
·

n−1∑
i=0

(
Pr
[
D
(

H i+1
n

)=1
]− Pr

[
D
(

H i
n

)=1
]) ≥ 1

p(n) · n

Proof: The proof is immediate by Eq. (3.10) and the definition of the hybrids. In
particular, we use the fact that H n

n ≡ Xn and H 0
n ≡ Un . �

Claim 3.3.7.1 suggests a natural algorithm for predicting the next bit of {Xn}n∈N.
The algorithm, denoted A, selects i uniformly in {0, 1, . . . , n − 1}, reads i bits
from Xn , and invokes D on the n-bit string that results by concatenating these i
bits with n − i uniformly chosen bits. If D responds with 1, then A’s prediction
is set to the value of the first among these n − i random bits; otherwise it is set
to the complementary value. The reasoning is as follows. If the first among the
n − i random bits happens to equal the i + 1 bit of Xn , then A is invoked on
input distributed identically to H i+1

n . On the other hand, if the first among the
n − i random bits happens to equal the complementary value (of the i + 1 bit of
Xn), then A is invoked on input distributed identically to a distribution Z that is
even more clearly distinguishable from Hi+1

n than is H i
n (i.e., H i

n equals Z with
probability 1

2 , and H i+1
n otherwise). Details follow.

We start with a more precise description of algorithm A. On input 1n and
x = x1 · · · xn , algorithm A proceeds as follows:

1. Select i uniformly in {0, 1, . . . , n − 1}.
2. Select ri+1, . . . , rn independently and uniformly in {0, 1}.
3. If D(x1 · · · xiri+1 · · · rn) = 1, then output ri+1, and otherwise output 1− ri+1.

Claim 3.3.7.2: For each n satisfying Eq. (3.10),

Pr[A(1n, Xn) = nextA(Xn)] ≥ 1

2
+ 1

p(n) · n

Proof: Let us denote by X j the j th bit of Xn , and by Ri+1, . . . , Rn a sequence
of n − i independent random variables each uniformly distributed over {0, 1}.
Using the definition of A and the fact that Pr[Xi+1 = Ri+1] = 1

2 , we have

sA(n) def= Pr[A(1n, Xn) = nextA(Xn)]

= 1

n
·

n−1∑
i=0

(Pr[D(X 1 · · · Xi Ri+1 · · · Rn) = 1 & Ri+1 = Xi+1]

+ Pr[D(X 1 · · · Xi Ri+1 · · · Rn) = 0 & 1− Ri+1 = Xi+1])

= 1

2n
·

n−1∑
i=0

(Pr[D(X 1 · · · Xi Xi+1 Ri+2 · · · Rn) = 1]

+ 1 − Pr[D(X 1 · · · Xi X
i+1

Ri+2 · · · Rn) = 1])

122

3.3. DEFINITIONS OF PSEUDORANDOM GENERATORS

where X
i+1 def= 1− Xi+1. Using the fact that Hi

n is distributed identically to the
distribution obtained by taking H i+1

n = X 1 · · · Xi Xi+1 Ri+2 · · · Rn with probabi-

lity 1
2 , and Z

def= X 1 · · · Xi X
i+1

Ri+2 · · · Rn otherwise, we obtain

Pr
[
D
(

H i
n

)=1
]= Pr

[
D
(

H i+1
n

)=1
]+ Pr[D(Z)=1]

2

which implies Pr[D(Z)=1] = 2Pr[D(H i
n)=1]− Pr[D(H i+1

n)=1]. Thus, using
Claim 3.3.7.1 in the last step, we get

sA(n) = 1

2
+ 1

2n
·

n−1∑
i=0

(
Pr
[
D
(

H i+1
n

)=1
]− Pr[D(Z)=1]

)
= 1

2
+ 1

2n
·

n−1∑
i=0

(
Pr
[
D
(

H i+1
n

)=1
]

− (2Pr
[
D
(

H i
n

)=1
]− Pr

[
D
(

H i+1
n

)=1
]))

= 1

2
+ 1

n
·

n−1∑
i=0

(
Pr
[
D
(

H i+1
n

)=1
]− Pr

[
D
(

H i
n

)=1
])

≥ 1

2
+ 1

p(n) · n

and the claim follows. �

Because A is a probabilistic polynomial-time algorithm, Claim 3.3.7.2 contradicts
the hypothesis that {Xn}n∈N is polynomial-time-unpredictable, and so the opposite
direction of the theorem also follows. �

Comment. Unfolding the argument for the “opposite direction,” we note that all the
hybrids considered in it are in fact polynomial-time-indistinguishable, and hence they
are all pseudorandom. The argument actually shows that if the i-bit prefix of Hi+1

n is
pseudorandom and the (i + 1)-bit prefix of H i+1

n is unpredictable (which is the same as
saying that H i+1

n is unpredictable), then the (i + 1)-bit prefix of Hi+1
n is pseudorandom.

This coincides with the motivating discussion presented at the beginning of the proof
for the “opposite direction.”

3.3.6. Pseudorandom Generators Imply One-Way Functions

Up to this point we have avoided the question of whether or not pseudorandom genera-
tors exist at all. Before saying anything positive, we remark that a necessary condition
to the existence of pseudorandom generators is the existence of one-way function.
Jumping ahead, we mention that this necessary condition is also sufficient: Hence,
pseudorandom generators exist if and only if one-way functions exist. At this point we
shall prove only that the existence of pseudorandom generators implies the existence
of one-way function. Namely:

123

PSEUDORANDOM GENERATORS

Proposition 3.3.8: Let G be a pseudorandom generator with expansion
factor l(n) = 2n. Then the function f : {0, 1}∗→{0, 1}∗ defined by letting
f (x, y) def= G(x), for every |x |=|y| is a strongly one-way function.

Proof: Clearly, f is polynomial-time-computable. It is left to show that each
probabilistic polynomial-time algorithm can invert f with only negligible success
probability. We use a reducibility argument. Suppose, on the contrary, that A is a
probabilistic polynomial-time algorithm that for infinitely many n’s inverts f on
f (U2n) with success probability at least 1

poly(n) . We shall construct a probabilistic
polynomial-time algorithm D that distinguishes U2n and G(Un) on these n’s,
reaching a contradiction.

The distinguisher D uses the inverting algorithm A as a subroutine. On input
α ∈ {0, 1}∗, algorithm D uses A in order to try to get a pre-image of α under f .
Algorithm D then checks whether or not the string it obtained from A is indeed
a pre-image and halts outputting 1 in case it is (otherwise it outputs 0). Namely,
algorithm D computes β ← A(α) and outputs 1 if f (β) = α, and 0 otherwise
(i.e., D(α) = 1 iff f (A(α)) = α).

By our hypothesis, for some polynomial p(·) and infinitely many n’s,

Pr[f (A(f (U2n))) = f (U2n)] >
1

p(n)

By f ’s construction, the random variable f (U2n) equals G(Un), and therefore
Pr[D(G(Un))=1] = Pr[f (A(G(Un)))=G(Un)] > 1

p(n) . On the other hand, by
f ’s construction, at most 2n different 2n-bit-long strings (i.e., those in the support
of G(Un)) have pre-images under f . Hence, Pr[D(U2n)=1] = Pr[f (A(U2n))=
U2n] ≤ 2−n . It follows that for infinitely many n’s,

Pr[D(G(Un))=1]− Pr[D(U2n) = 1] >
1

p(n)
− 1

2n
>

1

2p(n)

which contradicts the pseudorandomness of G. �

3.4. Constructions Based on One-Way Permutations

In this section we present constructions of pseudorandom generators based on one-way
permutations. The first construction has a more abstract flavor, as it uses a single length-
preserving 1-1 one-way function (i.e., a single one-way permutation). The second
construction utilizes the same underlying ideas to present pseudorandom generators
based on collections of one-way permutations.

3.4.1. Construction Based on a Single Permutation

We provide two alternative presentations of the same pseudorandom generator. In
the first presentation, we provide a pseudorandom generator expanding n-bit-long
seeds into (n + 1)-bit-long strings, which combined with Construction 3.3.2 yields a

124

3.4. CONSTRUCTIONS BASED ON ONE-WAY PERMUTATIONS

pseudorandom generator expanding n-bit-long seeds into p(n)-bit-long strings for every
polynomial p. The alternative construction is obtained by unfolding this combination.
The resulting construction is appealing per se, and more importantly it serves as a
good warm-up for the construction of pseudorandom generators based on collections
of one-way permutations (presented in Section 3.4.2).

3.4.1.1. The Preferred Presentation

By Theorem 3.3.3 (in Section 3.3.2), it suffices to present a pseudorandom generator
expanding n-bit-long seeds into (n + 1)-bit-long strings. Assuming that one-way per-
mutations (i.e., 1-1 length-preserving functions) exist, such pseudorandom generators
can be constructed easily. We remind the reader that the existence of a one-way permu-
tation implies the existence of a one-way permutation with a corresponding hard-core
predicate (see Theorem 2.5.2). Thus, it suffices to prove the following, where x · y
denotes the concatenation of the strings x and y.

Theorem 3.4.1: Let f be a length-preserving 1-1 (strongly one-way) function,
and let b be a hard-core predicate for f . Then the algorithm G, defined by
G(s) def= f (s) · b(s), is a pseudorandom generator.

Clearly, G is polynomial-time-computable, and |G(s)| = | f (s)| + |b(s)| = |s| + 1. In-
tuitively, the ensemble { f (Un) · b(Un)}n∈N is pseudorandom, because otherwise b(Un)
could be efficiently predicted from f (Un) (in contradiction to the hypothesis). The
proof merely formalizes this intuition.

Actually, we present two alternative proofs. The first proof invokes Theorem 3.3.7
(which asserts that polynomial-time unpredictability implies pseudorandomness) and
thus is confined to show that the ensemble {G(Un)}n∈N is unpredictable in poly-
nomial time. The second proof directly establishes the pseudorandomness of the
ensemble {G(Un)}n∈N, but does so by using one of the ideas that appeared in the
proof of Theorem 3.3.7.

First Proof of Theorem 3.4.1: By Theorem 3.3.7 (specifically, the fact that
polynomial-time unpredictability implies pseudorandomness), it suffices to show
that the ensemble {G(Un) = f (Un) · b(Un)}n∈N is unpredictable in polynomial
time.

Because f is 1-1 and length-preserving, the random variable f (Un) is uni-
formly distributed in {0, 1}n . Thus, none of the first n bits in f (Un) · b(Un)
can be predicted better than with probability 1

2 , regardless of computation time
(since these bits are independently and uniformly distributed in {0, 1}). What
can be predicted (and actually determined) in exponential time is the n + 1 bit of
f (Un) · b(Un) (i.e., the bit b(Un)). However, by the hypothesis that b is a hard-core
of f , this bit (i.e., b(Un)) cannot be predicted from the n-bit prefix (i.e., f (Un))
in polynomial time. A more rigorous argument follows.

We use a reducibility argument. Suppose, contrary to our claim, that there exists
an efficient algorithm A that on input (1n+1,G(Un)) reads a prefix of G(Un) and

125

PSEUDORANDOM GENERATORS

predicts the next bit, denoted nextA(G(Un)), with probability that is non-negligibly
higher than 1

2 . That is, for some positive polynomial p and infinitely many n’s,

Pr[A(1n+1,G(Un)) = nextA(G(Un))] >
1

2
+ 1

p(n)
(3.11)

We first claim that, without loss of generality, algorithm A always tries to guess
the last (i.e., n + 1) bit of G(Un). This is justified by observing that the success
probability for any algorithm in guessing any other bit of G(Un) is bounded above
by 1

2 . On the other hand, a success probability of 1
2 in guessing any bit (and in

particular the last bit of G(Un)) can be easily achieved by a random unbiased
coin toss.

Rigorous justification of the preceding claim: Given an algorithm A as before,
we consider a modified algorithm A′ that operates as follows. On input (1n+1, α), where
α ∈ {0, 1}n+1, algorithm A′ emulates the execution of A, while always reading the first
n bits of α and never reading the last bit of α. In the course of the emulation, exactly
one of the following three cases will arise:

1. In case A tries to predict one of the first n bits of α, algorithm A′ outputs a uniformly
selected bit.

2. In case A tries to predict the last bit of α, algorithm A′ outputs the prediction
obtained from A.

3. In case A tries to read all bits of α, algorithm A′ outputs a uniformly selected bit.
(We stress that A′ never reads the last bit of α.)

Note that the success probability for A in Cases 1 and 3 is at most 1
2 (and is exactly 1

2 if
A outputs a bit). The actions taken by A′ in these cases guarantee success probability
of 1

2 (in guessing the last bit of α). Thus, the success probability for A′ is no less than
that for A. (In the rest of the argument, we identify A′ with A.)

Next, we use algorithm A to predict b(Un) from f (Un). Recall that G(x) =
f (x) · b(x), where x ∈ {0, 1}n . Thus, by the foregoing claim, on input
(1n+1, f (x) · b(x)), algorithm A always tries to guess b(x) after reading f (x)
(and without ever reading b(x)). Thus, A is actually predicting b(Un) from f (Un).
Again, a minor modification is required in order to make the last statement rig-
orous: We consider an algorithm A′′ that on input y = f (x), where x ∈ {0, 1}n ,
invokes A on input (1n+1, y 0) and outputs whatever A does. Because A never
reads the last bit of its input, its actions are independent of the value of that bit
(i.e., A(1n+1, y0) ≡ A(1n+1, y1)). Combining this fact with the fact that A always
tries to predict the last bit of its input (and thus nextA(y · σ) = σ), we get

Pr[A′′(f (Un)) = b(Un)] = Pr[A(1n+1, f (Un) · 0) = b(Un)]

= Pr[A(1n+1, f (Un) · b(Un)) = b(Un)]

= Pr[A(1n+1, f (Un) · b(Un)) = nextA(f (Un) · b(Un))]

Combining this with Eq. (3.11), we obtain Pr[A′′(f (Un)) = b(Un)] ≥ 1
2 + 1

p(n)
for infinitely many n’s, in contradiction to the hypothesis that b is a hard-core of
f . The theorem follows. �

126

3.4. CONSTRUCTIONS BASED ON ONE-WAY PERMUTATIONS

Second Proof of Theorem 3.4.1: Recall that G(Un) = f (Un) · b(Un) and that our
goal is to prove that the ensembles {G(Un)}n∈N and {Un+1}n∈N are polynomial-
time-indistinguishable. We first note that the n-bit-long prefix of f (Un) · b(Un) is
uniformly distributed in {0, 1}n . Thus, letting b(x) def= 1− b(x), all that we need
to prove is that the ensembles E (1) def= { f (Un) · b(Un)}n∈N and E (2) def= { f (Un) ·
b(Un)}n∈N are polynomial-time-indistinguishable (since {Un+1}n∈N is distributed
identically to the ensemble obtained by taking E (1) with probability 1

2 , and E (2)

otherwise).

Further justification of the foregoing claim: First, note that E (1) is identical
to {G(Un)}n∈N. Next note that {Un+1}n∈N is distributed identically to the ensemble
{ f (Un) ·U1}n∈N, where Un and U1 are independently random variables. Thinking
of U1 as being uniformly distributed in {b(Un), b(Un)}, we observe that f (Un) ·U1

is distributed identically to the distribution obtained by taking E (1)
n

def= f (Un) · b(Un)
with probability 1

2 , and E (2)
n

def= f (Un) · b(Un) otherwise. Thus, for every algorithm D,

Pr[D(Un+1) = 1] = Pr[D(f (Un) ·U1) = 1]

= 1

2
· Pr
[

D
(

E (1)
n

) = 1
]+ 1

2
· Pr
[

D
(

E (2)
n

) = 1
]

It follows that

Pr[D(G(Un)) = 1]− Pr[D(Un+1) = 1]

= Pr
[

D
(

E (1)
n

) = 1
] − (1

2
· Pr
[

D
(

E (1)
n

) = 1
]+ 1

2
· Pr
[

D
(

E (2)
n

) = 1
])

= 1

2
· (Pr

[
D
(

E (1)
n

) = 1
]− Pr

[
D
(

E (2)
n

) = 1
])

Thus, in order to show that an algorithm D does not distinguish the ensembles
{G(Un)}n∈N and {Un+1}n∈N, it suffices to show that D does not distinguish the en-
sembles E (1) and E (2).

We now prove that the ensembles E (1) = { f (Un) · b(Un)}n∈N and E (2) =
{ f (Un) · b(Un)}n∈N are polynomial-time-indistinguishable. We do so by sim-
plifying the argument presented in the proof of Theorem 3.3.7. That is, us-
ing any algorithm (denoted D) that distinguishes E (1) and E (2), we construct
a predictor (denoted A) of b(Un) based on f (Un). We assume, to the contradic-
tion and without loss of generality, that for some polynomial p and infinitely
many n’s,

Pr[D(f (Un) · b(Un)) = 1]− Pr[D(f (Un) · b(Un)) = 1] >
1

p(n)
(3.12)

Using D as a subroutine, we construct an algorithm A as follows. On input of
y = f (x), algorithm A proceeds as follows:

1. Select σ uniformly in {0, 1}.
2. If D(y · σ) = 1, then output σ , and otherwise output 1− σ .

127

PSEUDORANDOM GENERATORS

Then, letting U1 be independent of Un (where U1 represents the choice of σ in
Step 1 of algorithm A), we have

Pr[A(f (Un))= b(Un)]

= Pr[D(f (Un) ·U1) = 1 & U1 = b(Un)]

+ Pr[D(f (Un) ·U1) = 0 & 1−U1 = b(Un)]

= Pr[D(f (Un) · b(Un)) = 1 & U1 = b(Un)]

+ Pr[D(f (Un) · b(Un)) = 0 & U1 = b(Un)]

= 1

2
· Pr[D(f (Un) · b(Un)) = 1]+ 1

2
· (1− Pr[D(f (Un) · b(Un)) = 1])

= 1

2
+ 1

2
· (Pr[D(f (Un) · b(Un)) = 1]− Pr[D(f (Un) · b(Un)) = 1])

>
1

2
+ 1

2p(n)

where the inequality is due to Eq. (3.12.) But this contradicts the theorem’s
hypothesis by which b is a hard-core of f . �

3.4.1.2. An Alternative Presentation

Combining Theorems 3.3.3 and 3.4.1, we obtain, for any polynomial stretch function p,
a pseudorandom generator stretching n-bit-long seeds into p(n)-bit-long pseudorandom
sequences. Unfolding this combination we get the following construction:

Construction 3.4.2: Let f : {0, 1}∗→{0, 1}∗ be a 1-1 length-preserving and
polynomial-time-computable function. Let b : {0, 1}∗→{0, 1} be a polynomial-
time-computable predicate, and let p(·) be an arbitrary polynomial satisfying
p(n) > n. Define G(s) = σ1 · · · σp(|s|), where s0

def= s, and for every 1 ≤ j ≤ p(|s|)
it holds that σ j = b(s j−1) and s j = f (s j−1). That is,

Let s0 = s and n = |s|.
For j = 1 to p(n), do

σ j ← b(s j−1) and s j ← f (s j−1).

Output σ1σ2 · · · σp(n).

The construction is depicted in Figure 3.4. Note that σ j is easily computed from s j−1, but
if b is a hard-core of f , then σ j = b(s j−1) is “hard to approximate” from s j = f (s j−1).
The pseudorandomness property of algorithm G depends on the fact that G does not
output the intermediate s j ’s. (By examining the following proof, the reader can easily
verify that outputting the last element, namely, sp(n), does not hurt the pseudorandom-
ness property; cf. Proposition 3.4.6.)

128

3.4. CONSTRUCTIONS BASED ON ONE-WAY PERMUTATIONS

f

b

f

b

G
Sp(n)

σp(n)

S1 2

σ σ1 2

S0 S f

b

f

b

. . .

Figure 3.4: Construction 3.4.2, as operating on seed s0 ∈ {0, 1}n.

Proposition 3.4.3: Let f , b, and G be as in Construction 3.4.2. If b is a hard-core
of f , then G is a pseudorandom generator.

Proof: Consider the generator G ′ obtained by reversing the order of the bits in
the output of G. That is, if G(s) = σ1σ2 · · · σp(|s|), then G ′(s) = σp(|s|) · · · σ2σ1.
We first observe that the ensemble {G(Un)}n∈N is pseudorandom if and only if
the ensemble {G ′(Un)}n∈N is pseudorandom. Using Theorem 3.3.7, it suffices to
show that the ensemble {G ′(Un)}n∈N is unpredictable in polynomial time. This
is shown by generalizing the argument used in the first proof of Theorem 3.4.1.
Toward this goal, it is instructive to notice that

G ′(s)= b
(

f p(|s|)−1(s)
) · b

(
f p(|s|)−2(s)

) · · · b(s)

where f 0(s) = s and f i+1(s) = f i (f (s)). That is, the j th bit in G ′(s), which
equals the p(|s|)− j + 1 bit in G(s), equals b(f p(|s|)− j (s)).

Intuitively, the proof of unpredictability proceeds as follows. Suppose, to-
ward the contradiction, that for some j < t

def= p(n), given the j-bit-long prefix
of G ′(Un), an algorithm A′ can predict the j + 1 bit of G ′(Un). That is, given
b(f t−1(s)) · · · b(f t− j (s)), algorithm A′ predicts b(f t−(j+1)(s)), where s is uni-
formly distributed in {0, 1}n . Then for x uniformly distributed in {0, 1}n , given
y = f (x), one can predict b(x) by invoking A′ on input b(f j−1(y)) · · · b(y) =
b(f j (x)) · · · b(f (x)), which in turn is polynomial-time-computable from y =
f (x). In the analysis, we use the hypothesis that f induces a permutation over
{0, 1}n , and we associate x with f t−(j+1)(s). Details follow.

Suppose, toward the contradiction, that there exists a probabilistic polynomial-
time algorithm A′ and a polynomial p′ such that for infinitely many n’s,

Pr
[
A′(1p(n),G ′(Un)

) = nextA′(G
′(Un))

]
>

1

2
+ 1

p′(n)
(3.13)

Then we derive a contradiction by constructing an algorithm A′′ that, given f (Un),
predicts b(Un) with probability that is non-negligibly higher than 1

2 . Algorithm
A′′ operates as follows, on input y ∈ {0, 1}n , where t

def= p(n):

1. Uniformly select j ∈ {0, . . . , t − 1}.
2. Compute α← b(f j−1(y)) · · · b(y). (Note that |α| = j .)

129

PSEUDORANDOM GENERATORS

3. Uniformly select β ∈ {0, 1}t− j .

4. Invoke A′ on input (1t , αβ) and record the following values:

(a) in variable �, the length of the prefix of αβ read by A′,
(b) in variable τ , the output of A′.

5. If � = j , then halt with output τ .

6. Otherwise (i.e., � �= j), output a uniformly selected bit.

Clearly, A′′ is implementable in probabilistic polynomial time. We now ana-
lyze the success probability of A′′ in predicting b(Un) when given f (Un). A
key observation is that on input f (Un), for each possible value assigned to j in
Step 1 the value of α (as determined in Step 2 of A′) is distributed identically
to the j-bit-long prefix of the distribution G ′(Un). This is due to the fact that f
induces a permutation over {0, 1}n , and so b(f j−1(Un)) · · · b(Un) is distributed
identically to b(f t−1(Un)) · · · b(f t− j (Un)). We use the following notations and
observations:
� Let R j be a randomized process that, given y, outputs b(f j−1(y)) · · · b(y) · r ,

where r is uniformly distributed in {0, 1}t− j .
Note that on input y, after selecting j in Step 1, algorithm A′′ invokes A′ on

input (1t , R j (y)). By the foregoing (“key”) observation, the j-bit-long prefix of
R j (f (Un)) is distributed identically to the j-bit-long prefix of G ′(Un). Also note
that b(f j−1(f (Un))) · · · b(f (Un)) · b(Un) is distributed identically to the (j + 1)-
bit-long prefix of G ′(Un) and that the former is obtained by concatenating the
j-bit-long prefix of R j (f (Un)) with b(Un).

� Let L A′ (γ) be a random variable representing the length of the prefix of γ ∈ {0, 1}t
read by A′ on input (1t , γ).

Note that the behavior of A′ on input (1t , γ) depends only on the L A′ (γ) first
bits of γ (and is independent of the t − L A′ (γ) last bits of γ). On the other hand,
nextA′ (γ) equals the L A′ (γ)+ 1 bit of γ .

� Let J be a random variable representing the random choice made in Step 1, and
let U1 represent the random choice made in Step 6. Recall that U1 is uniformly
distributed in {0, 1}, independently of anything else.

Note that if L A′ (γ) = J , then A′′ outputs the value A′(1t , γ), and otherwise A′′

outputs U1.

Using all the foregoing, we get

Pr[A′′(f (Un)) = b(Un)]

= Pr[A′(1t , RJ (f (Un))) = b(Un) & L A′(RJ (f (Un))) = J]

+Pr[U1 = b(Un) & L A′(RJ (f (Un))) �= J]

= Pr[A′(1t ,G ′(Un)) = nextA′(G
′(Un)) & J = L A′(G

′(Un))]

+Pr[J �= L A′(G
′(Un))] · 1

2
where we use the fact that when L A′(RJ (f (Un))) = J , the behavior of A′

depends only on the J -bit-long prefix of RJ (f (Un)), which in turn is distributed

130

3.4. CONSTRUCTIONS BASED ON ONE-WAY PERMUTATIONS

identically to the J -bit-long prefix of G ′(Un). Next, we use the following ad-
ditional observations:
� The event A′(1t ,G ′(Un)) = nextA′ (G ′(Un)) is independent of J . Thus,

Pr[A′(1t ,G ′(Un)) = nextA′ (G
′(Un)) & J = L A′ (G

′(Un))]

= Pr[J = L A′ (G
′(Un))] · Pr[A′(1t ,G ′(Un)) = nextA′ (G

′(Un))]

� We can assume, without loss of generality, that A′ never reads its entire input
(because the success probability of an arbitrary A′ can be easily met by a modified
A′ that does not read its last input bit; see Exercise 20). It follows that L A′ (G ′(Un)) ∈
{0, . . . , t − 1}, and so Pr[J = L A′ (G ′(Un))] = 1

t .

Combining all the preceding with Eq. (3.13) (and t = p(n)), we get

Pr[A′′(f (Un)) = b(Un)] = 1

t
· Pr[A′(1t ,G ′(Un)) = nextA′(G

′(Un))]+ t − 1

t
· 1

2

≥ 1

p(n)
·
(

1

2
+ 1

p′(n)

)
+
(

1− 1

p(n)

)
· 1

2

= 1

2
+ 1

p(n) · p′(n)

for infinitely many n’s, in contradiction to the hypothesis that b is a hard-core
of f . �

3.4.2. Construction Based on Collections of Permutations

We now apply the ideas underlying Construction 3.4.2 in order to present constructions
of pseudorandom generators based on collections of one-way permutations. The fol-
lowing generic construction is readily instantiated using popular candidate collections
of one-way permutations; see details following the abstract presentation.

3.4.2.1. An Abstract Presentation

Let (I, D, F) be a triplet of algorithms defining a collection of one-way permutations
(see Section 2.4.2) such that D(i) is uniformly distributed over the domain of fi for
every i in the range of I . Let q be a polynomial bounding the number of coins used by
algorithms I and D (as a function of the input length).1 For r ∈ {0, 1}q(n), let us denote
by I (1n, r) ∈ {0, 1}n the output of algorithm I on input 1n and coin tosses r . Likewise,
D(i, s) denotes the output of algorithm D on input i and coin tosses s ∈ {0, 1}q(n). We
remind the reader that Theorem 2.5.2 (existence of hard-core predicates) applies also
to collections of one-way permutations.

Construction 3.4.4: Let (I, D, F) be a triplet of algorithms defining a collection
of one-way permutations, and let B be a hard-core predicate for this collection. Let
p(·) be an arbitrary polynomial. For n ∈ N and r, s ∈ {0, 1}q(n), define G(r, s) =
1In many cases, the polynomial q is actually linear. In fact, one can modify any collection of one-way

permutations so that q(n) = n; see Exercise 19 in Chapter 2.

131

PSEUDORANDOM GENERATORS

σ1 · · · σp(n), where i
def= I (1n, r), s0

def= D(i, s), and for every 1 ≤ j ≤ p(|s|) it holds
thatσ j = B(i, s j−1) and s j = fi (s j−1). That is, on input a seed (r, s) ∈ {0, 1}q(n) ×
{0, 1}q(n), algorithm G operates as follows, where F(i, x) = fi (x):

Set i ← I (1n, r) and s0 ← D(i, s).
For j = 1 to p(n), do

σ j ← B(i, s j−1) and s j ← F(i, s j−1).

Output σ1σ2 · · · σp(n).

On input seed (r, s), algorithm G first uses r to determine a permutation fi over Di (i.e.,
i ← I (1n, r)). Second, algorithm G uses s to determine a “starting point” s0 uniformly
distributed in Di . The essential part of algorithm G is the repeated application of the
function fi to the starting point s0 and the outputting of a hard-core predicate for
each resulting element. This part mimics Construction 3.4.2, while replacing the single
permutation f with the permutation fi determined earlier. The expansion property of
algorithm G depends on the choice of the polynomial p(·). Namely, the polynomial
p(·) should be larger than twice the polynomial q(·).

Theorem 3.4.5: Let (I, D, F), B, q(·), p(·), and G be as in Construction 3.4.4,
and suppose that p(n) > 2q(n) for all n’s. Further suppose that for every i in the
range of algorithm I , the random variable D(i) is uniformly distributed over the
set Di . Then G is a pseudorandom generator.

Theorem 3.4.5 is an immediate corollary of the following proposition.

Proposition 3.4.6: Let n and t be integers. For every i in the range of I (1n) and
every x in Di , define

Gt
i (x) = B(i, x) · B(i, fi (x)) · · · B

(
i, f t−1

i (x)
)

where f 0
i (x) = x and f j+1

i (x) = f j
i (fi (x)) for any j ≥ 0. Let (I, D, F) and B

be as in Theorem 3.4.5, with In a random variable representing I (1n) and Xn =
D(In) a random variable uniformly distributed in DIn . Then for every polynomial
p(·), the ensembles{(

In,G p(n)
In

(Xn), f p(n)
In

(Xn)
)}

n∈N
and

{(
In,Up(n), f p(n)

In
(Xn)

)}
n∈N

are polynomial-time-indistinguishable.

Hence the distinguishing algorithm gets, in addition to the p(n)-bit-long sequence to
be examined, the index i chosen by G (in the first step of G’s computation) and the last
domain element (i.e., f p(n)

i (Xn)) computed by G. Even with this extra information it is
infeasible to distinguish G p(n)

In
(Xn) ≡ G(U2q(n)) from Up(n). We note that providing the

distinguishing algorithm with f p(n)
i (Xn) only makes the proposition stronger and that

this stronger form is not required for proving Theorem 3.4.5. However, the stronger
form will be used in Chapter 5.

132

3.4. CONSTRUCTIONS BASED ON ONE-WAY PERMUTATIONS

Proof Outline: The proof is analogous to the proof of Proposition 3.4.3. Specifi-
cally, we let Ḡt

i (x) = B(i, f t−1
i (x)) · · · B(i, x) (the reverse of Gt

i (x)) and prove
that even when given In and f p(n)

In
(Xn) as auxiliary inputs, the sequence

Ḡ p(n)
In

(Xn) is unpredictable in polynomial time. This is done by a reducibility
argument: An algorithm predicting the next bit of Ḡ p(n)

In
(Xn), given also In and

f p(n)
In

(Xn), is used to construct an algorithm for predicting B(In, Xn) from In and
f In (Xn), which contradicts the hypothesis by which B is a hard-core predicate
for the collection (I, D, F). The extra hypothesis by which D(i) is uniformly
distributed over Di is used in order to establish that the distributions D(i) and
f j
i (D(i)) are identical2 for every j < t . The reader should be able to complete

the argument. �

Generalization. Proposition 3.4.6 and Theorem 3.4.5 remain valid even if one relaxes
the condition concerning the distribution of D(i) and requires only that D(i) be sta-
tistically close (as a function in |i |) to the uniform distribution over Di . Similarly, one
can relax the condition regarding I so that the foregoing holds for all but a negligible
measure of the i’s generated by I (1n) (rather than for all such i’s).

3.4.2.2. Concrete Instantiations

As an immediate application of Construction 3.4.4, we derive pseudorandom generators
based on either of the following assumptions:

• The intractability of the discrete-logarithm problem: Specifically, we assume that the
DLP collection, as presented in Section 2.4.3, is one-way. The generator is based on the
fact that, under the foregoing assumption, the following problem is intractable: Given a
prime P , a primitive element G in the multiplicative group mod P , and an element Y
in this group, guess whether or not there exists 0 ≤ x ≤ P/2 such that Y ≡ Gx mod P .
In other words, the latter predicate, denoted BP , constitutes a hard-core for the DLP
collection.

The generator uses the seed in order to select a prime P , a primitive element G
in the multiplicative group mod P , and an element Y of the group. It outputs the
sequence

BP (Y), BP (GY mod P), BP
(
GGY mod P mod P

)
, . . .

That is, the function being iterated is Z �→ G Z mod P .

• The difficulty of inverting RSA: Specifically, we assume that the RSA collection, as pre-
sented in Section 2.4.3, is one-way. The generator is based on the fact that under this
assumption, the least significant bit (denoted lsb) constitutes a hard-core for the RSA
collection.

The generator uses the seed in order to select a pair of primes (P, Q), an integer
e relatively prime to φ(N) = (P − 1)·(Q − 1), and an element X in the multiplicative

2 We comment that weaker hypotheses can in fact suffice for that purpose. Alternatively, one can postulate that
the function fi is hard to invert on the distribution f j

i (D(i)) for every j < t .

133

PSEUDORANDOM GENERATORS

group mod N
def= P · Q. It outputs the sequence

lsb(X), lsb(Xe mod N), lsb
(

Xe2 modφ(N) mod N
)
, lsb
(

Xe3 modφ(N) mod N
)
, . . .

That is, the function being iterated is Z �→ Ze mod N .

• The intractability of factoring Blum integers: Specifically, we assume that given a prod-
uct of two large primes, each congruent to 3 (mod 4), it is infeasible to retrieve these
primes. The generator is based on the fact that (under this assumption) the least signif-
icant bit constitutes a hard-core predicate for the modular squaring function. We also
use the fact that for such moduli (called Blum integers), modular squaring induces a
permutation over the quadratic residues.

The generator uses the seed in order to select a pair of primes (P, Q), each congruent
to 3 (mod 4), and an element X in the multiplicative group mod N

def= P · Q. It outputs
the sequence

lsb(X), lsb(X2 mod N), lsb
(

X22 modφ(N) mod N
)
, lsb
(

X23 modφ(N) mod N
)
, . . .

That is, the function being iterated is Z �→ Z2 mod N .

All these suggestions rely on a randomized algorithm for selecting random primes.
Thus, regarding the random bits such an algorithm uses, the fewer the better. Obvious
algorithms for generating n-bit-long random primes utilize O(n3) random bits (see
Appendix A). We comment that there are procedures that are more randomness-efficient
for generating an n-bit-long prime, utilizing only O(n) random bits.

3.4.3.∗ Using Hard-Core Functions Rather than Predicates

Construction 3.4.2 (resp., Construction 3.4.4) can be easily generalized to one-way
permutations (resp., collections of one-way permutations) having hard-core functions,
rather than hard-core predicates. The advantage in such constructions is that the number
of bits output by the generator per each application of the one-way permutation is
larger (i.e., greater than 1). We assume familiarity with Section 2.5.3, where hard-core
functions are defined. Next, we present only the generalization of Construction 3.4.4.

Construction 3.4.7: Let (I, D, F) be as in Construction 3.4.4, and suppose that
H is a corresponding hard-core function. Let p(·) be an arbitrary polynomial.
For n ∈ N and r, s ∈ {0, 1}q(n), define G(r, s) = α1 · · ·αp(n), where i

def= I (1n, r),
s0

def= D(i, s), and for every 1 ≤ j ≤ p(|s|) it holds that α j = H (i, s j−1) and
s j = fi (s j−1).

For a hard-core function H , we denote by �H (n) the logarithm to base 2 of the size of
the range of H (i, ·) for i produced by I (1n). Any hard-core predicate can be viewed
as a hard-core function H with �H (n) = 1. Recall that any one-way function can be
modified to have a hard-core function H with �H (n) = O(log n) (see Theorem 2.5.6).
Also, assuming that the RSA collection is one-way, the O(log n) least significant bits
constitute a hard-core function (with �H (n) = O(log n)). The same holds for the Rabin
collection.

134

3.5.∗∗ CONSTRUCTIONS BASED ON ONE-WAY FUNCTIONS

Theorem 3.4.8: Let (I, D, F), H, q(·), p(·), and G be as in Construction 3.4.7,
and suppose that p(n) · �H (n) > 2q(n) for all n’s. Further suppose that for every
i in the range of algorithm I , the random variable D(i) is uniformly distributed
over the set Di . Then G is a pseudorandom generator.

The proof, which is via a natural generalization of the proof of Theorem 3.4.5, is
omitted. Again, the theorem holds even if the distinguishing algorithm gets, in addition
to the p(n) · �H (n)-bit-long sequence to be examined, the index i chosen by G (in the
first step of G’s computation) and the last domain element (i.e., f p(n)

i (s0)) computed
by G. Even with this extra information it is infeasible to distinguish between G(U2q(n))
and Up(n)·�H (n).

The generator of Construction 3.4.7 outputs �H (n) bits per each application of the
one-way collection, where H is the corresponding hard-core function. Thus, if one
could prove the existence of a hard-core function H with �H (n) = �(n) for the Rabin
collection, then a very efficient pseudorandom generator would follow (producing�(n)
bits per each modular squaring with respect to an n-bit modulus).

3.5.∗ Constructions Based on One-Way Functions

It is known that one-way functions exist if and only if pseudorandom generators exist.
However, the currently known construction, which transforms arbitrary one-way func-
tions into pseudorandom generators, is impractical. Furthermore, the proof that this
construction indeed yields pseudorandom generators is very complex and unsuitable
for a book of this nature. Instead, we confine ourselves to a presentation of some of
the ideas underlying this construction, as well as some partial results. (We believe that
these ideas may be useful elsewhere.)

3.5.1. Using 1-1 One-Way Functions

Recall that if f is a 1-1 length-preserving one-way function and b is a corresponding
hard-core predicate, then G(s) def= f (s) · b(s) constitutes a pseudorandom generator,
where x · y denotes the concatenation of the strings x and y. Let us relax the condition
imposed on f and assume that f is a 1-1 one-way function (but is not necessarily length-
preserving). Without loss of generality, we can assume that there exists a polynomial
p(·) such that | f (x)|= p(|x |) for all x’s. In case f is not length-preserving, it follows
that p(n) > n. At first glance, one might think that we could only benefit in such
a case, because f by itself has an expanding property. But on second thought, one
should realize that the benefit is not clear, because the expanded strings may not “look
random.” In particular, it may be the case that the first bit of f (x) is zero for all x’s.
Furthermore, it may be the case that the first | f (x)| − |x | bits of f (x) are all zero for all
x’s. In general, f (Un) may be easy to distinguish from Up(n) (otherwise f itself would
constitute a pseudorandom generator). Hence, in the general case, we need to get rid
of the expansion property of f because it is not accompanied by a “pseudorandom”
property. In general, we need to shrink f (Un) back to a length of approximately n so that

135

PSEUDORANDOM GENERATORS

the shrunk result will induce a uniform distribution. The question is how to efficiently
carry out this shrinking process.

Suppose that there exists an efficiently computable function h such that fh(x) def=
h(f (x)) is length-preserving and 1-1. In such a case we can let G(s) def= h(f (s)) · b(s),
where b is a hard-core predicate for f , and get a pseudorandom generator. The pseu-
dorandomness of G follows from the observation that if b is a hard-core for f , it is
also a hard-core for fh (since an algorithm guessing b(x) from h(f (x)) can be easily
modified so that it guesses b(x) from f (x), by applying h first). The problem is that
we “know nothing about the structure” of f and hence are not guaranteed that such an
h exists. An important observation is that a uniformly selected “hashing” function will
have approximately the desired properties. Hence, hashing functions play a central role
in the construction, and consequently we need to discuss these functions first.

3.5.1.1. Hashing Functions

Let Sm
n be a set of strings representing functions mapping n-bit strings to m-bit strings.

For simplicity we assume that Sm
n = {0, 1}l(n,m) for some function l. In the sequel, we

freely associate the strings in Sm
n with the functions that they represent. Let H m

n be a
random variable uniformly distributed over the set Sm

n . We call Sm
n a hashing family (or

a family of hashing functions) if it satisfies the following three conditions:

1. Sm
n is a pairwise-independent family of mappings: For every x �= y ∈ {0, 1}n , the random

variables H m
n (x) and H m

n (y) are independent and uniformly distributed in {0, 1}m .

2. Sm
n has succinct representation: Sm

n = {0, 1}poly(n,m).

3. Sm
n can be efficiently evaluated: There exists a polynomial-time algorithm that on input

a representation of a function h (in Sm
n) and a string x ∈{0, 1}n returns h(x).

We stress that hashing families as defined here carry no hardness requirement and exist
independently of any intractability assumption.3 One widely used hashing family is the
set of affine transformations mapping n-dimensional binary vectors to m-dimensional
ones (i.e., transformations effected by multiplying the n-dimensional vector by an n-by-
m binary matrix and adding an m-dimensional vector to the result). A hashing family
with more succinct representation is obtained by considering only the transformations
effected by Toeplitz matrices (i.e., matrices that are invariant along the diagonals). For
further details, see Exercise 22.

The following lemma concerning hashing functions is central to our analysis (as
well as to many applications of hashing functions in complexity theory). Loosely
speaking, the lemma asserts that if a random variable Xn does not assign too much
probability mass to any single string, then most h’s in a hashing family will have h(Xn)
distributed almost uniformly. Specifically, when using a hashing family Sm

n , as earlier,
we shall consider only random variables Xn satisfying Pr[Xn= x] . 2−m , for every
x ∈ {0, 1}n .

3 In contrast, notions such as collision-free hashing and universal one-way hashing have a hardness requirement
and exist only if one-way functions exist. (Collision-free hashing and universal one-way hashing will be defined
and discussed in Chapter 6, which will appear in Volume 2.)

136

3.5.∗∗ CONSTRUCTIONS BASED ON ONE-WAY FUNCTIONS

Lemma 3.5.1: Let m < n be integers, Sm
n be a hashing family, and b and δ be two

reals such that m ≤ b ≤ n and δ ≥ 2−
b−m

2 . Suppose that Xn is a random variable
distributed over {0, 1}n such that for every x, it holds that Pr[Xn= x] ≤ 2−b. Then
for every α ∈ {0, 1}m and for all but at most a 2−(b−m)δ−2 fraction of the h’s in
Sm

n , it holds that

Pr[h(Xn) = α] ∈ (1± δ) · 2−m

The average value of Pr[h(Xn)=α], when averaging over all h’s, equals 2−m . Hence the
lemma upper-bounds the fraction of h’s that deviate from the average value. Specifi-
cally, a function h not satisfying Pr[h(Xn)=α] ∈ (1± δ) · 2−m is called bad (for α
and the random variable Xn). The lemma asserts that the fraction of bad functions
is at most 2−(b−m)δ−2. Typically we shall use δ def= 2−

b−m
3 . 1 (making the deviation

from average equal the fraction of bad h’s). Another useful choice is δ ≥ 1 (which
yields an even smaller fraction of bad h’s, yet here non-badness implies only that
Pr[h(Xn) = α] ≤ (1+ δ) · 2−m , since Pr[h(Xn) = α] ≥ 0 always holds).

Proof: Fix an arbitrary random variable Xn satisfying the conditions of the lemma
and an arbitrary α ∈ {0, 1}m . Denote wx

def= Pr[Xn= x]. For every h, we have

Pr[h(Xn) = α] =
∑

x

wxζx (h)

where ζx (h) equals 1 if h(x) = α, and 0 otherwise. Hence, we are interested in the
probability, taken over all possible choices of h, that |2−m −∑x wxζx (h)| > δ2−m .
Looking at the ζx ’s as random variables defined over the random variable H m

n , it
is left to show that

Pr

[∣∣∣∣∣2−m −
∑

x

wxζx

∣∣∣∣∣ > δ · 2−m

]
<

2−(b−m)

δ2

This is proved by applying Chebyshev’s inequality, using the following facts:

1. The ζx ’s are pairwise independent, and Var(ζx) < 2−m (since ζx = 1 with proba-
bility 2−m , and ζx = 0 otherwise).

2. wx ≤ 2−b (by the hypothesis), and
∑

x wx = 1.

Namely,

Pr

[∣∣∣∣∣2−m −
∑

x

wxζx

∣∣∣∣∣ > δ · 2−m

]
≤ Var

[∑
x wxζx

]
(δ · 2−m)2

=
∑

x w
2
x · Var(ζx)

δ2 · 2−2m

<
2−m2−b

δ2 · 2−2m

The lemma follows. �

137

PSEUDORANDOM GENERATORS

3.5.1.2. The Basic Construction

Using any 1-1 one-way function and any hashing family, we can take a major step
toward constructing a pseudorandom generator.

Construction 3.5.2: Let f : {0, 1}∗→{0, 1}∗ be a function satisfying | f (x)|=
p(|x |) for some polynomial p(·) and all x’s. For any integer function l : N → N,
let g : {0, 1}∗→{0, 1}∗ be a function satisfying |g(x)| = l(|x |)+ 1, and let Sn−l(n)

p(n)

be a hashing family. For every x ∈ {0, 1}n and h ∈ Sn−l(n)
p(n) , define

G(x, h) def= (h(f (x)), h, g(x))

Clearly, |G(x, h)| = (|x | − l(|x |))+ |h| + (l(|x |)+ 1) = |x | + |h| + 1. Thus, G satis-
fies the expanding requirement. The next proposition provides an upper bound on the
distinguishability between the output of G and a uniform ensemble (alas, this upper
bound is negligible only if l : N → N is super-logarithmic).

Proposition 3.5.3: Let f , l, g, and G be as before. Suppose that f is 1-1 and
that g is a hard-core function of f . Then for every probabilistic polynomial-time
algorithm A, every positive polynomial p(·), and all sufficiently large n’s,

|Pr[A(G(Un,Uk)) = 1]− Pr[A(Un+k+1) = 1]| < 2 · 2−
l(n)

3 + 1

p(n)

where k is the length of the representation of the hashing functions in Sn−l(n)
p(n) .

Recall that by Exercises 22 and 23 we can use k = O(n). In particular, the forego-
ing proposition holds for functions l(·) of the form l(n) def= c log2 n, where c > 0 is a
constant. For such functions l, every one-way function (can be easily modified into
a function that) has a hard-core g as required in the proposition’s hypothesis (see
Section 2.5.3). Hence, we get very close to constructing a pseudorandom generator
(see later).

Proof Sketch: Let H n−l(n)
p(n) denote a random variable uniformly distributed over

Sn−l(n)
p(n) . We first note that

G(Un+k) ≡ (H n−l(n)
p(n) (f (Un)), H n−l(n)

p(n) , g(Un)
)

Un+k+1 ≡
(
Un−l(n), H n−l(n)

p(n) , Ul(n)+1

)
We consider the hybrid distribution (H n−l(n)

p(n) (f (Un)), H n−l(n)
p(n) , Ul(n)+1). The

proposition is a direct consequence of the following two claims.

Claim 3.5.3.1: The ensembles{(
H n−l(n)

p(n) (f (Un)) , H n−l(n)
p(n) , g(Un)

)}
n∈N

138

3.5.∗∗ CONSTRUCTIONS BASED ON ONE-WAY FUNCTIONS

and {(
H n−l(n)

p(n) (f (Un)) , H n−l(n)
p(n) , Ul(n)+1

)}
n∈N

are polynomial-time-indistinguishable.

Proof Idea: Use a reducibility argument. If the claim does not hold, then con-
tradiction of the hypothesis that g is a hard-core of f is derived. Specifically,
given an algorithm D that violates the claim, we construct an algorithm D′ that,
on input (y, z), uniformly selects h ∈ Sn−l(n)

p(n) and outputs D(h(y), h, z). Then D′

distinguishes between {(f (Un), g(Un))}n∈N and {(f (Un),Ul(n)+1)}n∈N. �

Claim 3.5.3.2: The statistical difference between the random variables(
H n−l(n)

p(n) (f (Un)), H n−l(n)
p(n) ,Ul(n)+1

)
and (

Un−l(n), H n−l(n)
p(n) ,Ul(n)+1

)
is bounded by 2 · 2−l(n)/3.

Proof Idea: Use the hypothesis that Sn−l(n)
p(n) is a hashing family, and apply

Lemma 3.5.1. Specifically, use δ = 2−l(n)/3, note that Pr[f (Un)= y] ≤ 2−n for
every y, and count separately the contributions of bad and non-bad h’s to the
statistical difference between (H n−l(n)

p(n) (f (Un)), H n−l(n)
p(n)) and (Un−l(n), H n−l(n)

p(n)). �

Because the statistical difference is a bound on the ability of algorithms to dis-
tinguish, the proposition follows. �

Extension. Proposition 3.5.3 can be extended to the case in which the function f is
polynomial-to-1 (instead of 1-to-1). Specifically, let f satisfy | f −1(f (x))| < q(|x |) for
some polynomial q(·) and all sufficiently long x’s. The modified proposition asserts
that for every probabilistic polynomial-time algorithm A, every polynomial p(·), and
all sufficiently large n’s,

|Pr[A(G(Un,Uk)) = 1]− Pr[A(Un+k+1) = 1]| < 2 · 2−
l(n)−log2 q(n)

3 + 1

p(n)

where k is as in Proposition 3.5.3.

3.5.1.3. Obtaining Pseudorandom Generators

With Proposition 3.5.3 proved, we consider the possibility of applying it in order to con-
struct pseudorandom generators. We stress that applying Proposition 3.5.3 with length
function l(·) requires having a hard-core function g for f , with |g(x)| = l(|x |)+ 1.
By Theorem 2.5.6 (in Section 2.5.3), such hard-core functions exist essentially for all
one-way functions, provided that l(·) is logarithmic. (Actually, Theorem 2.5.6 asserts
that such hard-cores exist for a modification of any one-way function, where the mod-
ified function preserves the 1-1 property of the original function.) Hence, combining

139

PSEUDORANDOM GENERATORS

Theorem 2.5.6 and Proposition 3.5.3 and using a logarithmic length function, we get
very close to constructing a pseudorandom generator. In particular, for every polyno-
mial p(·), using l(n) def= 3 log2 p(n), we can construct a deterministic polynomial-time
algorithm expanding O(n)-bit-long seeds into (O(n)+ 1)-bit-long strings such that no
polynomial-time algorithm can distinguish the output strings from uniformly chosen
ones with probability greater than 1

p(n) (except for finitely many n’s). Yet this does not
imply that the output is pseudorandom (i.e., that the distinguishing gap is smaller than
any polynomial fraction). An additional idea is needed (because we cannot use l(·)
larger than any logarithmic function). In the sequel, we shall present two alternative
ways of obtaining a pseudorandom generator from Construction 3.5.2.

The First Alternative. As a prelude to the actual construction, we use Construc-
tion 3.3.2 (in Section 3.3.2) in order to increase the expansion factors for the algo-
rithms arising from Construction 3.5.2. In particular, for every i ∈ N, we construct a
deterministic polynomial-time algorithm, denoted Gi , expanding n-bit-long seeds into
n3-bit-long strings such that no polynomial-time algorithm can distinguish the output
strings from uniformly chosen ones with probability greater than 1

ni (except for finitely
many n’s). Denote these algorithms by G1,G2, We now construct a pseudorandom
generator G by letting

G(s) def= G1(s1)⊕ G2(s2)⊕ · · · ⊕ Gm(|s|)
(
sm(|s|)

)
where ⊕ denotes bit-by-bit XOR of strings, s1s2 · · · sm(|s|) = s, |si | = |s|

m(|s|) ± 1, and
m(n) def= 3

√
n.4 Clearly, |G(s)| ≈ (|s|

m(|s|))
3 = |s|2. The pseudorandomness of G follows

by a reducibility argument. Specifically, if for some i and infinitely many n’s, some
polynomial-time algorithm can distinguish G(Un) from Un2 with probability greater
than 1

n2i/3 , then we can distinguish Gi (Un/m(n)) from U(n/m(n))3 (in polynomial time) with
probability greater than 1

n2i/3 = 1
(n/m(n))i , in contradiction to the hypothesis regarding Gi .

The Second Alternative. Here we apply Construction 3.5.2 to the function f defined by

f (x1, . . . , xn) def= f (x1) · · · f (xn)

where |x1| = · · · = |xn| = n. The benefit in applying Construction 3.5.2 to the function
f is that we can use l(n2) def= n − 1, and hence Proposition 3.5.3 indicates that G is a
pseudorandom generator. All that is left is to show that f has a hard-core function that
maps n2-bit strings into n-bit strings. Assuming that b is a hard-core predicate of the
function f , we can construct such a hard-core function for f . Specifically:

Construction 3.5.4: Let f :{0, 1}∗→{0, 1}∗ and b :{0, 1}∗→{0, 1}. Define

f (x1, . . . , xn) def= f (x1) · · · f (xn)

g(x1, . . . , xn) def= b(x1) · · · b(xn)

where |x1| = · · · = |xn| = n.

4 The choice of the function m : N → N is rather arbitrary; any unbounded function m : N → N satisfying
m(n) < n2/3 will do.

140

3.5.∗∗ CONSTRUCTIONS BASED ON ONE-WAY FUNCTIONS

Proposition 3.5.5: Let f and b be as in Construction 3.5.4. If b is a hard-core
predicate of f , then g is a hard-core function of f .

Proof Idea: Use the hybrid technique. The i th hybrid is(
f
(
U (1)

n

)
, . . . , f

(
U (n)

n

)
, b
(
U (1)

n

)
, . . . , b

(
U (i)

n

)
,U (i+1)

1 , . . . ,U (n)
1

)
Indeed, the nth hybrid equals (f (Un2), g(Un2)), whereas the 0th hybrid equals
(f (Un2),Un). Next, show how to transform an algorithm that distinguishes neigh-
boring hybrids into one predicting b(Un) from f (Un). Specifically, this transfor-
mation is analogous to a construction used in the proof of the “opposite direction”
for Theorem 3.3.7 and in the second proof of Theorem 3.4.1. �

Conclusion. Using either of the preceding two alternatives, we get the following:

Theorem 3.5.6: If there exist 1-1 one-way functions, then pseudorandom gener-
ators exist as well.

The entire argument can be extended to the case in which the function f is polynomial-
to-1 (instead of 1-to-1). Specifically, let f satisfy | f −1 f (x)| < q(|x |) for some poly-
nomial q(·) and all sufficiently long x’s. We claim that if f is one-way, then (either
of the preceding alternatives yields that) pseudorandom generators exist. Proving the
latter statement using the first alternative is quite straightforward, given the exten-
sion of Proposition 3.5.3 (stated at the end of Section 3.5.1.2). For proving the state-
ment using the second alternative, apply Construction 3.5.2 to the function f , with

l(n2) def= n − 1+ n · log2 q(n). This requires showing that f has a hard-core function
that maps n2-bit strings into (n · (1+ log2 q(n)))-bit strings. Assuming that g is a hard-
core function of the function f , with |g(x)| = 1+ log2 q(|x |), we can construct such a
hard-core function for f . Specifically,

g(x1, . . . , xn) def= g(x1) · · · g(xn)

where |x1| = · · · = |xn| = n.

3.5.2. Using Regular One-Way Functions

The validity of Proposition 3.5.3 relies heavily on the fact that if f is 1-1, then f (Un)
maintains the “entropy” of Un in a strong sense (i.e., Pr[f (Un) = α] ≤ 2−n for every
α). In this case, it is possible to shrink f (Un) (to n − l(n) bits) and get almost uniform
distribution over {0, 1}n−l(n). As stressed earlier, the condition can be relaxed to requir-
ing that f be polynomial-to-1 (instead of 1-to-1). In such a case, only logarithmic loss
of “entropy” occurs, and such a loss can be compensated by an appropriate increase in
the range of the hard-core function. We stress that hard-core functions of logarithmic
length (i.e., satisfying |g(x)| = O(log |x |)) can be constructed for any one-way func-
tion. However, in general, the function f may not be polynomial-to-1, and in particular
it can map exponentially many pre-images to the same image. If that is the case, then

141

PSEUDORANDOM GENERATORS

applying f to Un will yield a great loss in “entropy” that cannot be compensated by

using the foregoing methods. For example, if f (x, y) def= f ′(x)0|y| for |x |=|y| then
Pr[f (Un) = α] ≥ 2−

|α|
2 for some α’s. In this case, achieving uniform distribution from

f (Un) requires shrinking it to length approximately n/2. In general, we cannot com-
pensate for these lost bits (using the foregoing methods), because f may not have a
hard-core with such a huge range (i.e., a hard-core g satisfying |g(α)| > |α|

2). Hence,
in this case, a new idea is needed and indeed is presented next.

The idea is that in case f maps different pre-images into the same image y, we
can augment y by the index of the pre-image in the set f −1(y), without damaging
the hardness-to-invert of f . Namely, we define F(x) def= f (x) · idx f (x), where idx f (x)
denotes the index (say by lexicographic order) of x in the set {x ′ : f (x ′)= f (x)}. We
claim that inverting F is not substantially easier than inverting f . This claim can be
proved by a reducibility argument. Given an algorithm for inverting F , we can invert f
as follows. On input y (supposedly in the range of f (Un)), we first select m uniformly
in {1, . . . , n}, next select i uniformly in {1, . . . , 2m}, and finally try to invert F on (y, i).
When analyzing this algorithm, consider the case i =)log2 | f −1(y)|*.

The suggested function F does preserve the hardness-to-invert of f . The problem is
that F does not preserve the easy-to-compute property of f . In particular, for general
f , it is not clear how to compute idx f (x); the best we can say is that this task can be
performed in exponential time (and polynomial space). Again, hashing functions come
to the rescue. Suppose, for example, that f is 2m-to-1 on strings of length n. Then we can
let idx f (x) = (H m

n , H m
n (x)), obtaining “probabilistic indexing” of the set of pre-images.

We stress that applying this idea requires having a good estimate for the size of the set of
pre-images (of a given image). That is, given x , it should be easy to compute | f −1(f (x))|.
A simple case where such an estimate is handy is the case of regular functions.

Definition 3.5.7 (Regular Functions): A function f :{0, 1}∗→{0, 1}∗ is called
regular if there exists an integer function m :N→N such that for all sufficiently
long x ∈ {0, 1}∗, it holds that

|{y : f (x) = f (y) ∧ |x | = |y|}| = 2m(|x |)

For simplicity, the reader can further assume that there exists an algorithm that on input
n computes m(n) in poly(n) time. As we shall see at the end of this subsection, one can
do without this assumption. For the sake of simplicity (of notation), we assume in the
sequel that if f (x) = f (y), then |x | = |y|.

Construction 3.5.8: Let f : {0, 1}∗→{0, 1}∗ be a regular function, with m(|x |) =
log2 | f −1(f (x))| for some integer function m(·). Let l :N→N be an integer func-
tion, and Sm(n)−l(n)

n a hashing family. For every x ∈ {0, 1}n and h ∈ Sm(n)−l(n)
n ,

define

F(x, h) def= (f (x), h(x), h)

If f can be computed in polynomial time and m(n) can be computed from n in poly(n)
time, then F can be computed in polynomial time. We now show that if f is a regular

142

3.5.∗∗ CONSTRUCTIONS BASED ON ONE-WAY FUNCTIONS

one-way function, then F is “hard to invert.” Furthermore, if l(·) is logarithmic, then F
is “almost 1-1.”

Proposition 3.5.9: Let f , m, l, and F be as in Construction 3.5.8. Suppose that
there exists an algorithm that on input n computes m(n) in poly(n) time. Then:

1. F is “almost” 1-1:

Pr
[∣∣F−1 F

(
Un, H m(n)−l(n)

n

)∣∣ > 2l(n)+1
]
< O

(
n · 2−l(n)/4

)
(Recall that H k

n denotes a random variable uniformly distributed over Sk
n .)

2. F “preserves” the one-wayness of f :
If f is strongly (resp., weakly) one-way, then so is F.

Proof Sketch: Part 1 is proved by applying Lemma 3.5.1, using the hypothe-
sis that Sm(n)−l(n)

n is a hashing family. Specifically, Lemma 3.5.1 implies that for
every α and all but a 2−l(n) fraction of h ∈ Sm(n)−l(n)

n , it holds that Pr[h(Un)=α] ≤
2−m(n)+l(n)+1. Thus, for every α, it holds that Pr[|F−1(α, H m(n)−l(n)

n)| > 2l(n)+1]<
2−l(n). Letting B

def= {(α, h) : |F−1(α, h)|>2l(n)+1}, we have Pr[(Um(n)−l(n),

H m(n)−l(n)
n)∈ B] < 2−l(n). Using Claim 3.5.9.1 (given later), it follows that

Pr[(H m(n)−l(n)
n (Un), H m(n)−l(n)

n)∈ B] < O(m(n) · 2−l(n))1/4, as required in Part 1.
Part 2 is proved using a reducibility argument. Assuming, to the contradiction,

that there exists an efficient algorithm A that inverts F with unallowable success
probability, we construct an efficient algorithm A′ that inverts f with unallowable
success probability (reaching contradiction). For the sake of concreteness, we
consider the case in which f is strongly one-way and assume, to the contradiction,
that algorithm A inverts F on F(Un, H m(n)−l(n)

n) with success probability ε(n),such
that ε(n) > 1

poly(n) for infinitely many n’s. Following is a description of A′.
On input y (supposedly in the range of f (Un)), algorithm A′ selects uniformly

h ∈ Sm(n)−l(n)
n and α ∈ {0, 1}m(n)−l(n) and initiates A on input (y, α, h). Algorithm

A′ sets x to be the n-bit-long prefix of A(y, α, h) and outputs x .
Clearly, algorithm A′ runs in polynomial time. We now evaluate the success

probability of A′. For every possible input y to algorithm A′, we consider a
random variable Xn uniformly distributed in f −1(y) (i.e., Pr[Xn = α] = 2−m(n)

if α ∈ f −1(y), and Pr[Xn = α] = 0 otherwise). Let δ(y) denote the success
probability of algorithm A on input (y, H k

n (Xn), H k
n), where n

def= |y| and
k

def= m(n)− l(n). That is,

δ(y) def= Pr
[
A
(

y, H k
n (Xn), H k

n

) ∈ F−1(y, H k
n (Xn), H k

n

)]
(3.14)

By the contradiction hypothesis (and the definition of δ(y)), it holds that
E[δ(f (Un))] = ε(n), and Pr[δ(f (Un))> ε(n)

2] > ε(n)
2 follows. We fix an arbitrary

y ∈ {0, 1}n such that δ(y) > ε(n)
2 . We prove the following technical claim.

Claim 3.5.9.1: Let k ≤ n be natural numbers, and let Xn ∈ {0, 1}n be a random
variable satisfying Pr[Xn= x] ≤ 2−k for all x ∈ {0, 1}n . Suppose that B is a set

143

PSEUDORANDOM GENERATORS

of pairs, and

δ
def= Pr

[(
H k

n (Xn), H k
n

)∈ B
]

Then

Pr
[(

Uk, H k
n

)∈ B
]
>

δ4

O(k)

Using the definition of A′ and applying Claim 3.5.9.1 to Eq. (3.14), it follows
that the probability that A′ inverts f on y equals

Pr
[
A
(

y,Uk, H k
n

) ∈ F−1(y,Uk, H k
n

)]
>
δ(y)4

O(k)
>
δ(y)4

O(n)
(3.15)

Thus,

Pr[A′(f (Un)) ∈ f −1(f (Un))]

≥ Pr

[
δ(f (Un)) >

ε(n)

2

]
· Pr

[
A′(f (Un)) ∈ f −1(f (Un))

∣∣∣∣ δ(f (Un)) >
ε(n)

2

]
>
ε(n)

2
· (ε(y)/2)4

O(n)

We reach a contradiction (to the hypothesis that f is strongly one-way), and the
proposition follows.5 All that is left is to prove Claim 3.5.9.1. The proof, which
follows, is rather technical. �

We stress that the fact that m(n) can be computed from n does not play an essential
role in the reducibility argument (as it is possible to try all possible values of m(n)).

Claim 3.5.9.1 is of interest for its own sake. However, its proof provides no significant
insights and can be skipped without significant damage (especially by readers who are
more interested in cryptography than in “probabilistic analysis”).

Proof of Claim 3.5.9.1: We first use Lemma 3.5.1 to show that only a “tiny” fraction
of the hashing functions in Sk

n can map a “large” probability mass into “small” subsets.
Once this is done, the claim is proved by dismissing those few bad functions and relating
the two probabilities, appearing in the statement of the claim, conditioned on the function
not being bad. Details follow.

We begin by bounding the fraction of the hashing functions that map a “large” prob-
ability mass into “small” subsets. We say that a function h ∈ Sk

n is (T, �)-expanding if
there exists a set R ⊂ {0, 1}k of cardinality� · 2k such that Pr[h(Xn)∈ R] ≥ (T + 1) ·�.

5 In case f is weakly one-way, the argument is slightly modified. Specifically, suppose that for some positive
polynomial, any probabilistic polynomial-time algorithm that tries to invert f on f (Un) fails with probability at
least 1/p(n). We claim that any probabilistic polynomial-time algorithm that tries to invert F on F(Un, Hk

n) fails
with probability at least 1/4p(n). Suppose, toward the contradiction, that there exists a probabilistic polynomial-
time algorithm that inverts F on F(Un, Hk

n) with probability at least 1− ε(n), where ε(n) ≤ 1/4p(n). Then, for
δ(·), as before, it holds that E[δ(f (Un))] = 1− ε(n), and Pr[δ(f (Un)) ≥ 1− 2p(n)ε(n)] ≥ 1− 1

2p(n) follows.
Using ε(n) ≤ 1/4p(n), we infer that for at least a 1− 1

2p(n) fraction of the n-bit-long strings x , it holds that
δ(f (x)) ≥ 1

2 . Applying Claim 3.5.9.1, it follows that (for these x’s) the probability that A′ inverts f on f (x)
is �(1/n). Considering an algorithm that iterates A′ for O(n2) times, we obtain a probabilistic polynomial-
time algorithm that inverts f on f (Un) with success probability at least (1− 1

2p(n)) · (1− 2−n) > 1− 1
p(n) , in

contradiction to our hypothesis concerning f .

144

3.5.∗∗ CONSTRUCTIONS BASED ON ONE-WAY FUNCTIONS

That is, h maps to some small set (of density �) a probability mass T + 1 times the den-
sity of the set (i.e., h maps a relatively large probability mass to this set). Our first goal
is to prove that for some constant c > 0, at most δ4 of the h’s are (c·k

δ2 ,
δ3

3c·k)-expanding. In

other words, only δ
4 of the functions map to some set of density δ3

3c·k a probability mass of
more than (c·k

δ2 + 1) · δ3

3c·k ≈ δ
3 .

We start with a related question. We say that α ∈ {0, 1}k is t-overweighted by the func-
tion h if Pr[h(Xn) = α] ≥ (t + 1) · 2−k . A function h ∈ Sk

n is called (t, ρ)-overweighting
if there exists a set R ⊂ {0, 1}k of cardinality ρ2k such that each α∈ R is t-overweighted
by h. (Clearly, if h is (t, ρ)-overweighting, then it is also (t, ρ)-expanding, but the con-
verse is not necessarily true.) We first show that at most a 1

t2ρ
fraction of the h’s are

(t, ρ)-overweighting. The proof is in two steps:

1. Recall that Pr[Xn= x] ≤ 2−k for every x . Using Lemma 3.5.1, it follows that each
α∈{0, 1}k is t-overweighted by at most a t−2 fraction of the h’s.

2. Consider a bipartite graph having (t, ρ)-overweighting functions on one side and
k-bit-long strings on the other side such that (h, α) ∈ Sk

n × {0, 1}k is an edge in
this graph if and only if α is t-overweighted by h. In this graph, each of the
(t, ρ)-overweighting functions has degree at least ρ · 2k , whereas each image α
has degree at most t−2 · |Sk

n |. Thus, the number of (t, ρ)-overweighting functions
is at most 2k ·(t−2·|Sk

n |)
ρ·2k = 1

t2ρ
· |Sk

n |.
We now relate the expansion and overweighting properties, showing that upper bounds

on the number of overweighting functions yield upper bounds on the number of expanding
functions (which is the non-trivial direction). Specifically, we prove the following:

Subclaim: For T ≥ 4, if h is (T, �)-expanding, then there exists an integer i ∈ {1, . . . ,
k + 2} such that h is (T · 2i−3, �

k·2i+1)-overweighting.

The subclaim is proved as follows: Let R be a set of cardinality � · 2k such that
Pr[h(Xn)∈ R] ≥ (T + 1) ·�. For i = 1, . . . , k + 3, let Ri ⊆ R denote the subset of points
in R that are (2i−3 · T)-overweighted by h. (Indeed, Rk+3 = ∅.) Suppose, contrary to the
claim, that |Ri | < �

k·2i+1 · 2k for every i ∈ {1, . . . , k + 2}. Then for T ≥ 4 and k ≥ 1,

Pr[h(Xn) ∈ R] = Pr[h(Xn) ∈ (R \ R1)] + Pr

[
h(Xn) ∈

k+2⋃
i=1

(Ri \ Ri+1)

]

≤
(

T

4
+ 1

)
·� +

k+2∑
i=1

(
2(i+1)−3 · T + 1

) · |Ri \ Ri+1|
2k

<

(
T

4
+ 1

)
·� +

k+2∑
i=1

(2i−2 · T + 1) · �

k · 2i+1

≤ (T + 1) ·�
which contradicts the hypothesis regarding R.

Using this subclaim (for any T ≥ 4 and� > 0), the fraction of the h’s that are (T, �)-
expanding is bounded above by

k∑
i=1

1

(T · 2i−3)2 · �
k·2i+1

<
128k

T 2 ·�

145

PSEUDORANDOM GENERATORS

where the i th term in the sum is an upper bound on the fraction of the h’s that are
(T · 2i−3, �

k·2i+1)-overweighting. For c = 1536, setting T = ck
δ2 and� = δ3

3ck , we conclude
that at most a 128k

(ck/δ2)2·(δ3/3ck) = δ
4 fraction of the h’s are (ck

δ2 ,
δ3

3ck)-expanding.
Having established an upper bound on suitably expanding functions, we now turn to

the actual claim. Specifically, we call h honest if it is not (1536k
δ2 , δ3

4608k)-expanding. There
are two important facts about honest functions:

Fact 1: All but at most a δ
4 fraction of the h’s are honest.

Fact 2: If h is honest and Pr[h(Xn)∈ R] ≥ δ
2 , then Pr[Uk ∈ R] ≥ δ3

4608k . (Suppose that h

is honest and Pr[Uk ∈ R] ≤ δ3

4608k holds. Then Pr[h(Xn)∈ R] < (1536k
δ2 + 1) · δ3

4608k =
δ
3 + δ3

4608k <
δ
2 .)

Concentrating on the honest h’s, we now evaluate the probability that (α, h) hits B when
α is uniformly chosen. We call h good if Pr[(h(Xn), h)∈ B] ≥ δ

2 . Using the Markov
inequality (and the definition of δ), we get the following:

Fact 3: The probability that H k
n is good is at least δ2 .

Denote by P (for “perfect”) the set of h’s that are both good and honest. Combining
Facts 1 and 3, we have the following:

Fact 4: Pr[H k
n ∈ P] ≥ δ

2 − δ
4 = δ

4 .

Let Bh
def= {α : (α, h)∈ B}. Clearly, for every h ∈ P we have Pr[h(Xn)∈ Bh] ≥ δ

2 (since h

is good), and Pr[Uk ∈ Bh] ≥ δ3

4608k (since h is honest and the hypothesis of Fact 2 applies
to Bh). Thus:

Fact 5: For every h ∈ P , it holds that Pr[(Uk, h)∈ B] ≥ δ3

4608k .

Combining Facts 4 and 5, we have

Pr
[(

Uk, H k
n

)∈ B
] ≥ Pr

[(
Uk, H k

n

)∈ B
∣∣ H k

n ∈ P
] · Pr

[
H k

n ∈ P
]

≥ δ3

4608k
· δ

4

and the claim follows. �

Applying Proposition 3.5.9

It is possible to apply Construction 3.5.2 to the function resulting from Construc-
tion 3.5.8 and have the statement of Proposition 3.5.3 still hold, with minor modifica-
tions. Specifically, the modified bound (analogous to Proposition 3.5.3) is 2−�(l(n)) +

1
p(n) (instead of 2 · 2−

l(n)
3 + 1

p(n)) for every positive polynomial p. The argument leading
to Theorem 3.5.6 remains valid as well. Furthermore, we can even waive the require-
ment that m(n) can be computed (since we can construct functions Fm for every possible
value of m(n)). Finally, we note that the entire argument holds even if the definition of
regular functions is relaxed as follows.

Definition 3.5.10 (Regular Functions, Revised Definition): A function f :
{0, 1}∗→{0, 1}∗ is called regular if there exists an integer function m ′ :

146

3.5.∗∗ CONSTRUCTIONS BASED ON ONE-WAY FUNCTIONS

N → N and a polynomial q(·) such that for all sufficiently long x ∈ {0, 1}∗, it
holds that

2m′(|x |) ≤ |{y : f (x)= f (y)}| ≤ q(|x |) · 2m′(|x |)

When using these (relaxed) regular functions in Construction 3.5.8, set m(n) def= m ′(n).
The resulting function F will have a slightly weaker “almost” 1-1 property. Namely,

Pr
[∣∣F−1(F(Un, H m(n)−l(n)

n

))∣∣ > q(n) · 2l(n)+1] < 2−�(l(n))

The application of Construction 3.5.2 will be modified accordingly. We get the
following:

Theorem 3.5.11: If there exist regular one-way functions, then pseudorandom
generators exist as well.

3.5.3. Going Beyond Regular One-Way Functions

The proof of Proposition 3.5.9 relies heavily on the fact that the one-way function f
is regular (at least in the weak sense). Alternatively, Construction 3.5.8 needs to be
modified so that different hashing families are associated with different x ∈ {0, 1}n .
Furthermore, the argument leading to Theorem 3.5.6 cannot be repeated unless it is
easy to compute the cardinality of set f −1(f (x)) given x . Note that this time we cannot
construct functions Fm for every possible value of)log2 | f −1(y)|*, because none of the
functions may satisfy the statement of Proposition 3.5.9. Again, a new idea is needed.

A key observation is that although the value of log2 | f −1(f (x))| may vary for dif-
ferent x ∈ {0, 1}n , the value m(n) def= E(log2 | f −1(f (Un))|) is unique. Furthermore, the
function f defined by

f (x1, . . . , xn2) def= f (x1), . . . , f (xn2)

where |x1|= · · · =|xn2 | = n, has the property that all but a negligible fraction of the
domain resides in pre-image sets, with the logarithm of their cardinality not deviating
too much from the expected value. Specifically, let m(n3) def= E(log2 | f

−1
(f (Un3))|).

Clearly, m(n3) = n2 · m(n). Using the Chernoff bound, we get

Pr[|m(n3)− log2 | f
−1

(f (Un3))|| > n2] < 2−n

Suppose we apply Construction 3.5.8 to f , setting l(n3) def= n2. Denote the resulting
function by F . Suppose we apply Construction 3.5.2 to F , this time setting
l(n3) def= 2n2 − 1. Using the ideas presented in the proofs of Propositions 3.5.3 and 3.5.9,
we can show that if the function mapping n3 bits to l(n3)+ 1 bits used in Construc-
tion 3.5.2 is a hard-core of F , then the resulting algorithm constitutes a pseudorandom
generator. Yet, we are left with the problem of constructing a huge hard-core function
G for the function F . Specifically, |G(x)| has to equal 2|x | 2

3 for all x’s. A natural idea
is to define G analogously to the way g is defined in Construction 3.5.4. Unfortunately,
we do not know how to prove the validity of this construction (when applied to F), and
a much more complicated construction is required. This construction does use all the

147

PSEUDORANDOM GENERATORS

foregoing ideas in conjunction with additional ideas not presented here. The proof of
the validity of this construction is even more complex and is not suitable for a book of
this nature. Thus we merely state the result obtained.

Theorem 3.5.12: If there exist one-way functions, then pseudorandom generators
exist as well.

We conclude by mentioning that a non-uniform complexity analogue of Theorem 3.5.12
holds, and in fact is considerably easier to establish:

Theorem 3.5.13: Suppose there exist non-uniformly one-way functions (as per
Definition 2.2.6). Then there exist pseudorandom generators. Furthermore, the
output ensemble of these generators is indistinguishable from the uniform ensem-
ble by polynomial-size circuits (as per Definition 3.2.7).

3.6. Pseudorandom Functions

In this section we present definitions and constructions for pseudorandom functions
(using any pseudorandom generator as a building block). Pseudorandom functions will
be instrumental for some constructions to be presented in Chapters 5 and 6 of Volume 2.

Motivation. Recall that pseudorandom generators enable us to generate, exchange, and
share a large number of pseudorandom values at the cost of a much smaller number of
random bits. Specifically, poly(n) pseudorandom bits can be generated, exchanged, and
shared at the cost of n (uniformly chosen bits). Because any efficient application uses
only a polynomial number of random values, providing access to polynomially many
pseudorandom entries might seem sufficient for any such application. But that conclu-
sion is too hasty, because it assumes implicitly that these entries (i.e., the addresses
to be accessed) are fixed beforehand. In some natural applications, one may need to
access addresses that are determined “dynamically” by the application. For example,
we may want to assign random values to (poly(n)-many) n-bit-long strings, produced
throughout the application, so that these values can be retrieved at a later time. Using
pseudorandom generators, that task can be achieved at the cost of generating n random
bits and storing poly(n)-many values. The challenge, met in this section, is to carry
out that task at the cost of generating only n random bits and storing only n bits. The
key to the solution is the notion of pseudorandom functions. Intuitively, a pseudoran-
dom function shared by a group of users gives them a function that appears random to
adversaries (outside of the group).

3.6.1. Definitions

Loosely speaking, pseudorandom functions are functions that cannot be distinguished
from truly random functions by any efficient procedure that can get the values of
the functions at arguments of its choice. Hence, the distinguishing procedure may

148

3.6. PSEUDORANDOM FUNCTIONS

query the function being examined at various points, depending possibly on previous
answers obtained, and yet cannot tell whether the answers were supplied by a function
taken from the pseudorandom ensemble (of functions) or by one from the uniform
ensemble (of functions). Indeed, to formalize the notion of pseudorandom functions,
we need to consider ensembles of functions. For the sake of simplicity, we shall consider
ensembles of length-preserving functions, and in the following the reader is encouraged
to further simplify the discussion by setting �(n) = n. Generalizations are discussed in
Section 3.6.4.

Definition 3.6.1 (Function Ensembles): Let � : N → N (e.g., �(n) = n). An
��-bit function ensemble is a sequence F = {Fn}n∈N of random variables such
that the random variable Fn assumes values in the set of functions mapping
�(n)-bit-long strings to �(n)-bit-long strings. The uniform ��-bit function en-
semble, denoted H = {Hn}n∈N, has Hn uniformly distributed over the set of all
functions mapping �(n)-bit-long strings to �(n)-bit-long strings.

To formalize the notion of pseudorandom functions, we use (probabilistic
polynomial-time) oracle machines (see Section 1.3.5). We stress that our use of the
term “oracle machine” is almost identical to the standard usage. One minor deviation is
that the oracle machines we consider have a length-preserving function as oracle, rather
than a Boolean function (as is more standard in complexity theory). Furthermore, we
assume that on input 1n , the oracle machine makes queries of only length �(n). These
conventions are not really essential (they merely simplify the exposition a little). We let
M f denote the execution of the oracle machine M when given access to the oracle f .

Definition 3.6.2 (Pseudorandom Function Ensembles): An �-bit function
ensemble F = {Fn}n∈N is called pseudorandom if for every probabilistic poly-
nomial-time oracle machine M, every polynomial p(·), and all sufficiently large
n’s, ∣∣Pr

[
M Fn (1n)=1

]− Pr
[
M Hn (1n)=1

]∣∣ < 1

p(n)

where H = {Hn}n∈N is the uniform �-bit function ensemble.

Using techniques similar to those presented in the proof of Proposition 3.2.3 (in
Section 3.2.2), we can demonstrate the existence of pseudorandom function ensembles
that are not statistically close to the uniform one. However, to be of practical use, we
require that the pseudorandom functions can be efficiently computed. That is, functions
in the ensemble should have succinct representations that support both selecting them
and evaluating them. These aspects are captured by the following definition, in which
I is an algorithm selecting representations of functions (which are associated to the
functions themselves by the mapping φ).

Definition 3.6.3 (Efficiently Computable Function Ensembles): An �-bit func-
tion ensemble F = {Fn}n∈N is called efficiently computable if the following two
conditions hold:

149

PSEUDORANDOM GENERATORS

1. Efficient indexing: There exists a probabilistic polynomial-time algorithm I and
a mapping from strings to functions, φ, such that φ(I (1n)) and Fn are identically
distributed.

We denote by fi the function assigned to the string i (i.e., fi
def= φ(i)).

2. Efficient evaluation: There exists a polynomial-time algorithm V such that
V (i, x) = fi (x) for every i in the range of I (1n) and x ∈ {0, 1}�(n).

In particular, functions in an efficiently computable function ensemble have relatively
succinct representations (i.e., of polynomial (in n) rather than exponential (in n) length).
It follows that efficiently computable function ensembles can have only exponentially
many functions (out of the double-exponentially many possible functions, assuming
�(n) = n).

Another point worth stressing is that efficiently computable pseudorandom functions
can be efficiently evaluated at given points provided that the function description is given
as well. However, if the function (or its description) is not known, then the value of the
function at a given point cannot be approximated, even in a very liberal sense and even
if the values of the function at other points are given.

Terminology. In the rest of this book we consider only efficiently computable pseudo-
random function ensembles. Hence, whenever we talk of pseudorandom functions, we
actually mean functions chosen at random from an efficiently computable pseudoran-
dom function ensemble.

Observe that, without loss of generality, the sequence of coin tosses used by the in-
dexing algorithm in Definition 3.6.3 can serve as the function’s description. Combining
this observation with Definition 3.6.2, we obtain the following alternative definition of
efficiently computable pseudorandom functions:

Definition 3.6.4 (Efficiently Computable Pseudorandom Function Ensem-
bles, Alternative Formulation): An efficiently computable pseudorandom
function ensemble (pseudorandom function) is a set of finite functions{

fs : {0, 1}�(|s|) → {0, 1}�(|s|)}s∈{0,1}∗

where � : N → N and the following two conditions hold:

1. Efficient evaluation: There exists a polynomial-time algorithm that on input s and
x ∈ {0, 1}�(|s|) returns fs(x).

2. Pseudorandomness: The function ensemble F = {Fn}n∈N, defined so that Fn is
uniformly distributed over the multi-set { fs}s∈{0,1}n , is pseudorandom.

We comment that more general notions of pseudorandom functions can be defined and
constructed analogously; see Section 3.6.4.

3.6.2. Construction

Using any pseudorandom generator, we can construct a pseudorandom function en-
semble (for �(n) = n) that is efficiently computable.

150

3.6. PSEUDORANDOM FUNCTIONS

Construction 3.6.5: Let G be a deterministic algorithm that expands inputs of
length n into strings of length 2n. We denote by G0(s) the |s|-bit-long prefix of
G(s), and by G1(s) the |s|-bit-long suffix of G(s) (i.e., G(s) = G0(s)G1(s)). For
every s ∈ {0, 1}n, we define a function fs :{0, 1}n→{0, 1}n such that for every
σ1, . . . , σn ∈{0, 1},

fs(σ1σ2 · · · σn) def= Gσn

(· · · (Gσ2

(
Gσ1 (s)

)) · · ·)
That is, on input s and x = σ1σ2 · · · σn, the value fs(x) is computed as follows:

Let y = s.
For i = 1 to n, do

y ← Gσi (y).

Output y.

Let Fn be a random variable defined by uniformly selecting s ∈ {0, 1}n and setting
Fn = fs . Finally, let F = {Fn}n∈N be our function ensemble.

Pictorially (see Figure 3.5), the function fs is defined by n-step walks down a full binary
tree of depth n having labels at the vertices. The root of the tree, hereafter referred to as
the level-0 vertex of the tree, is labeled by the string s. If an internal vertex is labeled r ,
then its left child is labeled G0(r), whereas its right child is labeled G1(r). The value of

We let sλ = s and sασ = Gσ (sα). The value of fs(σ1σ2 · · · σn) = sσ1σ2···σn is
obtained at the leaf reachable from the root (labeled s) by following the path
σ1σ2 · · · σn .

0s1 s1

s0
s1

s01s00

s101

s

1

0 1

0 1 0 1

0 0 0 0 1111

s s s s s s111011 110s100000 001 010

For example, fs(001) = s001 = G1(s00) = G1(G0(s0)) = G1(G0(G0(s))).

Figure 3.5: Construction 3.6.5, for n=3

151

PSEUDORANDOM GENERATORS

fs(x) is the string residing in the leaf reachable from the root by a path corresponding
to the string x . The random variable Fn is assigned labeled trees corresponding to all
possible 2n labelings of the root, with uniform probability distribution.

A function operating on n-bit strings in the ensemble just constructed can be specified
by n bits. Hence, selecting, exchanging, and storing such a function can be implemented
at the cost of selecting, exchanging, and storing a single n-bit string.

Theorem 3.6.6: Let G and F be as in Construction 3.6.5, and suppose that G
is a pseudorandom generator. Then F is an efficiently computable ensemble of
pseudorandom functions.

Combining Theorems 3.5.12 and 3.6.6, we immediately get the following:

Corollary 3.6.7: If there exist one-way functions, then pseudorandom functions
exist as well.

Also, combining Theorem 3.6.6 with the observation that for �(n) > log2 n, any pseu-
dorandom function (as in Definition 3.6.4) gives rise to a pseudorandom generator (see
Exercise 28), we obtain the following:

Corollary 3.6.8: Pseudorandom functions (for super-logarithmic �) exist if and
only if pseudorandom generators exist.

Proof of Theorem 3.6.6: Clearly, the ensemble F is efficiently computable. To
prove that F is pseudorandom, we use the hybrid technique. The kth hybrid will
be assigned a function that results from uniformly selecting labels for the vertices
of the kth (highest) level of the tree and computing the labels for lower levels
as in Construction 3.6.5. The 0 hybrid will correspond to the random variable
Fn (since a uniformly chosen label is assigned to the root), whereas the n hybrid
will correspond to the uniform random variable Hn (since a uniformly chosen
label is assigned to each leaf). It will be shown that an efficient oracle machine
distinguishing neighboring hybrids can be transformed into an algorithm that
distinguishes polynomially many samples of G(Un) from polynomially many
samples of U2n . Using Theorem 3.2.6, we derive a contradiction to the hypothesis
(that G is a pseudorandom generator). Details follows.

For every k, with 0 ≤ k ≤ n, we define a hybrid distribution H k
n , assigned

as values functions f : {0, 1}n→{0, 1}n , as follows. For every s1, s2, . . . , s2k ∈
{0, 1}n , we define a function fs1,...,s2k :{0, 1}n→{0, 1}n such that

fs1,...,s2k (σ1σ2 · · · σn) def= Gσn

(· · · (Gσk+2

(
Gσk+1

(
sidx(σk ···σ1)

))) · · ·)
where idx(α) is the index of α in the standard lexicographic order of binary
strings of length |α|. Namely, fs1,...,s2k (x) is computed by first using the k-bit-
long prefix of x to determine one of the s j ’s and then using the (n − k)-bit-long
suffix of x to determine which of the functions G0 and G1 to apply at each of the

152

3.6. PSEUDORANDOM FUNCTIONS

remaining stages (of Construction 3.6.5). The random variable H k
n is uniformly

distributed over the (2n)2k
possible functions (corresponding to all possible choices

of s1, s2, . . . , s2k ∈ {0, 1}n). Namely,

H k
n

def= f
U (1)

n ,...,U (2k)
n

where U (j)
n ’s are independent random variables, each uniformly distributed over

{0, 1}n .
At this point it is clear that H 0

n is identical with Fn , whereas H n
n is identical

to Hn . Again, as is usual in the hybrid technique, the ability to distinguish the
extreme hybrids yields the ability to distinguish a pair of neighboring hybrids.
This ability is further transformed so that contradiction to the pseudorandomness
of G is reached. Further details follow.

We assume, in contradiction to the theorem, that the function ensemble F is
not pseudorandom. It follows that there exists a probabilistic polynomial-time
oracle machine M and a polynomial p(·) such that for infinitely many n’s,

�(n) def= ∣∣Pr
[
M Fn (1n)=1

]− Pr
[
M Hn (1n)=1

]∣∣ > 1

p(n)

Let t(·) be a polynomial bounding the running time of M(1n) (such a polynomial
exists because M is a polynomial-time machine). It follows that on input 1n , the
oracle machine M makes at most t(n) queries (since the number of queries is
clearly bounded by the running time). Using the machine M , we construct an
algorithm D that distinguishes the t(·)-product of the ensemble {G(Un)}n∈N from
the t(·)-product of the ensemble {U2n}n∈N as follows.

Algorithm D : On input α1, . . . , αt ∈ {0, 1}2n (with t = t(n)), algorithm D pro-
ceeds as follows. First, D selects uniformly k ∈ {0, 1, . . . , n − 1}. This random
choice, hereafter called the checkpoint, is the only random choice made by D it-
self. Next, algorithm D invokes the oracle machine M (on input 1n) and answers
M’s queries as follows. The first query of machine M , denoted q1, is answered by

Gσn

(· · · (Gσk+2

(
Pσk+1 (α1)

)) · · ·)
where q1 = σ1 · · · σn , (α1 is the first input string) and P0(α) (resp., P1(α)) denotes
the n-bit prefix of α (resp., the n-bit suffix of α). In addition, algorithm D records
this query (i.e., q1). Each subsequent query is answered by first checking to see
if its k-bit-long prefix equals the k-bit-long prefix of a previous query. In case the
k-bit-long prefix of the current query, denoted qi , is different from the k-bit-long
prefixes of all previous queries, we associate this prefix with a new input string
(i.e., αi). Namely, we answer query qi by

Gσn

(· · · (Gσk+2

(
Pσk+1 (αi)

)) · · ·)
where qi = σ1 · · · σn . In addition, algorithm D records the current query (i.e.,
qi). The other possibility is that the k-bit-long prefix of the i th query equals the
k-bit-long prefix of some previous query. Let j be the smallest integer such that
the k-bit-long prefix of the i th query equals the k-bit-long prefix of the j th query

153

PSEUDORANDOM GENERATORS

(by hypothesis, j < i). Then we record the current query (i.e., qi), but answer it
using the string associated with query q j (i.e., the input string α j). Namely, we
answer query qi by

Gσn

(· · · (Gσk+2

(
Pσk+1 (α j)

)) · · ·)
where qi = σ1 · · · σn . Finally, when machine M halts, algorithm D halts as well
and outputs the same output as M .

Pictorially, algorithm D answers the first query by first placing the two halves of
α1 in the corresponding children of the tree’s vertex reached by following the path
from the root corresponding to σ1 · · · σk . The labels of all vertices in the subtree
corresponding to σ1 · · · σk are determined by the labels of these two children
(as in the construction of F). Subsequent queries are answered by following
the corresponding paths from the root. In case the path does not pass through a
(k + 1)-level vertex that already has a label, we assign this vertex and its sibling
a new string (taken from the input). For the sake of simplicity, in case the path
of the i th query requires a new string, we use the i th input string (rather than the
first input string not used thus far). In case the path of a new query passes through
a (k + 1)-level vertex that has already been labeled, we use this label to compute
the labels of subsequent vertices along this path (and in particular the label of
the leaf). We stress that the algorithm does not compute the labels of all vertices
in a subtree corresponding to σ1 · · · σk (although these labels are determined by
the label of the vertex corresponding to σ1 · · · σk), but rather computes only the
labels of vertices along the paths corresponding to the queries.

Clearly, algorithm D can be implemented in polynomial time. It is left to
evaluate its performance. The key observation is the correspondence between
D’s actions on checkpoint k and the hybrids k and k + 1:

� When the inputs are taken from the t(n)-product of U2n (and algorithm D chooses
k as the checkpoint), the invoked machine M behaves exactly as on the k + 1
hybrid. This is so because D places halves of truly random 2n-bit-long strings at
level k + 1 (which is the same as placing truly random n-bit-long strings at level
k + 1).

� On the other hand, when the inputs are taken from the t(n)-product of G(Un)
(and algorithm D chooses k as the checkpoint), then M behaves exactly as on
the kth hybrid. Indeed, D does not place the (unknown to it) corresponding seeds
(generating these pseudorandom strings) at level k; but putting the two halves of
the pseudorandom strings at level k + 1 has exactly the same effect.

Thus:

Claim 3.6.6.1: Let n be an integer, and t
def= t(n). Let K be a random variable

describing the random choice of checkpoint by algorithm D (on input a t-long
sequence of 2n-bit-long strings). Then for every k∈{0, 1, . . . , n − 1},

Pr
[
D
(
G
(
U (1)

n

)
, . . . ,G

(
U (t)

n

))=1
∣∣ K = k

] = Pr
[
M Hk

n (1n)=1
]

Pr
[
D
(
U (1)

2n , . . . ,U (t)
2n

)=1
∣∣ K = k

] = Pr
[
M Hk+1

n (1n)=1
]

154

3.6. PSEUDORANDOM FUNCTIONS

where the U (i)
n ’s and U (j)

2n ’s are independent random variables uniformly dis-
tributed over {0, 1}n and {0, 1}2n , respectively.

Claim 3.6.6.1 is quite obvious; yet a rigorous proof is more complex than
one might realize at first glance, the reason being that M’s queries may depend
on previous answers it has received, and hence the correspondence between the
inputs of D and possible values assigned to the hybrids is less obvious than it
seems. To illustrate the difficulty, consider an N -bit string that is selected by a pair
of interactive processes that proceed in N iterations. At each iteration, the first
process chooses a new location (i.e., an unused i ∈ {1, . . . , N }) based on the entire
history of the interaction, and the second process sets the value of this bit (i.e., the
i th bit) by flipping an unbiased coin. It is intuitively clear that the resulting string
is uniformly distributed; still, a proof is required (since randomized processes
are subtle entities that often lead to mistakes). In our setting, the situation is
slightly more involved. The process of determining the string is terminated after
T < N iterations, and statements are made regarding the resulting string that is
only partially determined. Consequently, the situation is slightly confusing, and
we feel that a detailed argument is required. However, the argument provides no
additional insights and can be skipped without significant damage (especially by
readers who are more interested in cryptography than in “probabilistic analysis”).

Proof of Claim 3.6.6.1: We start by sketching a proof of the claim for the extremely
simple case in which M’s queries are the first t strings (of length n) in lexicographic order.
Let us further assume, for simplicity, that on input α1, . . . , αt , algorithm D happens to
choose checkpoint k such that t = 2k+1. In this case the oracle machine M is invoked on
input 1n and access to the function fs1,...,s2k+1 , where s2 j−1+σ = Pσ (α j) for every j ≤ 2k

and σ ∈ {0, 1}. Thus, if the inputs to D are uniformly selected in {0, 1}2n , then M is
invoked with access to the k + 1 hybrid random variable (since in this case the s j ’s are
independent and uniformly distributed in {0, 1}n). On the other hand, if the inputs to D
are distributed as G(Un), then M is invoked with access to the kth hybrid random variable
(since in this case fs1,...,s2k+1 = fr1,...,r2k , where the r j ’s are seeds corresponding to the
α j ’s).

For the general case, we consider an alternative way of defining the random variable
H m

n for every 0 ≤ m ≤ n. This alternative way is somewhat similar to the way in which D
answers the queries of the oracle machine M . (We use the symbol m instead of k, since m
does not necessarily equal the checkpoint (denoted k) chosen by algorithm D.) This way
of defining H m

n consists of the interleaving of two random processes, which together first
select at random a function g : {0, 1}m→{0, 1}n that is later used to determine a function
f : {0, 1}n→{0, 1}n . The first random process, denoted ρ, is an arbitrary process (“given to
us from the outside”) that specifies points in the domain of g. (The process ρ corresponds
to the queries of M , whereas the second process corresponds to the way A answers these
queries.) The second process, denoted ψ , assigns uniformly selected n-bit-long strings to
every new point specified by ρ, thus defining the value of g at this point. We stress that in
case ρ specifies an old point (i.e., a point for which g is already defined), then the second
process does nothing (i.e., the value of g at this point is left unchanged). The process ρ
may depend on the history of the two processes and in particular on the values chosen for
the previous points. When ρ terminates, the second process (i.e.,ψ) selects random values
for the remaining undefined points (in case such exist). We stress that the second process
(i.e., ψ) is fixed for all possible choices of a (“first”) process ρ. The rest of this paragraph

155

PSEUDORANDOM GENERATORS

gives a detailed description of the interleaving of the two random processes (and can be
skipped). We consider a randomized process ρ mapping sequences of n-bit strings (repre-
senting the history) to single m-bit strings. We stress that ρ is not necessarily memoryless
(and hence may “remember” its previous random choices). Namely, for every fixed se-
quence v1, . . . , vi ∈{0, 1}n , the random variable ρ(v1, . . . , vi) is (arbitrarily) distributed
over {0, 1}m ∪ {⊥}, where⊥ is a special symbol denoting termination. A “random” func-
tion g : {0, 1}m→{0, 1}n is defined by iterating the process ρ with the random process
ψ defined next. Process ψ starts with g that is undefined on every point in its domain.
At the i th iteration, ψ lets pi

def= ρ(v1, . . . , vi−1) and, assuming pi �= ⊥, sets vi
def= v j if

pi = p j for some j < i , and lets vi be uniformly distributed in {0, 1}n otherwise. In the
latter case (i.e., pi is new, and hence g is not yet defined on pi), ψ sets g(pi)

def= vi (in
fact, g(pi)=g(p j)=v j =vi also in case pi = p j for some j< i). When ρ terminates (i.e.,
ρ(v1, . . . , vT) = ⊥ for some T), process ψ completes the function g (if necessary) by
choosing independently and uniformly in {0, 1}n values for the points at which g is still
undefined. (Alternatively, we can augment the process ρ so that it terminates only after
specifying all possible m-bit strings.)

Once a function g : {0, 1}m→{0, 1}n is totally defined, we define a function f g :
{0, 1}n→{0, 1}n by

f g(σ1σ2 · · · σn)
def= Gσn

(· · · (Gσm+2

(
Gσm+1 (g(σm · · · σ1))

)) · · ·)
The reader can easily verify that f g equals fg(0m),...,g(1m) (as defined in the hybrid con-
struction earlier). Also, one can easily verify that the preceding random process (i.e.,
the interleaving of ψ with any ρ) yields a function g that is uniformly distributed over
the set of all possible functions mapping m-bit strings to n-bit strings. It follows that
the previously described random process yields a result (i.e., a function) that is distributed
identically to the random variable H m

n .
Suppose now that the checkpoint chosen by D equals k and that D’s inputs are inde-

pendently and uniformly selected in {0, 1}2n . In this case the way in which D answers
M’s queries can be viewed as placing independently and uniformly selected n-bit strings
as the labels of the (k + 1)-level vertices. It follows that the way in which D answers M’s
queries corresponds to the previously described process with m = k + 1 (with M playing
the role of ρ and A playing the role of ψ). Hence, in this case, M is invoked with access
to the k + 1 hybrid random variable.

Suppose, on the other hand, that (again the checkpoint chosen by D equals k and that)
D’s inputs are independently selected so that each is distributed identically to G(Un). In
this case the way in which D answers M’s queries can be viewed as placing independently
and uniformly selected n-bit strings as the labels of the k-level vertices. It follows that
the way in which D answers M’s queries corresponds to the previously described process
with m = k. Hence, in this case M is invoked with access to the kth hybrid random
variable. �

Combining Claim 3.6.6.1 and �(n) = Pr[M H0
n (1n)=1]− Pr[M Hk

n (1n)=1], it
follows that

Pr
[
D
(
G
(
U (1)

n

)
, . . . ,G

(
U (t)

n

))=1
]− Pr

[
D
(
U (1)

2n , . . . ,U (t)
2n

)=1
]

=
(

1

n

n−1∑
k=0

Pr
[
M Hk

n (1n)=1
])−(1

n

n−1∑
k=0

Pr
[
M Hk+1

n (1n)=1
])

= �(n)

n

156

3.6. PSEUDORANDOM FUNCTIONS

which, by the contradiction hypothesis, is greater than 1
n·p(n) for infinitely many

n’s. So it follows that D (which is a probabilistic polynomial-time algorithm)
distinguishes polynomially many samples of G(Un) from polynomially many
samples of U2n . Using Theorem 3.2.6, we derive a contradiction to the hypothesis
(of the current theorem) that G is a pseudorandom generator, and the current
theorem follows. �

3.6.3. Applications: A General Methodology

Sharing a pseudorandom function allows parties to determine random-looking values
depending on their current views of the environment (which need not be known a priori).
To appreciate the potential of this tool, one should realize that sharing a pseudorandom
function is essentially as good as being able to agree, on the fly, on the association of
random values to (on-line) given values, where the latter are taken from a huge set of
possible values. We stress that this agreement is achieved without communication and
synchronization: Whenever some party needs to associate a random value to a given
value v ∈ {0, 1}n , it will associate to v the same random value rv ∈ {0, 1}n .

As an illustrative example, consider the problem of identifying friend or foe, in
which members of a club sharing some secret wish to be able to identify one another
as belonging to the club. A possible solution is for the club members to share a secret
function, defined over a huge domain, and prove their membership in the club by
answering a random challenge presented to them, with the value of the secret function
evaluated at the challenge. We claim that using a pseudorandom function in the role
of the secret function guarantees that it will be infeasible for an adversary to pass as a
member, even after conducting polynomially many interactions with members in which
the adversary may ask them to reply to challenges of its choice. To prove this claim,
consider what happens when the secret function is a truly random one. (We stress that
this is merely a mental experiment, since it is infeasible to share such a huge random
object.) In such a case, the random function’s values at new points (corresponding
to new challenges that the adversary should answer) are uncorrelated to its values at
any other points (corresponding to answers the adversary has obtained by challenging
legitimate members). Thus, the adversary will fail in such an imaginary situation. It
follows that the adversary must also fail in the actual situation (in which the secret
function is selected from a pseudorandom ensemble), or else we derive a distinguisher
of pseudorandom functions from truly random ones.

In general, the following two-step methodology is useful in many cases:

1. Design your scheme assuming that all legitimate users share a random function, f :
{0, 1}n→{0, 1}n . (The adversaries may be able to obtain, from the legitimate users, the
values of f on arguments of their choice, but will not have direct access to f itself.6)
This step culminates in proving the security of the scheme, assuming that f is indeed
uniformly chosen among all possible such functions, while ignoring the question of how
such an f can be selected and handled.

6 This is different from the Random Oracle Model, where the adversary has direct access to a random oracle
(that is later “implemented” by a function, the description of which is also given to the adversary).

157

PSEUDORANDOM GENERATORS

2. Construct a real scheme by replacing the random function by a pseudorandom func-
tion. Namely, the legitimate users will share a random/secret seed specifying such a
pseudorandom function, whereas the adversaries will not know the seed. As before, the
adversaries can, at most, obtain (from the legitimate users) the values of the function
at arguments of their choice. Finally, conclude that the real scheme (as presented here)
is secure (since otherwise one could distinguish a pseudorandom function from a truly
random one).

We stress that this methodology can be applied only if the legitimate users can share
random/secret information not known to the adversary (e.g., as is the case in private-key
encryption schemes).7

3.6.4.∗ Generalizations

We present generalizations of the notion of a pseudorandom function, first to the case
where the function is not length-preserving, and then to the case where the function
is defined over the set of all strings. These generalizations offer greater flexibility in
using pseudorandom functions in applications.

3.6.4.1. Functions That Are Not Length-Preserving

Departing from Definition 3.6.4, we present the following generalization of the notion
of a pseudorandom function ensemble.

Definition 3.6.9 (Pseudorandom Function Ensembles, Generalization): Let
d, r : N → N. We say that{

fs : {0, 1}d(|s|) → {0, 1}r (|s|)}
s∈{0,1}∗

is an efficiently computable generalized pseudorandom function ensemble
(generalized pseudorandom function) if the following two conditions hold:

1. Efficient evaluation: There exists a polynomial-time algorithm that on input s and
x ∈ {0, 1}d(|s|) returns fs(x).

2. Pseudorandomness: For every probabilistic polynomial-time oracle machine M,
every polynomial p(·), and all sufficiently large n’s,∣∣Pr

[
M Fn (1n)=1

]− Pr
[
M Hn (1n)=1

]∣∣ < 1

p(n)

where Fn is a random variable uniformly distributed over the multi-set { fs}s∈{0,1}n ,
and Hn is uniformly distributed among all functions mapping d(n)-bit-long strings
to r (n)-bit-long strings.

7 In contrast, the Random Oracle Methodology refers to a situation in which the adversary is also given the
description of the function, which replaces the random oracle to which it has direct access (as discussed in
footnote 6). We warn that, in contrast to the methodology presented here, the Random Oracle Methodology is a
heuristic. See further discussion in Section 3.8.2.

158

3.6. PSEUDORANDOM FUNCTIONS

Clearly, r : N → N must be upper-bounded by a polynomial. Definition 3.6.4 is ob-
tained as a special case (of Definition 3.6.9) by letting the functions d and r equal
the function �. Similarly to Construction 3.6.5, for any d, r : N → N, where r (n) is
computable in poly(n) time from n, we can construct general pseudorandom functions
using any pseudorandom generator. Specifically:

Construction 3.6.10: Let G, G0, and G1 be as in Construction 3.6.5. Let
d, r : N → N, and let G ′ be a deterministic algorithm mapping n-bit-long in-
puts into r (n)-bit outputs. Then for every s ∈ {0, 1}n, we define a function fs :
{0, 1}d(n)→{0, 1}r (n) such that for every σ1, . . . , σd(n)∈{0, 1},

fs

(
σ1σ2 · · · σd(n)

) def= G ′(Gσd(n)

(· · · (Gσ2

(
Gσ1 (s)

)) · · ·))
Construction 3.6.5 is regained from Construction 3.6.10 by letting d(n) = r (n) = n
and using the identity function in the role of G ′. By extending the proof of
Theorem 3.6.6, we obtain the following:

Theorem 3.6.11: Let G, G ′, and the fs’s be as in Construction 3.6.10, and sup-
pose that G is a pseudorandom generator. Further suppose that G ′ is polynomial-
time-computable and that the ensemble {G ′(Un)}n∈N is pseudorandom,8 as de-
fined in Definition 3.2.8. Then { fs}s∈{0,1}∗ is an efficiently computable ensemble
of generalized pseudorandom functions.

Proof: In case G ′ is the identity transformation (and r (n) = n), the proof is almost
identical to the proof of Theorem 3.6.6. To deal with the general case, we use a
hybrid argument. Specifically, we use a single intermediate hybrid (i.e., a single
hybrid of the function ensemble { fs} and a truly random function): For every n,
we consider the (random) function g : {0, 1}d(n) → {0, 1}r (n) defined by letting
g(x) = G ′(h′(x)), where h′ is uniformly selected among all functions mapping
d(n)-bit-long strings to n-bit strings. The theorem follows by showing that this
hybrid ensemble is indistinguishable from both the uniform function ensemble
and the function ensemble of Construction 3.6.10.

In the following, we denote by Hn (resp., H ′
n) a random variable uniformly dis-

tributed over the set of all functions mapping d(n)-bit-long strings to r (n)-bit-long
(resp., n-bit-long) strings. Recall that the hybrid distribution, denoted G ′ ◦ H ′

n , is
obtained by functional composition of the fixed function G ′ and the random func-
tion distribution H ′

n . As usual, Fn denotes a random variable uniformly distributed
over the multi-set { fs}s∈{0,1}n .

Claim 3.6.11.1: For every probabilistic polynomial-time oracle machine M ,
every polynomial p(·), and all sufficiently large n’s,∣∣Pr

[
MG ′◦H ′

n (1n)=1
]− Pr

[
M Hn (1n)=1

]∣∣ < 1

p(n)

8 In case r (n) > n (for all n’s), what we require is that G ′ be a pseudorandom generator. But otherwise this
cannot be required, since G ′ is not expanding. Still, the other features of a pseudorandom generator (i.e., efficient
computability and pseudorandomness of the output) are always required here.

159

PSEUDORANDOM GENERATORS

Proof Sketch: Intuitively, oracle access to G ′ ◦ H ′
n is equivalent to being given

multiple independent samples from the distribution G ′(Un), whereas oracle ac-
cess to Hn is equivalent to being given multiple independent samples from
the distribution Ur (n). Using the pseudorandomness of {G ′(Un)}n∈N, the claim
follows.

In the actual proof, we transform the oracle machine M into an ordinary ma-
chine M ′ that gets a sequence of samples and emulates an execution of M while
using its input sequence in order to emulate some related oracle for M . Specif-
ically, on input α1, . . . , αT , machine M ′ invokes M , and answers its i th distinct
query with αi . (Without loss of generality, we can assume that M never issues the
same query twice.)

1. Indeed, on input a sequence of samples from distribution G ′(Un), machine M ′

emulates an execution of MG ′◦H ′
n (1n).

(The key observation is that the responses of oracle G ′ ◦ H ′
n to a sequence

q1, . . . , qt of distinct queries are G ′(sq1), . . . ,G ′(sqt), where the sqi ’s are uniformly
and independently distributed in {0, 1}n .)

2. On the other hand, on input a sequence of samples from distribution Ur (n), machine
M ′ emulates an execution of M Hn (1n).

(The key observation is that the responses of oracle Hn to a sequence q1, . . . , qt

of distinct queries are uniformly and independently distributed in {0, 1}r (n).)

Thus, if M violates the statement of the claim, then M ′ violates the pseudo-
randomness of {G ′(Un)}n∈N, in contradiction to the theorem’s hypothesis. �

Claim 3.6.11.2: For every probabilistic polynomial-time oracle machine M ,
every polynomial p(·), and all sufficiently large n’s,

∣∣Pr
[
MG ′◦H ′

n (1n)=1
]− Pr

[
M Fn (1n)=1

]∣∣ < 1

p(n)

Proof Sketch: Any function fs (as defined in Construction 3.6.10) can be written
as fs(x) = G ′(f ′s (x)), where f ′s is defined by

f ′s
(
σ1σ2 · · · σd(n)

) def= Gσd(n)

(· · · (Gσ2

(
Gσ1 (s)

)) · · ·) (3.16)

We have already established that { f ′s } is a generalized pseudorandom function
ensemble (i.e., f ′s corresponds to the case where G ′ is the identity), and so by
incorporating G ′ in the distinguisher, the claim follows.

In the actual proof, we transform the oracle machine M into an oracle machine
M ′ that emulates M while using its own oracle in order to emulate some related
oracle for M . Specifically, when M issues a query q, machine M ′ forwards q to
its own oracle, applies G ′ to the answer that it receives, and forwards the result
to M .

1. Indeed, when given oracle access to h′, machine M ′ emulates an execution of
MG ′◦h′ (1n) (the reason being that, in this case, M ′ responds to query q (made by

160

3.6. PSEUDORANDOM FUNCTIONS

M) with G ′(h′(q)) = (G ′ ◦ h′)(q)). Thus, when given oracle access to H ′
n , machine

M ′ emulates an execution of MG ′◦H ′
n (1n).

2. On the other hand, when given oracle access to f ′s , machine M ′ emulates an
execution of M fs (1n) (the reason being that, in this case, M ′ responds to query q
(made by M) with G ′(f ′s (q)) = fs(q)). Thus, for uniformly selected s ∈ {0, 1}n ,
when given oracle access to f ′s , machine M ′ emulates an execution of M Fn (1n).

Thus, if M violates the statement of the claim, then M ′ violates the pseudoran-
domness of { f ′s }, which contradicts what we have already established. �

Combining Claims 3.6.11.1 and 3.6.11.2, the theorem follows. �

Comment. One major component of the proof of Theorem 3.6.11 is proving the fol-
lowing proposition:

Let { f ′s : {0, 1}d(|s|) → {0, 1}|s|}s∈{0,1}∗ be a generalized pseudorandom function ensem-
ble, and let G ′ be as in the theorem’s hypothesis. Then the generalized function ensemble
{ fs : {0, 1}d(|s|) → {0, 1}r (|s|)}s∈{0,1}∗ , defined by fs(x)

def= G ′(f ′s (x)), is pseudorandom.

The proof of Claim 3.6.11.2 actually establishes this proposition and then applies it to
{ f ′s }s∈{0,1}∗ as defined in Eq. (3.16).

3.6.4.2. Functions Defined on All Strings

Thus far we have considered only function ensembles in which each function is finite
(i.e., maps a finite domain to a finite range). Using such functions requires a priori
knowledge of an upper bound on the length of the inputs to which the function is
to be applied. (Shorter inputs can always be encoded as inputs of some longer and
predetermined length.) However, it is preferable not to require such a priori knowledge
of the upper bound (e.g., since such a requirement may rule out some applications).
It is thus useful to have a more flexible notion of a pseudorandom-function ensemble,
allowing application of individual functions to inputs of varying lengths not known a
priori. Such ensembles are defined and constructed next.

Definition 3.6.12 (Pseudorandom Function Ensembles with Unbounded
Inputs): Let r : N → N. We say that

{ fs : {0, 1}∗ → {0, 1}r (|s|)}s∈{0,1}∗

is an efficiently computable unbounded-input pseudorandom function en-
semble (unbounded-input pseudorandom function) if the following two conditions
hold:

1. Efficient evaluation: There exists a polynomial-time algorithm that on input s and
x ∈ {0, 1}∗ returns fs(x).

161

PSEUDORANDOM GENERATORS

2. Pseudorandomness: For every probabilistic polynomial-time oracle machine M,
every polynomial p(·), and all sufficiently large n’s,∣∣Pr

[
M Fn (1n)=1

]− Pr
[
M Hn (1n)=1

]∣∣ < 1

p(n)

where Fn is a random variable uniformly distributed over the multi-set { fs}s∈{0,1}n ,
and Hn is uniformly distributed 9 among all functions mapping arbitrary long
strings to r (n)-bit-long strings.

A few comments regarding Definition 3.6.12 are in order. First, note that the fact that
the length of the input to fs is not known a priori raises no problems in Item 1, since
the running time of the evaluating algorithm may depend (polynomially) on the length
of the input to fs . Regarding Item 2, because M has a-priori-bounded (polynomial)
running time, that upper-bounds the length of the queries made to the oracle. The latter
fact resolves a technical problem that arises in the earlier definition (see footnote 9).
In typical applications, one uses r (n) = n (or r (n) that is polynomially related to n).
Another special case of interest is the case where r ≡ 1, that is, the case of pseudorandom
Boolean functions.

Similarly to Constructions 3.6.5 and 3.6.10, for any r : N → N such that r (n) is
computable in poly(n) time from n, we can construct unbounded-input pseudorandom
functions using any pseudorandom generator. Specifically:

Construction 3.6.13: Let G be a deterministic algorithm expanding inputs of
length n into strings of length 2n + r (n). We denote by G0(s) the |s|-bit-long
prefix of G(s), by G1(s) the next |s| bits in G(s), and by G2(s) the r (|s|)-bit-long
suffix of G(s) (i.e., G(s) = G0(s)G1(s)G2(s)). Then for every s ∈ {0, 1}n, we
define a function fs : {0, 1}∗→{0, 1}r (n) such that for every non-negative integer
d and every σ1, . . . , σd ∈{0, 1},

fs(σ1σ2 · · · σd) def= G2

(
Gσd

(· · · (Gσ2

(
Gσ1 (s)

)) · · ·))
Pictorially, the function fs is defined by walks down an infinite ternary tree having labels
at the vertices. Internal vertices have |s|-bit-long labels, and leaves have r (|s|)-bit-long
labels. The root of the tree, hereafter referred to as the level-0 vertex of the tree, is labeled
by the string s. If an internal vertex is labeled s ′, then its leftmost child is labeled G0(s ′),
its middle child is labeled G1(s ′), and its rightmost child is labeled G2(s ′). The first
two children of each internal vertex are internal vertices, whereas the rightmost child
of an internal vertex is a leaf. The value of fs(σ1 · · · σd) is the string residing in the leaf
reachable from the root by “following the path σ1, . . . , σd, 2,” when the root is labeled
by s. Again, by extending the proof of Theorem 3.6.6, we obtain the following:

9 Since the running time of M is a priori bounded by some polynomial, it follows that for some polynomial
d and all n’s, it holds that, on input 1n , machine M makes only queries of length at most d(n). Thus, Hn can be
defined as the uniform distribution over all functions mapping strings of length up to d(n) to r (n)-bit-long strings.
This resolves the technical problem of what is meant by a uniform distribution over an infinite set (i.e., the set of
all functions mapping arbitrary long bit strings to r (n)-bit-long strings).

162

3.6. PSEUDORANDOM FUNCTIONS

Theorem 3.6.14: Let G and the fs’s be as in Construction 3.6.13, and suppose
that G is a pseudorandom generator. Then { fs}s∈{0,1}∗ is an efficiently computable
ensemble of unbounded-input pseudorandom functions.

Proof Sketch: We follow the proof method of Theorem 3.6.6. That is, we use the
hybrid technique, where the kth hybrid will be assigned a function that results from
uniformly selecting labels for the vertices of the highest k + 1 levels of the tree,
and computing the labels for lower levels as in Construction 3.6.13. Specifically,
the kth hybrid is defined as equal to the function fs1,...,s3k :{0, 1}∗→{0, 1}r (n),
defined next, where s1, . . . , s3k ∈ {0, 1}2n+r (n) are uniformly and independently
distributed.

fs1,...,s3k (σ1σ2 · · · σd)

def=
{

P2

(
sidx(2k−d ·σd ···σ1)

)
if d ≤ k

G2

(
Gσd

(· · · (Gσk+2

(
Gσk+1

(
sidx(σk ···σ1)

))) · · ·)) otherwise

where idx(α) is the index of α in the standard lexicographic order of ternary
strings of length |α|, and P2(β) is the r (n)-bit-long suffix of β.

Note that (unlike the proof of Theorem 3.6.6) for every n there are infinitely
many hybrids, because here k can be any non-negative integer (rather than
k ∈ {0, 1, . . . , n} as in the proof of Theorem 3.6.6). Still, because we consider an
(arbitrary) probabilistic polynomial-time distinguisher denoted M , there exists a
polynomial d such that on input 1n the oracle machine M makes only queries
of length at most d(n)− 1. Thus, giving M oracle access to the d(n) hybrid is
equivalent to giving M oracle access to the uniform random variable Hn (where
Hn is as in Definition 3.6.12), because a uniformly chosen label is assigned to
each i-level leaf for i ≤ d(n). On the other hand, the 0 hybrid corresponds to the
random variable Fn (where Fn is as in Definition 3.6.12), because a uniformly
chosen label is assigned to the root. Thus, if M can distinguish {Fn} from {Hn},
then it can distinguish a (random) pair of neighboring hybrids (i.e., the k − 1
and k hybrids, where k is uniformly selected in {1, . . . , d(n)}). As in the proof of
Theorem 3.6.6, the latter assertion can be shown to violate the pseudorandomness
of G. Specifically, we can distinguish multiple independent samples taken from
the distribution U2n+r (n) and multiple independent samples taken from the dis-
tribution G(Un): Given a sequence of (2n + r (n))-bit-long strings, we use these
strings in order to label vertices in the highest k + 1 levels of the tree (by breaking
each string into three parts and using those parts as labels for the three children
of some (i − 1)-level node, for i ≤ k). In case the strings are taken from U2n+r (n),
we emulate the k hybrid, whereas in case the strings are taken from G(Un), we
emulate the k − 1 hybrid. The theorem follows. �

Comment. Unbounded-input (and generalized) pseudorandom functions can be con-
structed directly from (ordinary) pseudorandom functions; see Section 3.8.2.

163

PSEUDORANDOM GENERATORS

3.7.∗ Pseudorandom Permutations

In this section we present definitions and constructions for pseudorandom permuta-
tions. Clearly, pseudorandom permutations (over huge domains) can be used instead of
pseudorandom functions in any efficient application, yet pseudorandom permutations
offer the extra advantage of having unique pre-images. This extra advantage can some-
times be useful, but less than what one might expect (e.g., it is not used in the rest of
this book, not even in the chapter on encryption schemes, for reasons explained there).

We show how to construct pseudorandom permutations using pseudorandom
functions as building blocks, in a manner identical to the high-level structure of the
DES. Hence, the proof presented in this section can be viewed as supporting the
DES’s methodology of converting “random-looking” functions into “random-looking”
permutations.10

3.7.1. Definitions

We start with the definition of pseudorandom permutations. Loosely speaking, a pseudo-
random ensemble of permutations is defined analogously to a pseudorandom ensemble
of functions. Namely:

Definition 3.7.1 (Permutation Ensembles): A permutation ensemble is a se-
quence P = {Pn}n∈N of random variables such that the random variable Pn as-
sumes values in the set of permutations mapping n-bit-long strings to n-bit-long
strings. The uniform permutation ensemble, denoted K ={Kn}n∈N, has Kn uni-
formly distributed over the set of all permutations mapping n-bit-long strings to
n-bit-long strings.

Every permutation ensemble is a function ensemble. Hence the definition of an
efficiently computable permutation ensemble is obvious (i.e., it is derived from the
definition of an efficiently computable function ensemble). Pseudorandom permuta-
tions are defined as computationally indistinguishable from the uniform permutation
ensemble.

Definition 3.7.2 (Pseudorandom Permutation Ensembles): A permutation
ensemble P = {Pn}n∈N is called pseudorandom if for every probabilistic poly-
nomial-time oracle machine M, every polynomial p(·), and all sufficiently large
n’s, ∣∣Pr

[
M Pn (1n)=1

]− Pr
[
M Kn (1n)=1

]∣∣ < 1

p(n)

where K = {Kn}n∈N is the uniform permutation ensemble.

The fact that P is a pseudorandom permutation ensemble, rather than just a pseu-
dorandom function ensemble, cannot be detected in poly(n) time by an observer given

10 The fact that in the DES this methodology is applied to functions that are NOT “random-looking” is not of
concern here.

164

3.7.∗∗ PSEUDORANDOM PERMUTATIONS

oracle access to Pn . This fact stems from the observation that the uniform permutation
ensemble is polynomial-time-indistinguishable from the uniform function ensemble.
Namely:

Proposition 3.7.3: The uniform permutation ensemble (i.e., K = {Kn}n∈N) con-
stitutes a pseudorandom function ensemble.

Proof Sketch: Recall that {Hn}n∈N denotes the uniform function ensemble. The
probability that when given access to oracle Hn a machine will detect a collision
in the oracle function is bounded by t2 · 2−n , where t denotes the number of
queries made by the machine. Conditioned on not finding such a collision, the
answers of Hn are indistinguishable from those of Kn . Finally, using the fact
that a polynomial-time machine can ask at most polynomially many queries, the
proposition follows. �

Hence, the use of pseudorandom permutations instead of pseudorandom functions has
reasons beyond the question of whether or not a computationally restricted observer
can detect the difference. Typically, the reason is that one wants to be guaranteed
of the uniqueness of pre-images. A natural strengthening of this requirement is that
given the description of the permutation, the (unique) pre-image can be efficiently
found.

Definition 3.7.4 (Efficiently Computable and Invertible Permutation Ensem-
bles): A permutation ensemble P = {Pn}n∈N is called efficiently computable
and invertible if the following three conditions hold:

1. Efficient indexing: There exists a probabilistic polynomial-time algorithm I and a
mapping from strings to permutation, φ, such that φ(I (1n)) and Pn are identically
distributed.

2. Efficient evaluation: There exists a probabilistic polynomial-time algorithm V

such that V (i, x) = fi (x), where (as in Definition 3.6.3) fi
def= φ(i).

3. Efficient inversion: There exists a probabilistic polynomial-time algorithm N such
that N (i, x) = f −1

i (x) (i.e., fi (N (i, x))= x).

Items 1 and 2 are guaranteed by the definition of an efficiently computable permutation
ensemble. The additional requirement is stated in Item 3. In some settings it makes sense
to augment the definition of a pseudorandom ensemble by requiring that the ensemble
cannot be distinguished from the uniform one even when the observer gets access to
two oracles: one for the permutation and the other for its inverse. Thus, we consider
augmented oracle machines that can make queries to two oracles; the two-oracle model
can be emulated by the standard (single) oracle model by combining the two oracles
f1 and f2 into one oracle f defined by f (i, q) = fi (q).

Definition 3.7.5 (Strong Pseudorandom Permutations): A permutation ensem-
ble P = {Pn}n∈N is called strongly pseudorandom if for every probabilistic

165

PSEUDORANDOM GENERATORS

polynomial-time oracle machine M, every polynomial p(·), and all sufficiently
large n’s, ∣∣Pr

[
M Pn ,P

−1
n (1n)=1

]− Pr
[
M Kn ,K

−1
n (1n)=1

]∣∣ < 1

p(n)

where M f,g denotes the execution of machine M when given access to the oracles
f and g.

3.7.2. Construction

The construction of pseudorandom permutations uses pseudorandom functions as build-
ing blocks, in a manner identical to the high-level structure of the DES (see Figure 3.6).
Namely:

Construction 3.7.6: Let f : {0, 1}n→{0, 1}n. For every x, y ∈ {0, 1}n, we define

DES f (x, y) def= (y, x ⊕ f (y))

where x ⊕ y denotes the bit-by-bit XOR of the binary strings x and y. Likewise,
for f1, . . . , ft : {0, 1}n→{0, 1}n, we define

DES ft ,..., f1 (x, y) def= DES ft ,..., f2 (DES f1 (x, y))

For every function ensemble F = {Fn}n∈N and every function t :N→N, we de-

fine the function ensemble {DESt(n)
Fn
}n∈N by letting DESt(n)

Fn

def= DESF (t)
n ,...,F (1)

n
, where

t = t(n) and the F (i)
n ’s are independent copies of the random variable Fn.

Theorem 3.7.7: Let Fn, t(·), and DESt(n)
Fn

be as in Construction 3.7.6. Suppose
that {Fn}n∈N is efficiently computable and that on input n one can compute t(n)
in poly(n) time. Then for every polynomial-time-computable function t(·), the
ensemble {DESt(n)

Fn
}n∈N is an efficiently computable and invertible permutation

f

y

+

x+f(y)

x

y
Figure 3.6: The high-level structure of the DES.

166

3.7.∗∗ PSEUDORANDOM PERMUTATIONS

ensemble. Furthermore, if F = {Fn}n∈N is a pseudorandom function ensemble,
then the ensemble {DES3

Fn
}n∈N is pseudorandom and the ensemble {DES4

Fn
}n∈N is

strongly pseudorandom.

Clearly, the ensemble {DESt(n)
Fn
}n∈N is efficiently computable. The fact that it is a per-

mutation ensemble, and furthermore one with an efficient inverting algorithm, follows
from the observation that DESzero, f,zero is the inverse of DES f , where zero(z) def= 0|z| for
all z∈{0, 1}n . That is, for every x, y∈{0, 1}n , DESzero(x, y) = (y, x), and

DESzero, f,zero(DES f (x, y)) = DESzero, f,zero(y, x ⊕ f (y))

= DESzero, f (x ⊕ f (y), y)

= DESzero(y, (x ⊕ f (y))⊕ f (y))

= (x, y)

To prove the pseudorandomness of {DES3
Fn
}n∈N (resp., strong pseudorandomness of

{DES4
Fn
}n∈N) it suffices to prove the pseudorandomness of {DES3

Hn
}n∈N (resp., strong

pseudorandomness of {DES4
Hn
}n∈N). The reason is that if, say, {DES3

Hn
}n∈N is pseudo-

random, while {DES3
Fn
}n∈N is not, then one can derive a contradiction to the pseudo-

randomness of the function ensemble F (i.e., distinguish F from the uniform function
ensemble H ; see Exercise 35). Hence, Theorem 3.7.7 follows from Proposition 3.7.8.

Proposition 3.7.8: {DES3
Hn
}n∈N is pseudorandom, whereas {DES4

Hn
}n∈N is

strongly pseudorandom.

Proof Sketch: We start by proving that {DES3
Hn
}n∈N is pseudorandom. Let

P2n
def= {DES3

Hn
}n∈N, and let K2n be the random variable uniformly distributed

over all possible permutations acting on {0, 1}2n . We prove that for every oracle
machine M that on input 1n asks at most m queries, it holds that

∣∣Pr
[
M P2n (1n)=1

]− Pr
[
M K2n (1n)=1

]∣∣ ≤ 2m2

2n
(3.17)

Let qi = (L0
i , R0

i), with |L0
i |=|R0

i |=n, be a random variable representing the
i th query of M when given access to oracle P2n . Recall that P2n = DESH (3)

n ,H (2)
n ,H (1)

n
,

where the H (j)
n ’s are three independent random variables, each uniformly dis-

tributed over the functions acting on {0, 1}n . Let Rk+1
i

def= Lk
i ⊕ H (k+1)

n (Rk
i) and

Lk+1
i

def= Rk
i for k = 0, 1, 2. That is,(

Lk+1
i , Rk+1

i

) = (
Rk

i , Lk
i ⊕ H (k+1)

n

(
Rk

i

))
We assume, without loss of generality, that M never asks the same query twice.
We define a random variable ζm representing the event that there exist i < j ≤ m
and k∈{1, 2} such that Rk

i = Rk
j (namely, on input 1n and access to oracle P2n ,

two of the m first queries of M satisfy the relation Rk
i = Rk

j). We use the following
two claims.

167

PSEUDORANDOM GENERATORS

Claim 3.7.8.1: For every m ≥ 1, conditioned on¬ζm , the R3
i ’s are uniformly and

independently distributed over {0, 1}n , and the L3
i ’s are uniformly distributed over

the n-bit strings not assigned to previous L3
j ’s. Namely, for every α1, . . . , αm ∈

{0, 1}n ,

Pr
[∧m

i=1

(
R3

i =αi

) ∣∣¬ζm

] = (1

2n

)m

(3.18)

whereas for every distinct β1, . . . , βm ∈{0, 1}n ,

Pr
[∧m

i=1

(
L3

i =βi

) ∣∣¬ζm

] = m∏
i=1

1

2n − i + 1
(3.19)

Proof Idea: Eq. (3.18) follows from the observation that the R3
i ’s are determined

by applying the random function H (3)
n to different arguments (i.e., the R2

i ’s),
where the distinctness of the R2

i ’s is implied by ¬ζm . Similarly, the L3
i = R2

i ’s
are determined by applying the random function H (2)

n to different arguments (i.e.,
the R1

i ’s), and¬ζm also conditions the results (i.e., the R2
i ’s) to be different. Thus,

Eq. (3.19) also holds. �

Claim 3.7.8.2: For every m ≥ 1,

Pr[ζm+1 | ¬ζm] ≤ 2m

2n

Proof Idea: Fixing any i ≤ m, we consider the probability that R1
m+1= R1

i . There
are two cases:

1. If R0
i = R0

m+1, then certainly (since (L0
i , R0

i) �= (L0
m+1, R0

m+1)) we have

R1
i = L0

i ⊕ H (1)
n

(
R0

i

) = L0
i ⊕ H (1)

n

(
R0

m+1

) �= L0
m+1 ⊕ H (1)

n

(
R0

m+1

) = R1
m+1

2. On the other hand, if R0
i �= R0

m+1, then

Pr
[
R1

i = R1
m+1

] = Pr
[
H (1)

n

(
R0

i

)⊕ H (1)
n

(
R0

m+1

) = L0
i ⊕ L0

m+1

] = 2−n

where the last equality holds because the random function H (1)
n is applied to

different arguments (i.e., R0
i and R0

m+1).

Thus, in both cases, Pr[R1
i = R1

m+1] ≤ 2−n . In similarity to the foregoing Case 2,
conditioned on R1

i �= R1
m+1, we have

Pr
[
R2

i = R2
m+1

] = Pr
[
H (2)

n

(
R1

i

)⊕ H (2)
n

(
R1

m+1

) = R0
i ⊕ R0

m+1

] = 2−n

Thus, for every i ≤ m,

Pr
[
R1

i = R1
m+1 ∨ R2

i = R2
m+1

] ≤ Pr
[
R1

i = R1
m+1

]+ Pr
[
R2

i = R2
m+1

∣∣ R1
i �= R1

m+1

]
≤ 2 · 2−n

and the claim follows. �

UsingPr[ζm] ≤ Pr[ζm−1]+ Pr[ζm | ¬ζm−1] and Claim 3.7.8.2, it follows, by induc-
tion on m, that Pr[ζm] < m2

2n . By Claim 3.7.8.1, conditioned on ¬ζm , the answers

168

3.8. MISCELLANEOUS

of P2n have left halves that are uniformly chosen among all n-bit strings not ap-
pearing as left halves in previous answers, whereas the right halves are uniformly
distributed among all n-bit strings. On the other hand, the answers of K2n are
uniformly distributed among all 2n-bit strings not appearing as previous answers.
Hence, the statistical difference between the distributions of answers in the two
cases (i.e., answers by P2n or by K2n) is bounded above by m2

2n + (m
2) · 2−n < 2m2

2n ,
and Eq. (3.17) follows.

The proof that {DES4
Hn
}n∈N is strongly pseudorandom is more complex, yet

uses essentially the same ideas.11 In particular, the event corresponding to ζm

is the disjunction of four types of events. Events of the first type are of the
form Rk

i = Rk
j for k∈{2, 3}, where qi = (L0

i , R0
i) and q j = (L0

j , R0
j) are queries

of the forward direction. Similarly, events of the second type are of the form
Rk

i = Rk
j for k∈{2, 1}, where qi = (L4

i , R4
i) and q j = (L4

j , R4
j) are queries of the

backward direction. Events of the third type are of the form Rk
i = Rk

j for k∈{2, 3},
where qi = (L0

i , R0
i) is of the forward direction, q j = (L4

j , R4
j) is of the backward

direction, and j < i . Similarly, events of the fourth type are of the form Rk
i = Rk

j

for k∈{2, 1}, where qi = (L4
i , R4

i) is of the backward direction, q j = (L0
j , R0

j)
is of the forward direction, and j < i . As before, one bounds the probability of
event ζm and bounds the statistical distance between answers by K2n and answers
by {DES4

Hn
}n∈N given that ζm is false. �

3.8. Miscellaneous

3.8.1. Historical Notes

The notion of computationally indistinguishable ensembles was first presented by
Goldwasser and Micali (in the context of encryption schemes) [123]. In the gen-
eral setting, the notion first appeared in Yao’s work, which was also the origin of
the definition of pseudorandomness [210]. Yao also observed that pseudorandom en-
sembles could be very far from uniform, yet our proof of Proposition 3.2.3 is taken
from [107].

Pseudorandom generators were introduced by Blum and Micali [36], who defined
such generators as producing sequences that are unpredictable. Blum and Micali proved
that such pseudorandom generators do exist assuming the intractability of the discrete-
logarithm problem. Furthermore, they presented a general paradigm for construct-
ing pseudorandom generators that has been used explicitly or implicitly in all subse-
quent developments. Other suggestions for pseudorandom generators by Goldwasser
et al. [126] and Blum et al. [32] soon followed. Consequently, Yao proved that the ex-
istence of any one-way permutation implies the existence of pseudorandom generators
[210]. Yao was the first to define pseudorandom generators as producing sequences
that are computationally indistinguishable from uniform sequences. He also proved

11 Here we assume that the machine avoids queries to which it knows the answers. That is, not only does it not
make the same query twice, but also if it makes the forward (resp., backward) query q and receives the answer a,
then it does not make a backward (resp., forward) query a.

169

PSEUDORANDOM GENERATORS

that this definition of pseudorandom generators is equivalent to the definition of Blum
and Micali [36].

Generalizations of Yao’s result, by which one-way permutations imply pseudoran-
dom generators, were published by Levin [150] and by Goldreich, Krawczyk, and
Luby [108], culminating with the result of Håstad, Impagliazzo, Levin, and Luby [129]
asserting that pseudorandom generators exist if and only if one-way functions exist.
The constructions presented in Section 3.5 follow those ideas [108, 129]. These con-
structions make extensive use of universal2 hashing functions, which were introduced
by Carter and Wegman [49] and were first used in complexity theory by Sipser [201].

Simple pseudorandom generators based on specific intractability assumptions are
presented in [36, 32, 5, 208, 141]. In particular, [5] presents pseudorandom gener-
ators based on the intractability of factoring, whereas [141] presents pseudorandom
generators based on the intractability of various discrete-logarithm problems (see
Section 2.4.3.4). In both cases, the main technical step is the construction of hard-
core predicates for the corresponding collections of one-way permutations.

Pseudorandom functions were introduced and investigated by Goldreich,
Goldwasser, and Micali [102]. In particular, the construction of pseudorandom func-
tions based on pseudorandom generators is taken from [102]. First applications of
pseudorandom functions were given in [103, 89, 90], and the list of applications has
been rapidly growing since.

Pseudorandom permutations were defined and constructed by Luby and Rackoff
[156], and our presentation follows their work.

The hybrid method originated from the work of Goldwasser and Micali [123]. The
terminology was suggested by Leonid Levin.

3.8.2. Suggestions for Further Reading

A wider perspective on pseudorandomness is offered by Goldreich [97]. It surveys
various notions of pseudorandom generators, viewing the one discussed in this chapter
as an archetypical instantiation of a general paradigm. The general paradigm amounts
to considering as pseudorandom those distributions that cannot be distinguished from
the uniform distribution by certain types of resource-bounded distinguishers. The com-
plexity of the generator itself, as well as its stretch function, can vary as well (rather than
being polynomial-time and polynomially bounded, respectively, as here). Starting with
the general paradigm, Chapter 3 of [97] surveys the archetypical case of pseudoran-
dom generators (considered here), as well as generators withstanding space-bounded
distinguishers, the de-randomization of complexity classes such as BPP , and various
special-purpose generators. (Readers interested in Kolmogorov complexity are referred
elsewhere [152].)

Proposition 3.2.3 presents a pair of ensembles that are computationally indistin-
guishable, although they are statistically far apart. This is shown without making
any intractability assumptions, but one of the two ensembles is not constructible in
polynomial time. This situation is unavoidable, because the existence of a pair of
polynomial-time-constructible ensembles having such properties (i.e., being computa-
tionally indistinguishable and yet statistically far apart) implies the existence of one-way

170

3.8. MISCELLANEOUS

functions [93]. Other abstract results regarding the notion of computational indistin-
guishability appear in [111, 119].

Combining Theorem 2.5.6 and Construction 3.4.7, we obtain a generic (black-box)
construction of a pseudorandom generator based on any one-way permutation that
outputs a logarithmic number of bits per each application of the one-way permutation.
Elsewhere [88] it is shown that as far as generic (black-box) constructions go, this is
the best performance (i.e., number of output bits per an application of the one-way
permutation) that one can expect.

Section 3.5 falls short of presenting the construction of Håstad et al. [129], not to
mention proving its validity. Unfortunately, the proof of this fundamental theorem,
asserting that pseudorandom generators exist if one-way functions exist, is too com-
plicated to fit into this book. The interested reader is thus referred to the original paper
[129].

Alternative constructions of pseudorandom functions were given in [172]. Con-
structions of unbounded-input (and generalized) pseudorandom functions based on
(ordinary) pseudorandom functions are discussed in [14].

An alternative presentation of the construction of pseudorandom permutations (based
on pseudorandom functions) can be found in [173]. That alternative distills the real
structure of the proof and provides related results.

Pseudorandom generators and functions have many applications to cryptography;
some of them will be presented in Volume 2 of this book (e.g., signatures and
encryption).

Using Sources of Imperfect Randomness. Pseudorandom generators and functions
enable us to expand randomness (or pseudorandomness), but they do not allow us to
“generate randomness (or pseudorandomness) deterministically.” In fact, we cannot
expect to have an efficient deterministic program that generates pseudorandom objects
(because the very same program may be employed by the distinguisher). In order to
employ a pseudorandom generator (or function), we need to start with a random seed,
and the question is where to obtain it. The answer is that this random seed (or something
that appears so) can be obtained by sampling some physical phenomena. Indeed, such
samples may not be uniformly distributed over the set of strings (of a specific length),
yet if they contain enough entropy, then almost perfect randomness can be (efficiently)
extracted from them. Methods for such randomness extraction will be discussed in the
third volume of this book.

The Random Oracle Methodology. In contrast to the methodology discussed in
Section 3.6.3, the Random Oracle Model refers to a setting in which the adversary
has direct access to a random oracle (that is later “implemented” by a function, the
description of which is given also to the adversary). The Random Oracle Methodol-
ogy [80, 21] consists of first designing an ideal system in which all parties (including
the adversary) have oracle access to a truly random function, and then replacing the
random oracle by a “good cryptographic hashing function,” providing all parties (in-
cluding the adversary) the succinct description of this function. Recall that, in contrast,
the methodology of Section 3.6.3 refers to a situation in which the adversary does not

171

PSEUDORANDOM GENERATORS

have direct oracle access to the random function and does not obtain the description of
the pseudorandom function used in the latter implementation. We warn that, in contrast
to the methodology presented in Section 3.6.3, the Random Oracle Methodology is
heuristic. In particular, there exist encryption and signature schemes that are secure in
the Random Oracle Model, but do not have any secure implementation by a function
ensemble [46].

3.8.3. Open Problems

Although Håstad et al. [129] showed how to construct pseudorandom generators given
any one-way function, their construction is not practical, the reason being that the
“quality” of the generator on seeds of length n is related to the hardness of inverting the
given function on inputs of length less than 4

√
n. We believe that presenting an efficient

transformation of arbitrary one-way functions to pseudorandom generators is one of the
most important open problems in this area and that doing so may require the discovery
of new important paradigms.

An open problem of more acute practical importance is to present even more efficient
pseudorandom generators based on the intractability of specific computational problems
like integer factorization. For further details, see Sections 3.4.3 and 2.7.3.

3.8.4. Exercises

Exercise 1: Computational indistinguishability, trivial variations: Prove that the follow-
ing trivial variations on Definition 3.2.2 are equivalent to it. In all versions we consider
the ensembles X

def
= {Xn}n∈N and Y

def
= {Yn}n∈N.

1. Ensembles X and Y are indistinguishable1 in polynomial time if for every probabilistic
polynomial-time algorithm D, every positive polynomial p(·), and all sufficiently
large n’s,

|Pr [D(Xn, 1n) = 1]− Pr [D(Yn, 1n) = 1] | ≤ 1
p(n)

That is, the strict inequality is replaced by ≤ .
2. Ensembles X and Y are indistinguishable2 in polynomial time if for every probabilistic

polynomial-time algorithm D, every positive polynomial p(·), and all sufficiently large n’s,

Pr [D(Xn, 1n) = 1]− Pr [D(Yn, 1n) = 1] <
1

p(n)

That is, the absolute value is dropped.
3. Suppose that |Xn| = |Yn| = n. Ensembles X and Y are indistinguishable3 in polynomial

time if for every probabilistic polynomial-time algorithm D, every positive polynomial p(·),
and all sufficiently large n’s,

|Pr [D(Xn) = 1]− Pr [D(Yn) = 1] | < 1
p(n)

That is, the auxiliary input 1n is omitted.

172

3.8. MISCELLANEOUS

Exercise 2: Computational indistinguishability is preserved by efficient algorithms: Let
{Xn}n∈N and {Yn}n∈N be two ensembles that are polynomial-time-indistinguishable.
1. For any probabilistic polynomial-time algorithm A, prove that the ensembles {A(Xn)}n∈N

and {A(Yn)}n∈N are polynomial-time-indistinguishable.
2. Show that if A is not polynomial-time, then {A(Xn)}n∈N and {A(Yn)}n∈N are not necessarily

polynomial-time-indistinguishable.

Exercise 3: Statistical closeness is preserved by any function: Let {Xn}n∈N and
{Yn}n∈N be two ensembles that are statistically close, and let f :{0, 1}∗ → {0, 1}∗
be a function. Prove that the ensembles {f (Xn)}n∈N and {f (Yn)}n∈N are statistically
close.

Exercise 4: Prove that for every L ∈ BPP and every pair of polynomial-time-
indistinguishable ensembles {Xn}n∈N and {Yn}n∈N, it holds that the function

�L(n)
def
= |Pr[Xn∈ L]− Pr[Yn∈ L] |

is negligible in n.
It is tempting to think that the converse holds as well, but we do not know whether

or not it does; note that {Xn} and {Yn} can be distinguished by a probabilistic algo-
rithm, but not by a deterministic one. In such a case, which language should we de-
fine? For example, suppose that A is a probabilistic polynomial-time algorithm, and let
L

def
={x : Pr [A(x) = 1] ≥ 1

2}. Then L is not necessarily in BPP . (Exercise 5 shows that
in the non-computational setting both the foregoing and its converse are true.)

Exercise 5: An equivalent formulation of statistical closeness: Prove that two ensem-
bles, {Xn}n∈N and {Yn}n∈N, are statistically close if and only if for every set S ⊆ {0, 1}∗ ,

�S (n)
def
= |Pr [Xn ∈ S]− Pr [Yn ∈ S] |

is negligible in n.
Guideline: Show that the statistical difference between Xn and Yn, as defined in Eq. (3.1),
equals maxS{�S(n)}.

Exercise 6: Statistical closeness implies computational indistinguishability : Prove that
if two ensembles are statistically close, then they are polynomial-time-indistinguishable.

Guideline: Use the result of Exercise 5, and define for every function f :{0, 1}∗ → {0, 1}
a set Sf

def
= {x : f (x)=1}.

Exercise 7: An information-theoretic analogue of Theorem 3.2.6: Prove that if two
ensembles are statistically close, then their polynomial products must be statistically
close.

Guideline: Show that the statistical difference between the m-products of two distributions
is bounded by m times the distance between the individual distributions.

Exercise 8: Computational indistinguishability by circuits, probabilism versus deter-
minism: Let {Xn}n∈N and {Yn}n∈N be two ensembles, and let C

def
= {Cn}n∈N be a family

of probabilistic polynomial-size circuits. Prove that there exists a family of (deterministic)

173

PSEUDORANDOM GENERATORS

polynomial-size circuits D
def
= {Dn}n∈ N such that for every n,

�D(n) ≥ �C(n)

where

�D(n)
def
= |Pr [Dn(Xn) = 1]− Pr [Dn(Yn) = 1] |

�C(n)
def
= |Pr [Cn(Xn) = 1]− Pr [Cn(Yn) = 1] |

Exercise 9: Computational indistinguishability by circuits, single sample versus sev-
eral samples: Prove that X = {Xn}n∈ N and Y = {Yn}n∈ N are indistinguishable by
polynomial-size circuits (as per Definition 3.2.7) if and only if their m(·)-products are
indistinguishable by polynomial-size circuits, for every polynomial m(·). We stress that
X and Y need not be polynomial-time-constructible.

Guideline: A “good choice” of x1, . . . , x k and yk+2, . . . , ym can be “hard-wired” into the
circuit.

Exercise 10: Computational indistinguishability, circuits versus algorithms:
1. (Easy) Suppose that the ensembles X = {Xn}n∈N and Y = {Yn}n∈N are indistinguish-

able by polynomial-size circuits. Prove that they are computationally indistinguishable (by
probabilistic polynomial-time algorithms).

Guideline: Use Exercise 8.
2. (Hard) Show that there exist ensembles that are computationally indistinguishable (by

probabilistic polynomial-time algorithms), but are distinguishable by polynomial-size
circuits.

Guideline (Part 2): Given any function f : {0, 1}∗ → [0, 1], prove the existence of
an ensemble X = {Xn}n∈ N such that each Xn has support of size at most 2 and
yet Pr [f (Xn) = 1] = Pr[f (Un) = 1], where Un is uniformly distributed over {0, 1}n.
Generalize the argument so that given t such functions, f1, . . . , ft : {0, 1}∗ → [0, 1],
each Xn has support of size at most t + 1 and yet Pr [fi (Xn)=1] = Pr[fi (Un)=1] for
each i = 1, . . . , t . (Extra hint: Consider the t-dimensional vectors (f1(x), . . . , ft (x)) for
each x ∈ {0, 1}n and think of convex hulls.) A standard diagonalization argument will
finish the job. (In case you did not get it, consult [111].)

Exercise 11: Prove that the existence of a pair of polynomial-time-constructible en-
sembles that are computationally indistinguishable and are not statistically close implies
the existence of one-way functions.

Guideline: We seek a simpler proof than one presented earlier [93], where it was proved
that the hypothesis implies the existence of pseudorandom generators. Still, the main
idea of that proof should be applied: Taking sufficiently many independent copies of each
ensemble, construct two computationally indistinguishable ensembles that are “almost
disjoint” (i.e., have statistical difference at least 1− 2−n). Next, assuming for a moment
that the ensembles are disjoint (i.e., have statistical difference 1), prove the conclusion
of this exercise (by using a variant of the proof of Proposition 3.3.8). Finally, deal with
the general case by using an analogous argument in order to show that the hypoth-
esis implies the existence of a “distributionally one-way function” as in Exercise 17 of
Chapter 2.

174

3.8. MISCELLANEOUS

Exercise 12: Prove that pseudorandom generators do not assign noticeable probabil-
ity mass to any string. That is, if G is a pseudorandom generator, then for every positive
polynomial p and all sufficiently large n and α, Pr [G(Un) = α] < 1/p(n).

Exercise 13: Do pseudorandom generators induce 1-1 mappings? That is, if G is
a pseudorandom generator, is it the case that the mapping G : {0, 1}n → {0, 1} l (n)

is 1-1?
1. Show that if pseudorandom generators exist, then there exist pseudorandom generators

G such that the mapping G : {0, 1}n → {0, 1} l (n) is not 1-1.
2. Show that if one-way permutations exist, then there exist pseudorandom generators G

such that the mapping G : {0, 1}n → {0, 1} l (n) is 1-1.

Exercise 14: Let G be a pseudorandom generator, and let h be a polynomial-time-
computable permutation (over strings of the same length). Prove that G ′ and G ′′ defined
by G ′ (s)

def
= h(G(s)) and G ′′ (s)

def
= G(h(s)) are both pseudorandom generators.

Exercise 15: Suppose that G is a pseudorandom generator, and consider the follow-
ing modifications to it:

1. G ′ (s)
def
= 0|G(s)| if the number of 1’s in s is exactly |s |/2, and G ′ (s)

def
= G(s) otherwise.

2. G ′′ (s)
def
= 0|G(s)| if the number of 1’s in s is exactly |s |/3, and G ′′ (s)

def
= G(s) otherwise.

Which of these is a pseudorandom generator?

Exercise 16: Analogously to Exercise 9 in Chapter 2, refute the following conjecture:

For every pseudorandom generator G, the function G ′ (s)
def
= G(s)⊕ s0|G(s)|−|s| is

also a pseudorandom generator.

Guideline: Let g be a pseudorandom generator, and consider G defined on pairs of
strings of the same length such that G(r, s) = (r, g(s)).

Exercise 17: A more general definition of a pseudorandom generator : The following
definition deviates from the standard one by refraining from the length-regular require-
ment regarding the generator (i.e., it is not required that |G(x)| = |G(y)| for all |x| = |y |).
A general pseudorandom generator is a deterministic polynomial-time algorithm G satis-
fying the following two conditions:

Expansion: For every s ∈ {0, 1}∗ , it holds that |G(s)| > |s |.
Pseudorandomness (as in Definition 3.3.1): The ensemble {G(Un)}n∈N is pseudo-

random.

Prove the following statements:
1. If there exists a general pseudorandom generator, then there exists a standard one.
2. Let G be a general pseudorandom generator, and let l : N → N be such that {G(Un)}n∈N

is polynomial-time-indistinguishable from {Ul(n)}n∈N.
(a) Prove that l (n) > n holds for all but finitely many n’s.
(b) Prove that the probability that G(Un) has length not equal to l (n) is negligible (in n).
Guideline (Part 2b): The difficult case is when l (n) is not computable in poly(n) time
from n (otherwise, one can simply compare the length of the tested string to l (n)). In the

175

PSEUDORANDOM GENERATORS

general case, first prove that there exists a function l ′ : N → N such that the probability
that |G(Un)| �= l ′ (n) is negligible (in n). (Hint: Otherwise, one could distinguish polynomial
products of G(Un) from polynomial products of Ul(n).) Next prove that l ′ (n) = l (n) by con-
sidering a distinguisher that on input 1n and a string to be tested, α, first samples G(Un)
and compares its length to |α|.

Exercise 18: Consider a modification of Construction 3.3.2, where si σi = G1(si−1) is
used instead of σi si = G1(si−1). Provide a simple proof that the resulting algorithm is
also pseudorandom.

Guideline: Do not modify the proof of Theorem 3.3.3, but rather modify G1 itself.

Exercise 19: Alternative construction of pseudorandom generator with large expan-
sion factor : Let G1 be a pseudorandom generator with expansion factor l (n) = n + 1,
and let p(·) be a polynomial. Define G(s) to be the result of applying G1 iteratively p(|s|)
times on s (i.e., G(s)

def
= Gp(|s |)

1 (s), where G0
1(s)

def
= s and Gi+1

1
def
= G1(Gi

1(s))).
Prove that G is a pseudorandom generator.
What are the advantages of using Construction 3.3.2?

Exercise 20: An alternative definition of unpredictable ensembles: Consider a modifi-
cation to Definition 3.3.6 in which the quantification is over only (probabilistic polynomial-
time) algorithms that never read the entire input. That is, in every execution of such an
algorithm A, on input (1|x|, x), algorithm A reads at most |x| − 1 bits of x. Prove that
the modified definition is equivalent to the original one.

Guideline: Since the scope of the modified definition is smaller that the scope of the
original one, we need only show how to convert an arbitrary probabilistic polynomial-time
algorithm A into one that never reads the entire input and still has at least the same
success probability in predicting the next bit. This can be done by emulating A without
ever reading the last input bit, so that whenever A tries to read the last input bit, we halt
with a uniformly selected output bit. (Otherwise, we faithfully emulate A.) Note that in
case A reads its last input bit, its output-prediction bit is correct with probability 1

2 (by the
fictitious definition of nextA in this case; see Definition 3.3.6). This success probability is
met by our modified algorithm that outputs a uniformly selected bit as a guess of the last
input bit.

Exercise 21: On-line pseudorandom generator : Recall that variable-output pseu-
dorandom generators (see Section 3.3.3) are deterministic polynomial-time programs
that when given a random seed will produce an infinite sequence of bits such that every
polynomially long prefix of it will be pseudorandom. On-line pseudorandom genera-
tors are a special case of variable-output pseudorandom generators in which a hidden
state is maintained and updated so as to allow generation of the next output bit in time
polynomial in the length of the seed, regardless of the number of bits generated thus
far. On-line pseudorandom generators are defined through their next-step function that
maps the current state of the generator to a pair consisting of an output bit and a next
state. That is, a polynomial-time algorithm g mapping n-bit-long strings to (n + 1)-bit-
long strings is called a next-step function of an on-line pseudorandom generator if for
every polynomial p the ensemble {Gp

n}n∈N is pseudorandom, where Gp
n is defined by

the following random process:

176

3.8. MISCELLANEOUS

Uniformly select s0 ∈ {0, 1}n.

For i = 1 to p(n), do σi · si ← g(si−1), where σi ∈ {0, 1} (and si ∈ {0, 1}n).

Output σ1σ2 · · · σp(n).

That is, s0 is the initial (random) state of the on-line pseudorandom generator, and si

is its state after outputting i bits. (Indeed, the definition of this ensemble is similar to
Construction 3.3.2.)
1. Prove that if G is an ordinary pseudorandom generator with expansion function �(n) =

n + 1, then it also constitutes a next-step function of an on-line pseudorandom generator.
Guideline: Use the similarity mentioned earlier.

2. Show that the converse does not necessarily hold; that is, if g is the next-step function of
an on-line pseudorandom generator, then it is not necessarily a pseudorandom generator.

Guideline: Given a next-step function g ′ , consider the next-step function g(s · r) =
g ′ (s) · 0|r | for (say) |r | = |s|.

3. Still, show that given any (next-step function g of an) on-line pseudorandom generator,
one can easily construct a pseudorandom generator.

Guideline: Just activate the on-line generator enough times.
This definition of (a next-step function of) an on-line pseudorandom generator guar-
antees that the current state of the generator does not grow in size/length with the
number of bits generated. We next consider a somewhat relaxed definition that al-
lows moderate growth in the size/length of the current state. For example, consider a
relaxed definition of an on-line pseudorandom generator that allows (polynomial-time-
computable) next-step functions g that map m-bit-long strings to (m + O(1))-bit-long
strings. (The distribution considered is again defined by selecting s0 uniformly in {0, 1}n,
letting σi · si = g(si−1), where σi ∈ {0, 1}, and outputting σ1σ2 · · · σp(n); however, here
|sp(n)| �= |s0|, unless |g(s)| = |s|+ 1 as before.)

� Show that using the relaxed definition of an on-line pseudorandom generator does
not guarantee that each next output bit will be generated in time polynomial in the
length of the seed (i.e., regardless of the number of bits generated thus far).

� Show that the foregoing Item 3 still holds.
� Let g be the next-step function of a relaxed on-line pseudorandom generator, and let

Tg(m) denote the complexity of computing g on inputs of length m. Provide an upper
bound on the complexity of producing t(n) bits out of an n-bit seed in the relaxed on-
line pseudorandom generator based on g. Compare this bound to the one obtained
for a non-relaxed on-line pseudorandom generator.

� How much can we allow the current state to grow at each step so as to maintain
polynomial-time operation when outputting polynomially many bits?

Exercise 22: Constructions of hashing families: We associate �-dimensional binary
vectors with �-bit-long strings.
1. Consider the set Sm

n of functions mapping n-bit-long strings into m-bit strings. A function
hA,b in Sm

n is represented by a pair (A, b), where A is an n-by-m binary matrix and b is
an m-dimensional binary vector. The n-dimensional binary vector x is mapped by the
function hA,b to the m-dimensional binary vector resulting from multiplying x by A and
adding the vector b to the resulting vector (i.e., hA,b(x) = xA + b). Prove that Sm

n so
defined constitutes a hashing family (as defined in Section 3.5.1.1).

177

PSEUDORANDOM GENERATORS

2. Repeat Item 1 when the n-by-m matrices are restricted to be Toeplitz matrices. An n-by-m
Toeplitz matrix T = {Ti, j } satisfies Ti, j = Ti+1, j+1 for all i , j .

Note that binary n-by-m Toeplitz matrices can be represented by strings of length
n + m− 1, whereas representing arbitrary n-by-m binary matrices requires strings of
length n · m.

Guideline: For every x �= x ′ in {0, 1}n and every v, v ′ ∈ {0, 1}m, show that the number
of functions h ∈ Sm

n that satisfy h(x) = v and h(x ′) =v ′ is independent of v and v ′ . For
example, in Part 1, each such function is associated with a pair (A, b), and we consider
the pairs satisfying the system of equations xA + b =v and x ′ A + b =v ′ (or, equivalently,
xA + b = v and (x − x ′)A = v − v ′), where x, x ′ ,v, and v ′ are fixed and the entries of A
and b are the unknowns.

Exercise 23: Another construction of hashing families: Here we use an efficiently ma-
nipulated representation of the finite field GF(2n). This requires an irreducible polynomial
of degree n over the two-element field GF(2). For specific values of n, a good represen-
tation exists: Specifically, for n = 2 · 3e (with e integer), the polynomial xn + xn/2 + 1 is
irreducible over GF(2) [153, Thm. 1.1.28].

For m≤ n, consider the set Sm
n of functions mapping n-bit-long strings into m-bit

strings as follows. A function ha,b in Sm
n is represented by two elements a, b ∈ GF(2n),

and for every x ∈ GF(2n), the value of ha,b(x) equals the m-bit prefix in an n-bit repre-
sentation of ax + b, where the arithmetic is of the field GF(2n).
1. Prove that Sm

n so defined constitutes a hashing family.
2. Prove that all but an exponentially vanishing fraction of the functions in Sm

n are regular
(i.e., 2n−m-to-1).
Guideline: For Part 1, use the fact that for every x �= x ′ and every v, v ′ ∈ GF(2n), there
exists a single pair (a, b) such that ax + b =v and ax ′ + b =v ′ . For Part 2, use the fact
that for every a �= 0 and b, the mapping x �→ ax + b is 1-1.

Exercise 24: Another hashing lemma: Let m, n, Sm
n , b, Xn, and δ be as in Lemma 3.5.1.

Prove that for every set S ⊆ {0, 1}m and for all but at most a 2− (b−m+log2 |S |) · δ−2

fraction of the h’s in Sm
n , it holds that

Pr [h(Xn) ∈ S] ∈ (1± δ) · |S |
2m

Guideline: Follow the proof of Lemma 3.5.1, defining ζx(h) = 1 if h(x) ∈ S, and 0
otherwise.

Exercise 25: Yet another hashing lemma: Let m, n, and Sm
n be as before, and let

B ⊆ {0, 1}n and S ⊆ {0, 1}m be sets. Prove that for all but at most a 2m

|B|·|S| · δ−2

fraction of the h’s in Sm
n , it holds that

|{x ∈ B : h(x)∈ S)}| ∈ (1± δ) · |S|
2m · |B|

Guideline: Define a random variable Xn that is uniformly distributed over B.

Exercise 26: Failure of an alternative construction of pseudorandom functions: Con-
sider a construction of a function ensemble where the functions in Fn are defined as

178

3.8. MISCELLANEOUS

follows. For every s ∈ {0, 1}n, the function fs is defined such that

fs(x)
def
= Gσn

(· · · (Gσ2

(
Gσ1 (x)

)) · · ·)

where s = σ1 · · · σn and Gσ is as in Construction 3.6.5. Namely, the roles of x and s
in Construction 3.6.5 are switched (i.e., the root of the tree is labeled by x, and the
value of fs on x is obtained by following the path corresponding to the index s). Prove
that the resulting function ensemble is not necessarily pseudorandom (even if G is a
pseudorandom generator).

Guideline: Show, first, that if pseudorandom generators exist, then there exists a pseu-
dorandom generator G satisfying G(0n) = 02n.

Exercise 27: Pseudorandom generators with direct access: A direct-access pseudo-
random generator is a deterministic polynomial-time algorithm G for which no proba-
bilistic polynomial-time oracle machine can distinguish the following two cases:
1. New queries of the oracle machine are answered by independent flips of an unbiased

coin. (Repeating the same query twice yields the same answer.)
2. First, a random “seed” s of length n is uniformly chosen. Next, each query q is answered

by G(s, q).
The bit G(s, i) can be thought of as the i th bit in a bit sequence corresponding to the
seed s, where i is represented in binary.

� Prove that the existence of (ordinary) pseudorandom generators implies the exis-
tence of pseudorandom generators with direct access.

Guideline: A pseudorandom generator with direct access is essentially a pseudoran-
dom function ensemble.

� Show that modifying this definition, so that only unary queries are allowed, will yield
an alternative definition of a relaxed on-line pseudorandom generator (as defined in
Exercise 21).

Guideline: Given a next-step function g of a relaxed on-line pseudorandom generator,
we obtain a generator G supporting “direct access” to a polynomially long sequence
by letting G(s, 1i) be the i th bit produced by the relaxed on-line generator on initial
state s. Conversely, given such a “unary direct-access” machine G, we obtain a next-
step function g by letting g(s, 1i) = (G(s, 1i+1), (s, 1i+1)). (That is, the i th state is (s, 1i),
where s≡ (s, λ) is the initial state.)

� Evaluate the advantage of direct-access pseudorandom generators over on-line
pseudorandom generators even in settings requiring direct access only to bits of
a polynomially long pseudorandom sequence.

Exercise 28: Consider pseudorandom function ensembles as defined in Definition
3.6.4, with respect to a length function � : N → N.
1. Show that for �(n) > log2 n, any such pseudorandom function gives rise to a pseudoran-

dom generator. In fact, it suffices to have �(n)�(n) > n.
2. For �(n)�(n) ≤ n, present a construction of a pseudorandom function ensembles with length
� : N → N, without relying on any assumptions.

Exercise 29: Let {f ′s : {0, 1}d(|s |) → {0, 1}|s |}s∈{0,1}∗ be a generalized pseudoran-
dom function ensemble, and suppose that G ′ is polynomial-time-computable and that

179

PSEUDORANDOM GENERATORS

the ensemble {G ′ (Un)}n∈N is pseudorandom, as defined in Definition 3.2.8. (If G ′ is
a pseudorandom generator, then it satisfies both conditions, but the converse is not
true.)

Prove that the generalized function ensemble { fs : {0, 1}d(|s|) → {0, 1}r (|s|)}s∈{0,1}∗ ,
defined by fs(x)

def
= G ′ (f ′s(x)), is pseudorandom.

Guideline: See proof of Theorem 3.6.11.

Exercise 30: Speeding up pseudorandom function constructions (suggested by
Leonid Levin): For some d, r : N → N, consider a generalized pseudorandom function
ensemble

F
def
= { fs : {0, 1}d(|s |) → {0, 1}r (|s |)}s∈{0,1}∗

as in Definition 3.6.9. Let Primesm denote the set of primes in the interval (2m−1, 2m).
For any d ′ : N → N, consider a new function ensemble,

F ′ def
= { f ′s, p : {0, 1}d ′ (|s |) → {0, 1}r (|s |)}s∈{0,1}∗ , p∈Primesd (|s|)

such that f ′s, p(x)
def
= fs(x mod p), where {0, 1}d ′ (|s |) and {0, 1}d(|s |) are associated with

{0, . . . , 2d ′ (|s |) − 1} and {0, . . . , 2d(|s |) − 1}, respectively.
The point is that the functions in F ′ are computable in time related to the time-

complexity of F. Whenever d ′ (n) ! d(n) (e.g., d ′ (n) = n2 and d(n) = log2
n n), this yields

a speedup in the time-complexity of F ′ (when compared with Construction 3.6.10).
1. Prove that if d(n) = ω(log n), then F ′ is pseudorandom.
2. Show that, on the other hand, if d(n) = O(log n) (and d ′ (n) > d(n)), then F ′ is not

pseudorandom.
Note that, in general, the “pseudorandomness” of F ′ (as quantified with respect to the
running time sufficient to see evidence that F ′ is not random) depends on d : N → N.
Specifically, evidence that F ′ is not random can be found in time exponential in d.

Guideline (Part 2): Going over all possible p’s, try to gather evidence that the target func-
tion indeed uses reduction modulo p. (Hint: For fixed p, any two distinct x, y ∈ {0, 1}d ′ (|s|)

such that x ≡ y (mod p) yield such evidence.)
Guideline (Part 1): Consider applying the foregoing construction to the uniform function
ensemble H, rather than to the pseudorandom ensemble F. The main issue is to show
that the resulting ensemble H ′ is pseudorandom. (F ′ is indistinguishable from H ′ , or else
we can distinguish F from H.)
Guideline (Part 1, extra hints): We refer to the function ensemble H ′ = {H ′

n}n∈N, where
H ′

n is defined by uniformly selecting a function h : {0, 1}d(n) → {0, 1}r (n) and p ∈ Primed(n)

and letting H ′
n = h ′

p such that h ′p(x) = h(x mod p). If the distinct queries x1, . . . , xt ∈
{0, 1}d ′ (n) have distinct residues mod p, then the answers obtained from h ′p are indepen-
dently and uniformly distributed in {0, 1}r (n). Thus, essentially, we need to lower-bound
the probability of the former event for a uniformly selected p ∈ Primed(n). We upper-bound
the probability of the complementary event (i.e., ∃i �= j s.t. xi ≡ xj (mod p)). For dis-
tinct x, y ∈ {0, 1}d ′ (n), it holds that x ≡ y (mod p) iff p divides x − y. At this stage
the argument is simplified by the fact that p is prime:12 The probability that a uniformly

12 What if the construction were to be modified so that p was uniformly selected among all integers in
{2d(n)−1, . . . , 2d(n) − 1}?

180

3.8. MISCELLANEOUS

chosen d(n)-bit-long prime divides a d ′ (n)-bit-long integer is at most d ′ (n)/d(n)
|Primed(n)| , which is

�(d ′ (n) · 2−d(n)).

Exercise 31: An alternative construction for Exercise 30: Let F and let d ′ be as
in Exercise 30, and let Sd(n)

d ′ (n) be a hashing family (as defined in Section 3.5.1.1).
For every s ∈ {0, 1}∗ and h ∈ Sd(|s |)

d ′ (|s |), define f ′s,h such that f ′s,h(x) = fs(h(x)), and let

F ′ def
= { f ′s,h : {0, 1}d ′ (|s |) → {0, 1}r (|s|)}s∈{0,1}∗ ,h∈Sd(|s |)

d ′ (|s |)

(This construction requires longer seeds than the one in Exercise 30; however, one can
use much smaller families of functions that approximate the desired features.)
1. Prove that if d(n) = ω(log n), then F ′ is pseudorandom.
2. On the other hand, show that if d(n) = O(log n) and r (n) > d(n), then F ′ is not pseudo-

random.
Guideline (Part 2): For any distinct x, y ∈ {0, 1}d ′ (n) and a uniformly selected function
mapping d ′ (n)-bit-long strings to r (n)-bit-long string, the probability that x and y are
mapped to the same image is 2−r (n). However, the probability that x and y are mapped to
the same image under a uniformly selected f ′s,h is lower-bounded by Pr[h(x) = h(y)] =
2−d(n).

Exercise 32: An alternative definition of pseudorandom functions: For the sake of sim-
plicity, this exercise is stated in terms of ensembles of Boolean functions (analogously
to Definition 3.6.9, with d(n) = n and r (n) = 1). That is, we consider a Boolean-function
ensemble { fs : {0, 1}|s| → {0, 1}}s∈ {0,1}∗ and let Fn be uniformly distributed over the
multi-set { fs}s∈ {0,1}n . We say that the function ensemble {Fn}n∈ N is unpredictable if
for every probabilistic polynomial-time oracle machine M, for every polynomial p(·), and
for all sufficiently large n’s,

Pr
[
corrFn

(
M Fn(1n)

)]
<

1
2

+
1

p (n)

where M Fn(1n) assumes values of the form (x, σ) ∈ {0, 1}n × {0, 1} such that x is
not a query appearing in the computation M Fn(1n), and corr f (x, σ) is defined as the
predicate “f (x) = σ ”. Intuitively, after getting the values of f on points of its choice, the
machine M outputs a new point (i.e., x) along with a guess (i.e., σ) for the value of
f on this point. The value of corr f (x, σ) represents whether or not M is correct in its
guess.

Assuming that F = {Fn}n∈N is efficiently computable, prove that F is pseudorandom
if and only if F is unpredictable.

Guideline: The proof is analogous to the proof of Theorem 3.3.7

Exercise 33: A mistaken “alternative” definition of pseudorandom functions: Again,
we consider ensembles of Boolean functions, as in Exercise 32. Consider the following
definition of weak unpredictability of function ensembles. The predicting oracle machine
M is given a uniformly chosen x ∈ {0, 1}n as input and should output a guess for f (x),
after querying the oracle f on polynomially many other (than x) points of its choice. We
require that for every probabilistic polynomial-time oracle machine M that does not query

181

PSEUDORANDOM GENERATORS

the oracle on its own input, for every polynomial p(·), and for all sufficiently large n’s,

Pr
[
M Fn(Un)= Fn(Un)

]
<

1
2

+
1

p(n)

That is, unlike the formulation of Exercise 32, the predicting machine cannot select the
point for which it has to predict the value of the function (but rather this point is random
and is given as input).
1. Show that any pseudorandom function ensemble is weakly unpredictable.
2. Assuming that pseudorandom function ensembles exist, show that there exists a function

ensemble that is weakly unpredictable, although it is not pseudorandom.
This exercise contradicts a flawed claim (which appeared in earlier versions of this
manuscript). The flaw was pointed out by Omer Reingold.

Guideline: For Part 1, show that unpredictability, as defined in Exercise 32, implies weak
unpredictability. Alternatively, provide a direct proof (as in Exercise 32). For Part 2, modify
a pseudorandom function ensemble so that each f in the range of Fn satisfies f (0n) = 0.

Exercise 34: An unsuccessful attempt to strengthen the notion of weak unpredictabil-
ity of function ensembles so that it is equivalent to pseudorandomness of functions: In
continuation of Exercise 33, suppose that we strengthen the requirement by allowing
the input x to be chosen from any polynomial-time-constructible ensemble. Namely,
here we say that a function ensemble F = {Fn}n∈N is weakly2 unpredictable if for
every probabilistic polynomial-time oracle machine M that does not query the oracle
on its own input, for every polynomial-time-constructible ensemble {Xn}n∈N, where Xn

ranges over {0, 1}n, for every polynomial p(·), and for all sufficiently large n’s,

Pr
[
M Fn(Xn)= Fn(Xn)

]
<

1
2

+
1

p(n)

Again, show that this definition is a necessary but insufficient condition for pseudoran-
dom function ensembles.

Guideline: Modify the function ensemble so that each f in the range of Fn satisfies
f (f (a1) f (a2) · · · f (an)) = 0, where a1, . . . , an ∈ {0, 1}n are some easy-to-compute strings
(e.g., ai = 0i−110n− i).

Exercise 35: Let t : N → N be such that on input n, one can compute t(n) in poly(n)
time. Let {Fn}n∈N and {Hn}n∈N be two function ensembles that are indistinguishable by
any probabilistic polynomial-time oracle machine. Prove that the permutation ensembles
{DESt(n)

Fn
}n∈N and {DESt(n)

Hn
}n∈N (defined as in Section 3.7.2) are indistinguishable by

any probabilistic polynomial-time oracle machine. Furthermore, this holds even when
the oracle machine is given access both to the permutation and to its inverse (as in
Definition 3.7.5).

Guideline: Use a hybrid argument to bridge between the t(n) independent copies of Fn

and the t(n) independent copies of Hn. The i th hybrid is DES
F(t(n))

n ,...,F(i+1)
n , H(i)

n ,...,H(1)
n

. Note
that oracle access to the permutation DES

F(t(n))
n ,...,F(i+2)

n ,g,H(i)
n ,...,H(1)

n
(as well as to its inverse)

can be emulated by using oracle access to the function g.

Exercise 36: Let Fn and DESt
Fn

be as in Construction 3.7.6. Prove that regardless of

the choice of the ensemble F = {Fn}n∈N, the ensemble DES2
Fn

is not pseudorandom.

182

3.8. MISCELLANEOUS

Guideline: Start by showing that the ensemble DES1
Fn

is not pseudorandom (a single
query suffices here). Use two related queries in order to distinguish DES2

Fn
from a random

permutation.

Exercise 37 (Suggested by Luca Trevisan): Assuming the existence of pseu-
dorandom function ensembles, prove that there exists a pseudorandom permutation
ensemble that is not strongly pseudorandom.

Guideline: First construct a pseudorandom permutation ensemble with seed length
smaller than or equal to the logarithm of domain size. Next modify it so that the seed
is mapped to a fixed point (e.g., the all-zero string) and so that the modified ensemble
remains one of permutations.

Exercise 38: In similarity to Exercise 36, prove that the ensemble DES3
Fn

is not strongly
pseudorandom.

Guideline: This requires more thought and probably more than a couple of queries. You
should definitely use queries to both oracles.

183

CHAPTER 4

Zero-Knowledge Proof Systems

In this chapter we discuss zero-knowledge (ZK) proof systems. Loosely speaking, such
proof systems have the remarkable property of being convincing and yielding nothing
(beyond the validity of the assertion). In other words, receiving a zero-knowledge
proof that an assertion holds is equivalent to being told by a trusted party that the
assertion holds (see illustration in Figure 4.1). The main result presented in this chapter
is a method for constructing zero-knowledge proof systems for every language in
NP . This method can be implemented using any bit-commitment scheme, which in
turn can be implemented using any pseudorandom generator. The importance of this
method stems from its generality, which is the key to its many applications. Specifically,
almost all statements one may wish to prove in practice can be encoded as claims
concerning membership in languages in NP . In addition, we discuss more advanced
aspects of the concept of zero-knowledge and their effects on the applicability of this
concept.

Organization. The basic material is presented in Sections 4.1 through 4.4. In parti-
cular, we start with motivation (Section 4.1), next we define and exemplify the notions
of interactive proofs (Section 4.2) and of zero-knowledge (Section 4.3), and finally

X is true!X

!!

???

Figure 4.1: Zero-knowledge proofs: an illustration.

184

ZERO-KNOWLEDGE PROOF SYSTEMS

Section 4.5: Negative results
Section 4.6: Witness indistinguishability and witness hiding
Section 4.7: Proofs of knowledge
Section 4.8: Computationally sound proofs (arguments)
Section 4.9: Constant-round zero-knowledge systems
Section 4.10: Non-interactive zero-knowledge proofs
Section 4.11: Multi-prover zero-knowledge proofs

Figure 4.2: The advanced sections of this chapter.

we present a zero-knowledge proof system for every language in NP (Section 4.4).
Sections dedicated to advanced topics follow (see Figure 4.2). Unless stated differently
(in the following list and in Figure 4.3), each of these advanced sections can be read
independently of the others.

• In Section 4.5 we present some negative results regarding zero-knowledge proofs. These
results demonstrate the “optimality” of the results in Section 4.4 and motivate the variants
presented in Sections 4.6 and 4.8.

• In Section 4.6 we present a major relaxation of zero-knowledge and prove that it is closed
under parallel composition (which is not the case, in general, for zero-knowledge). Here
we refer to a notion called witness indistinguishability, which is related to witness hiding
(also defined and discussed).

• In Section 4.7 we define and discuss (zero-knowledge) proofs of knowledge.

• In Section 4.8 we discuss a relaxation of interactive proofs, termed computationally
sound proofs (or arguments).

• In Section 4.9 we present two constructions of constant-round zero-knowledge systems.
The first is an interactive proof system, whereas the second is an argument system. Section
4.8.2 (discussing perfectly hiding commitment schemes) is a prerequisite for the first
construction, whereas Sections 4.8, 4.7, and 4.6 constitute a prerequisite for the second.

4.1 - 4.4

4.5 4.6 4.7 4.8 4.9 4.10 4.11

Figure 4.3: The dependence structure of this chapter.

185

ZERO-KNOWLEDGE PROOF SYSTEMS

• In Section 4.10 we discuss non-interactive zero-knowledge proofs. The notion of witness
indistinguishability (defined in Section 4.6) is a prerequisite for the results presented in
Section 4.10.3.1.

• In Section 4.11 we discuss multi-prover proof systems.

We conclude, as usual, with a miscellaneous section (Section 4.12).

Teaching Tip. The interactive proof system for Graph Non-Isomorphism (presented
in Section 4.2) and the zero-knowledge proof of Graph Isomorphism (presented in
Section 4.3) are merely illustrative examples. Thus, one should avoid analyzing those
examples in detail.

4.1. Zero-Knowledge Proofs: Motivation

An archetypical cryptographic problem consists of providing mutually distrustful par-
ties with a means of disclosing (predetermined) “pieces of information.” It refers to
settings in which parties posses secrets, and they wish to reveal parts of these secrets.
The secrets are fully or partially determined by some publicly known information, and
so it makes sense to talk about revealing the correct value of the secret. The question is
how to allow verification of newly revealed parts of the secret without disclosing other
parts of the secret. To clarify the issue, let us consider a specific example.

Suppose that all users in a system keep backups of their entire file systems,
encrypted using their secret keys, in publicly accessible storage media. Suppose
that at some point, one user, called Alice, wishes to reveal to another user, called
Bob, the cleartext of some record in one of her files (which appears in her backup).
A trivial “solution” is for Alice simply to send the (cleartext) record to Bob. The
problem with this “solution” is that Bob has no way of verifying that Alice has
really sent him the true record (as appearing encrypted in her public backup),
rather than just sending him an arbitrary record. Alice could prove that she sent
the correct record simply by revealing to Bob her secret key. However, doing so
would reveal to Bob the contents of all her files, which is certainly something that
Alice does not want. The question is whether or not Alice can convince Bob
that she has indeed revealed the correct record without yielding any additional
“knowledge.”

An analogous problem can be phrased formally as follows. Let f be a one-way
permutation and b a hard-core predicate with respect to f . Suppose that one party,
A, has a string x , whereas another party, denoted B, has only f (x). Furthermore,
suppose that A wishes to reveal b(x) to party B, without yielding any further
information. The trivial “solution” is to let A send b(x) to B, but, as explained
earlier, B will have no way of verifying that A has really sent the correct bit
(and not its complement). Party A could indeed prove that it has sent the correct
bit (i.e., b(x)) by sending x as well, but revealing x to B would be much more
than what A originally had in mind. Again, the question is whether or not A can
convince B that it has indeed revealed the correct bit (i.e., b(x)), without yielding
any additional “knowledge.”

186

4.1. ZERO-KNOWLEDGE PROOFS: MOTIVATION

In general, the question is whether or not it is possible to prove a statement without
yielding anything beyond its validity. Such proofs, whenever they exist, are called
zero-knowledge, and they play a central role in the construction of “cryptographic”
protocols.

Loosely speaking, zero-knowledge proofs are proofs that yield nothing (i.e., “no
knowledge”) beyond the validity of the assertion. In the rest of this introductory section,
we discuss the notion of a “proof” and a possible meaning of the phrase “yield nothing
(i.e., no knowledge) beyond something.”

4.1.1. The Notion of a Proof

A proof is whatever convinces me.
Shimon Even, answering a student’s question

in his graph-algorithms class (1978)

We discuss the notion of a proof with the intention of uncovering some of its underlying
aspects.

4.1.1.1. A Static Object versus an Interactive Process

Traditionally in mathematics, a “proof” is a fixed sequence consisting of statements
that either are self-evident or are derived from previous statements via self-evident
rules. Actually, it is more accurate to replace the phrase “self-evident” with the phrase
“commonly agreed.” In fact, in the formal study of proofs (i.e., logic), the commonly
agreed statements are called axioms, whereas the commonly agreed rules are referred
to as derivation rules. We wish to stress two properties of mathematical proofs:

1. Proofs are viewed as fixed objects.

2. Proofs are considered at least as fundamental as their consequences (i.e., the theorems).

However, in other areas of human activity, the notion of a “proof” has a much wider
interpretation. In particular, a proof is not a fixed object, but rather a process by which
the validity of an assertion is established. For example, withstanding cross-examination
in court can yield what can be considered a proof in law, and failure to provide an
adequate answer to a rival’s claim is considered a proof in philosophical, political, and
sometimes even technical discussions. In addition, in many real-life situations, proofs
are considered secondary (in importance) to their consequences.

To summarize, in “canonical” mathematics, proofs have a static nature (e.g., they
are “written”), whereas in real-life situations proofs have a dynamic nature (i.e., they
are established via an interaction). A dynamic interpretation of the notion of a proof is
more appropriate to our setting, in which proofs are used as tools (i.e., sub-protocols)
inside “cryptographic” protocols. Furthermore, a dynamic interpretation (at least in a
weak sense) is essential to the non-triviality of the notion of a zero-knowledge proof.

4.1.1.2. Prover and Verifier

The notion of a prover is implicit in all discussions of proofs, be it in mathematics or
in real-life situations: The prover is the (sometimes hidden or transcendental) entity

187

ZERO-KNOWLEDGE PROOF SYSTEMS

providing the proof. In contrast, the notion of a verifier tends to be more explicit in such
discussions, which typically emphasize the verification process, or in other words the
role of the verifier. Both in mathematics and in real-life situations, proofs are defined
in terms of the verification procedure. The verification procedure is considered to be
relatively simple, and the burden is placed on the party/person supplying the proof (i.e.,
the prover).

The asymmetry between the complexity of the verification task and the complexity
of the theorem-proving task is captured by the complexity class NP , which can be
viewed as a class of proof systems. Each language L ∈ NP has an efficient verification
procedure for proofs of statements of the form “x ∈ L .” Recall that each L ∈ NP is
characterized by a polynomial-time-recognizable relation RL such that

L = {x : ∃y s.t. (x, y) ∈ RL}
and (x, y) ∈ RL only if |y| ≤ poly(|x |). Hence, the verification procedure for member-
ship claims of the form “x ∈ L” consists of applying the (polynomial-time) algorithm
for recognizing RL to the claim (encoded by) x and a prospective proof, denoted y. Any
y satisfying (x, y) ∈ RL is considered a proof of membership of x ∈ L . Thus, correct
statements (i.e., x ∈ L) and only these have proofs in this proof system. Note that the
verification procedure is “easy” (i.e., polynomial-time), whereas coming up with proofs
may be “difficult” (if indeedNP is not contained in BPP).

It is worthwhile to note the “distrustful attitude” toward the prover that underlies any
proof system. If the verifier trusts the prover, then no proof is needed. Hence, whenever
discussing a proof system, one considers a setting in which the verifier is not trusting
the prover and furthermore is skeptical of anything the prover says.

4.1.1.3. Completeness and Soundness

Two fundamental properties of a proof system (i.e., a verification procedure) are its
soundness (or validity) and completeness. The soundness property asserts that the ver-
ification procedure cannot be “tricked” into accepting false statements. In other words,
soundness captures the verifier’s ability to protect itself from being convinced of false
statements (no matter what the prover does in order to fool the verifier). On the other
hand, completeness captures the ability of some prover to convince the verifier of true
statements (belonging to some predetermined set of true statements). Note that both
properties are essential to the very notion of a proof system.

We remark here that not every set of true statements has a “reasonable” proof sys-
tem in which each of those statements can be proved (while no false statement can be
“proved”). This fundamental fact is given precise meaning in results such as Gödel’s
Incompleteness Theorem and Turing’s theorem regarding the undecidability of the
Halting Problem. We stress that in this chapter we confine ourselves to the class of
sets (of valid statements) that do have “efficient proof systems.” In fact, Section 4.2 is
devoted to discussing and formulating the concept of “efficient proof systems.” Jump-
ing ahead, we hint that the efficiency of a proof system will be associated with the
efficiency of its verification procedure.

188

4.1. ZERO-KNOWLEDGE PROOFS: MOTIVATION

4.1.2. Gaining Knowledge

Recall that we have motivated zero-knowledge proofs as proofs by which the verifier
gains “no knowledge” (beyond the validity of the assertion). The reader may rightfully
wonder what knowledge is and what a gain in knowledge is. When discussing zero-
knowledge proofs, we avoid the first question (which is quite complex) and treat the
second question directly. Namely, without presenting a definition of knowledge, we
present a generic case in which it is certainly justified to say that no knowledge is
gained. Fortunately, this approach seems to suffice as far as cryptography is concerned.

To motivate the definition of zero-knowledge, consider a conversation between two
parties, Alice and Bob. Assume first that this conversation is unidirectional; specifi-
cally, Alice only talks, and Bob only listens. Clearly, we can say that Alice gains
no knowledge from the conversation. On the other hand, Bob may or may not gain
knowledge from the conversation (depending on what Alice says). For example,
if all that Alice says is “1+ 1 = 2,” then clearly Bob gains no knowledge from
the conversation, because he already knows that fact. If, on the other hand, Alice
reveals to Bob a proof that P �= NP , then he certainly gains knowledge from the
conversation.

To give a better flavor of the definition, we now consider a conversation between
Alice and Bob in which Bob asks Alice questions about a large graph (that is known
to both of them). Consider first the case in which Bob asks Alice whether or not
the graph1 is Eulerian. Clearly, Bob gains no knowledge from Alice’s answer, be-
cause he could easily have determined the answer by himself (by running a linear-
time decision procedure2). On the other hand, if Bob asks Alice whether or not the
graph is Hamiltonian, and Alice (somehow) answers this question, then we cannot
say that Bob has gained no knowledge (because we do not know of an efficient pro-
cedure by which Bob could have determined the answer by himself, and assuming
P �= NP , no such efficient procedure exists). Hence, we say that Bob has gained
knowledge from the interaction if his computational ability, concerning the publicly
known graph, has increased (i.e., if after the interaction he can easily compute some-
thing that he could not have efficiently computed before the interaction). On the other
hand, if whatever Bob can efficiently compute about the graph after interacting with
Alice he can also efficiently compute by himself (from the graph), then we say that
Bob has gained no knowledge from the interaction. That is, Bob gains knowledge
only if he receives the result of a computation that is infeasible for him. The question
of how Alice could conduct this infeasible computation (e.g., answer Bob’s ques-
tion of whether or not the graph is Hamiltonian) has been ignored thus far. Jumping
ahead, we remark that Alice may be a mere abstraction or may be in possession
of additional hints that enable her to efficiently conduct computations that are other-
wise infeasible (and in particular are infeasible for Bob, who does not have these
hints).

1See Footnote 13.
2For example, by relying on Euler’s theorem, which asserts that a graph is Eulerian if and only if it is connected

and all its vertices have even degrees.

189

ZERO-KNOWLEDGE PROOF SYSTEMS

Knowledge versus Information

We wish to stress that knowledge (as discussed here) is very different from informa-
tion (in the sense of information theory). Two major aspects of the difference are as
follows:

1. Knowledge is related to computational difficulty, whereas information is not. In the
foregoing examples, there is a difference between the knowledge revealed in the case in
whichAlice answers questions of the form “Is the graph Eulerian?” and the case in which
she answers questions of the form “Is the graph Hamiltonian?” From an information-
theory point of view there is no difference between the two cases (i.e., in each case the
answer is determined by the question, and so Bob gets no information).

2. Knowledge relates mainly to publicly known objects, whereas information relates mainly
to objects on which only partial information is publicly known. Consider the case in
which Alice answers each question by flipping an unbiased coin and telling Bob the
outcome. From an information-theoretic point of view, Bob gets from Alice information
concerning an event. However, we say that Bob gains no knowledge from Alice, because
he could toss coins by himself.

4.2. Interactive Proof Systems

In this section we introduce the notion of an interactive proof system and present a
non-trivial example of such a system (specifically to claims of the form “the following
two graphs are not isomorphic”). The presentation is directed toward the introduction
of zero-knowledge interactive proofs. Interactive proof systems are interesting for their
own sake and have important complexity-theoretic applications.3

4.2.1. Definition

The definition of an interactive proof system refers explicitly to the two computational
tasks related to a proof system: “producing” a proof and verifying the validity of a
proof. These tasks are performed by two different parties, called the prover and the
verifier, which interact with one another. In some cases, the interaction may be very
simple and, in particular, unidirectional (i.e., the prover sends a text, called the proof,
to the verifier). In general, the interaction may be more complex and may take the
form of the verifier interrogating the prover. We start by defining such an interrogation
process.

4.2.1.1. Interaction

Interaction between two parties is defined in the natural manner. The only point worth
noting is that the interaction is parameterized by a common input (given to both parties).
In the context of interactive proof systems, the common input represents the statement
to be proved. We first define the notion of an interactive machine and next the notion

3See the suggestions for further reading at the end of the chapter.

190

4.2. INTERACTIVE PROOF SYSTEMS

of interaction between two such machines. The reader may skip to Section 4.2.1.2,
which introduces some important conventions (regarding interactive machines), with
little loss (if any).

Definition 4.2.1 (An Interactive Machine):
� An interactive Turing machine (ITM) is a (deterministic) multi-tape Turing ma-

chine. The tapes are a read-only input tape, a read-only random tape, a read-and-
write work tape, a write-only output tape, a pair of communication tapes, and a
read-and-write switch tape consisting of a single cell. One communication tape is
read-only, and the other is write-only.

� Each ITM is associated a single bit σ ∈ {0, 1}, called its identity. An ITM is said to
be active, in a configuration, if the content of its switch tape equals the machine’s
identity. Otherwise the machine is said to be idle. While being idle, the state of the
machine, the locations of its heads on the various tapes, and the contents of the
writable tapes of the ITM are not modified.

� The content of the input tape is called input, the content of the random tape is
called random input, and the content of the output tape at termination is called
output. The content written on the write-only communication tape during a (time)
period in which the machine is active is called the message sent at that period.
Likewise, the content read from the read-only communication tape during an active
period is called the message received (at that period).

(Without loss of generality, the machine movements on both communication
tapes are in only one direction, e.g., from left to right.)

This definition, taken by itself, seems quite non-intuitive. In particular, one may say that
once being idle, the machine will never become active again. One may also wonder as to
what is the point of distinguishing the read-only communication tape from the input tape
(and respectively distinguishing the write-only communication tape from the output
tape). The point is that we are never going to consider a single interactive machine,
but rather a pair of machines combined together such that some of their tapes coincide.
Intuitively, the messages sent by one interactive machine are received by a second
machine that shares its communication tapes (so that the read-only communication
tape of one machine coincides with the write-only tape of the other machine). The
active machine may become idle by changing the content of the shared switch tape, and
when it does so, the other machine (having opposite identity) will become active. The
computation of such a pair of machines consists of the machines alternately sending
messages to one another, based on their initial (common) input, their (distinct) random
inputs, and the messages each machine has received thus far.

Definition 4.2.2 (Joint Computation of Two ITMs):
� Two interactive machines are said to be linked if they have opposite identities, their

input tapes coincide, their switch tapes coincide, and the read-only communication
tape of one machine coincides with the write-only communication tape of the other
machine, and vice versa. We stress that the other tapes of both machines (i.e., the
random tape, the work tape, and the output tape) are distinct.

191

ZERO-KNOWLEDGE PROOF SYSTEMS

� The joint computation of a linked pair of ITMs, on a common input x, is a
sequence of pairs representing the local configurations of both machines. That
is, each pair consists of two strings, each representing the local configuration of
one of the machines. In each such pair of local configurations, one machine (not
necessarily the same one) is active, while the other machine is idle. The first pair
in the sequence consists of initial configurations corresponding to the common
input x, with the content of the switch tape set to zero.

� If one machine halts while the switch tape still holds its identity, then we say that
both machines have halted. The outputs of both machines are determined at that
time.

At this point, the reader may object to this definition, saying that the individual
machines are deprived of individual local inputs (whereas they are given individual
and unshared random tapes). This restriction is removed in Section 4.2.4, and in fact
allowing individual local inputs (in addition to the common shared input) is quite
important (at least as far as practical purposes are concerned). Yet, for a first presentation
of interactive proofs, as well as for demonstrating the power of this concept, we prefer
the foregoing simpler definition. On the other hand, the convention of individual random
tapes is essential to the power of interactive proofs (see Exercise 4).

4.2.1.2. Conventions Regarding Interactive Machines

Typically, we consider executions in which the content of the random tape of each
machine is uniformly and independently chosen (among all infinite bit sequences). The
convention of having an infinite sequence of internal coin tosses should not bother the
reader, because during a finite computation only a finite prefix is read (and matters).
The content of each of these random tapes can be viewed as internal coin tosses of
the corresponding machine (as in the definition of ordinary probabilistic machines
presented in Chapter 1). Hence, interactive machines are in fact probabilistic.

Notation. Let A and B be a linked pair of ITMs, and suppose that all possible inter-
actions of A and B on each common input terminate in a finite number of steps. We
denote by 〈A, B〉(x) the random variable representing the (local) output of B when in-
teracting with machine A on common input x , when the random input to each machine
is uniformly and independently chosen. (Indeed, this definition is asymmetric, since it
considers only B’s output.)

Another important convention is to consider the time-complexity of an interactive
machine as a function of only its input’s length.

Definition 4.2.3 (The Complexity of an Interactive Machine): We say that an
interactive machine A has time-complexity t : N → N if for every interactive
machine B and every string x, it holds that when interacting with machine B, on
common input x, machine A always (i.e., regardless of the content of its random
tape and B’s random tape) halts within t(|x |) steps. In particular, we say that A is
polynomial-time if there exists a polynomial p such that A has time-complexity p.

192

4.2. INTERACTIVE PROOF SYSTEMS

We stress that the time-complexity, so defined, is independent of the content of the
messages that machine A receives. In other words, it is an upper bound that holds for
all possible incoming messages (as well as all internal coin tosses). In particular, an
interactive machine with time-complexity t(·) may read, on input x , only a prefix of
total length t(|x |) of the messages sent to it.

4.2.1.3. Proof Systems

In general, proof systems are defined in terms of the verification procedure (which can
be viewed as one entity, called the verifier). A “proof” for a specific claim is always
considered as coming from the outside (which can be viewed as another entity, called
the prover). The verification procedure itself does not generate “proofs,” but merely
verifies their validity. Interactive proof systems are intended to capture whatever can
be efficiently verified via interaction with the outside. In general, the interaction with
the outside can be very complex and may consist of many message exchanges, as long
as the total time spent by the verifier is polynomial (in the common input).

Our choice to consider probabilistic polynomial-time verifiers is justified by the
association of efficient procedures with probabilistic polynomial-time algorithms. Fur-
thermore, the verifier’s verdict of whether to accept or reject the claim is probabilistic,
and a bounded error probability is allowed. (Jumping ahead, we mention that the error
can be decreased to be negligible by repeating the verification procedure sufficiently
many times.)

Loosely speaking, we require that the prover be able to convince the verifier of
the validity of true statements, while nobody can fool the verifier into believing false
statements. Both conditions are given a probabilistic interpretation: It is required that
the verifier accept valid statements with “high” probability, whereas the probability
that it will accept a false statement is “low” (regardless of the machine with which the
verifier interacts). In the following definition, the verifier’s output is interpreted as its
decision on whether to accept or reject the common input. Output 1 is interpreted as
“accept,” whereas output 0 is interpreted as “reject.”

Definition 4.2.4 (Interactive Proof System): A pair of interactive machines
(P, V) is called an interactive proof system for a language L if machine V is
polynomial-time and the following two conditions hold:

� Completeness: For every x ∈ L,

Pr[〈P, V 〉(x) = 1] ≥ 2

3
� Soundness: For every x �∈ L and every interactive machine B,

Pr[〈B, V 〉(x) = 1] ≤ 1

3

Some remarks are in order. We first stress that the soundness condition refers to all poten-
tial “provers,” whereas the completeness condition refers only to the prescribed prover
P . Second, the verifier is required to be a (probabilistic) polynomial-time machine, but

193

ZERO-KNOWLEDGE PROOF SYSTEMS

no resource bounds are placed on the computing power of the prover (in either com-
pleteness or soundness conditions). Third, as in the case of BPP , the error probability
in the foregoing definition can be made exponentially small by repeating the interaction
(polynomially) many times.

Every language in NP has an interactive proof system. Specifically, let L ∈ NP ,
and let RL be a witness relation associated with the language L (i.e., RL is recognizable
in polynomial time, and L equals the set {x : ∃y s.t. |y| = poly(|x |) ∧ (x, y) ∈ RL}).
Then an interactive proof for the language L consists of a prover that on input x ∈ L
sends a witness y (as before), and a verifier that upon receiving y (on common input x)
outputs 1 if |y| = poly(|x |) and (x, y) ∈ RL (and outputs 0 otherwise). Clearly, when
interacting with the prescribed prover, this verifier will always accept inputs in the
language. On the other hand, no matter what a cheating “prover” does, this verifier will
never accept inputs not in the language. We point out that in this specific proof system,
both parties are deterministic (i.e., make no use of their random tapes). It is easy to see
that only languages in NP have interactive proof systems in which both parties are
deterministic (see Exercise 2).

In other words,NP can be viewed as a class of interactive proof systems in which
the interaction is unidirectional (i.e., from the prover to the verifier) and the verifier
is deterministic (and never errs). In general interactive proofs, both restrictions are
waived: The interaction is bidirectional, and the verifier is probabilistic (and may err,
with some small probability). Both bidirectional interaction and randomization seem
essential to the power of interactive proof systems (see Exercise 2).

Definition 4.2.5 (The Class IPIP): The class IP consists of all languages having
interactive proof systems.

By the foregoing discussion, NP ⊆ IP . Because languages in BPP can be viewed
as each having a verifier that decides on membership without any interaction, it follows
that BPP ∪NP ⊆ IP . We remind the reader that it is not known whether or not
BPP ⊆ NP .

We next show that the definition of the class IP remains invariant if we replace the
(constant) bounds in the completeness and soundness conditions with two functions
c, s : N → [0, 1] satisfying c(n) < 1− 2−poly(n), s(n) > 2−poly(n), and c(n) > s(n)+

1
poly(n) . Namely, we consider the following generalization of Definition 4.2.4.

Definition 4.2.6 (Generalized Interactive Proof): Let c, s : N → R be func-
tions satisfying c(n) > s(n)+ 1

p(n) for some polynomial p(·). An interactive pair
(P, V) is called a (generalized) interactive proof system for the language L, with
completeness bound c(·) and soundness bound s(·), if
� (modified) completeness: for every x ∈ L,

Pr [〈P, V 〉(x) = 1] ≥ c(|x |)
� (modified) soundness: for every x �∈ L and every interactive machine B,

Pr [〈B, V 〉(x) = 1] ≤ s(|x |)
194

4.2. INTERACTIVE PROOF SYSTEMS

The function g(·) defined as g(n) def= c(n)− s(n) is called the acceptance gap of
(P, V), and the function e(·), defined as e(n) def= max{1− c(n), s(n)}, is called
the error probability of (P, V). In particular, s is the soundness error of (P, V),
and 1− c is its completeness error.

We stress that c is a lower bound, whereas s is an upper bound.

Proposition 4.2.7: The following three conditions are equivalent:

1. L ∈ IP . Namely, there exists an interactive proof system, with completeness bound
2
3 and soundness bound 1

3 , for the language L.

2. L has very strong interactive proof systems: For every polynomial p(·), there exists
an interactive proof system for the language L, with error probability bounded
above by 2−p(·).

3. L has a very weak interactive proof: There exists a polynomial p(·) and a gener-
alized interactive proof system for the language L, with acceptance gap bounded
below by 1/p(·). Furthermore, completeness and soundness bounds for this sys-
tem, namely, the values c(n) and s(n), can be computed in time polynomial in n.

Clearly, either of the first two items implies the third one (including the requirement for
efficiently computable bounds). The ability to efficiently compute completeness and
soundness bounds is used in proving the opposite (non-trivial) direction. The proof is
left as an exercise (i.e., Exercise 1).

4.2.2. An Example (Graph Non-Isomorphism in IPIPIP)

All examples of interactive proof systems presented thus far have been degenerate
(e.g., the interaction, if any, has been unidirectional). We now present an example of a
non-degenerate interactive proof system. Furthermore, we present an interactive proof
system for a language not known to be inBPP ∪NP . Specifically, the language is the
set of pairs of non-isomorphic graphs, denoted G N I . The idea underlying this proof
system is presented through the following story:

Petra von Kant claims that Goldstar4 beer in large bottles tastes different than
Goldstar beer in small bottles. Virgil does not believe her. To prove her claim,
Petra and Virgil repeat the following process a number of times sufficient to
convince Virgil beyond reasonable doubt.

Virgil selects at random either a large bottle or a small one and pours some
beer into a tasting glass, without Petra seeing which bottle he uses. Virgil then
hands Petra the glass and asks her to tell which of the bottles he has used.

If Petra never errs in her answers, then Virgil is convinced of the validity of
her claim. (In fact, he should be convinced even if she answers correctly with
probability substantially larger than 50%, because if the beer tastes the same

4Goldstar is an Israeli beer, available in 330-ml and 500-ml bottles. Actually, the story traces back to Athena’s
claim regarding jars of nectar, which was contested by Zeus himself. Unfortunately, Ovid does not tell the outcome
of their interaction.

195

ZERO-KNOWLEDGE PROOF SYSTEMS

regardless of the bottle, then there would be no way for Petra to guess correctly
with probability higher than 50% which bottle was used.)

We now get back to the formal exposition. Let us first define the language in focus: Two
graphs,5 G1 = (V1, E1) and G2 = (V2, E2), are called isomorphic if there exists a 1-1
and onto mapping, π , from the vertex set V1 to the vertex set V2 such that (u, v) ∈ E1

if and only if (π (v), π (u)) ∈ E2. The mapping π , if it exists, is called an isomorphism
between the graphs. The set of pairs of non-isomorphic graphs is denoted by G N I .

Construction 4.2.8 (An Interactive Proof System for Graph Non-
Isomorphism):
� Common input: A pair of two graphs, G1 = (V1, E1) and G2 = (V2, E2). Suppose,

without loss of generality, that V1 = {1, 2, . . . , |V1|}, and similarly for V2.
� Verifier’s first step (V1): The verifier selects at random one of the two input graphs

and sends to the prover a random isomorphic copy of this graph. Namely, the
verifier selects uniformly σ ∈ {1, 2} and a random permutation π from the set of
permutations over the vertex set Vσ . The verifier constructs a graph with vertex
set Vσ and edge set

F
def= {(π (u), π (v)) : (u, v) ∈ Eσ }

and sends (Vσ , F) to the prover.
� Motivating remark: If the input graphs are non-isomorphic, as the prover claims,

then the prover should be able to distinguish (not necessarily by an efficient proce-
dure) isomorphic copies of one graph from isomorphic copies of the other graph.
However, if the input graphs are isomorphic, then a random isomorphic copy of
one graph will be distributed identically to a random isomorphic copy of the other
graph.

� Prover’s first step (P1): Upon receiving a graph G ′ = (V ′, E ′) from the verifier, the
prover finds τ ∈ {1, 2} such that the graph G ′ is isomorphic to the input graph Gτ .
(If both τ = 1 and r = 2 satisfy the condition, then τ is selected arbitrarily. In case
no τ ∈ {1, 2} satisfies the condition, τ is set to 0.) The prover sends τ to the verifier.

� Verifier’s second step (V2): If the message τ received from the prover equals σ
(chosen in Step V1), then the verifier outputs 1 (i.e., accepts the common input).
Otherwise the verifier outputs 0 (i.e., rejects the common input).

This verifier program is easily implemented in probabilistic polynomial time. We do not
know of a probabilistic polynomial-time implementation of the prover’s program, but
this is not required. We shall now show that the foregoing pair of interactive machines
constitutes an interactive proof system (in the general sense) for the language G N I
(Graph Non-Isomorphism).

Proposition 4.2.9: The language G N I is in the class IP . Furthermore, the
programs specified in Construction 4.2.8 constitute a generalized interactive proof
system for G N I , with completeness bound 1 and soundness bound 1

2 . Namely:

5See footnote 13.

196

4.2. INTERACTIVE PROOF SYSTEMS

1. If G1 and G2 are not isomorphic (i.e., (G1,G2) ∈ G N I), then the verifier always
accepts (when interacting with the prover).

2. If G1 and G2 are isomorphic (i.e., (G1,G2) �∈ G N I), then no matter with what
machine the verifier interacts, it rejects the input with probability at least 1

2 .

Proof: Clearly, if G1 and G2 are not isomorphic, then no graph can be isomorphic
to both G1 and G2. It follows that there exists a unique τ such that the graph G ′

(received by the prover in Step P1) is isomorphic to the input graph Gτ . Hence, τ
found by the prover in Step P1 always equals σ chosen in Step V1. Part 1 follows.

On the other hand, if G1 and G2 are isomorphic, then the graph G ′ is isomorphic
to both input graphs. Furthermore, we shall show that in this case the graph G ′

yields no information about σ , and consequently no machine can (on input G1,
G2 and G ′) set τ such that it will equal σ with probability greater than 1

2 . Details
follow.

Let π be a permutation on the vertex set of a graph G = (V, E). We denote by
π (G) the graph with vertex set V and edge set {(π (u), π (v)) : (u, v) ∈ E}. Let
ξ be a random variable uniformly distributed over {1, 2}, and let � be a random
variable uniformly distributed over the set of permutations on V . We stress that
these two random variables are independent. We are interested in the distribution
of the random variable �(Gξ). We are going to show that although �(Gξ) is
determined by the random variables � and ξ , the random variables ξ and �(Gξ)
are statistically independent. In fact, we show the following:

Claim 4.2.9.1: If the graphs G1 and G2 are isomorphic, then for every graph G ′

that is isomorphic to G1 (and G2), it holds that

Pr[ξ = 1 |�(Gξ) = G ′] = Pr[ξ = 2 |�(Gξ) = G ′] = 1

2

Proof: We first claim that the sets S1
def= {π : π (G1) = G ′} and S2

def=
{π : π (G2) = G ′} are of the same cardinality. This follows from the observa-
tion that there is a 1-1 and onto correspondence between the set S1 and the set
S2 (the correspondence is given by the isomorphism between the graphs G1 and
G2). Hence,

Pr[�(Gξ) = G ′ | ξ = 1] = Pr[�(G1) = G ′]

= Pr[� ∈ S1]

= Pr[� ∈ S2]

= Pr[�(Gξ) = G ′|ξ = 2]

Using Bayes’ rule, the claim follows. �

Intuitively, Claim 4.2.9.1 says that for every pair (G1,G2) of isomorphic graphs,
the random variable �(Gξ) yields no information on ξ , and so no prover can
fool the verifier into accepting with probability greater than 1

2 . Specifically, we let
R be an arbitrary randomized process (representing a possible cheating-prover
strategy that depends on (G1,G2)) that given the verifier’s message in Step V1

197

ZERO-KNOWLEDGE PROOF SYSTEMS

tries to guess the value of ξ . Then, R(�(Gξ)) = ξ represents the event in which
the verifier accepts, and we have

Pr[R(�(Gξ)) = ξ] =
∑

G ′
Pr[�(Gξ) = G ′] · Pr[R(G ′) = ξ |�(Gξ) = G ′]

Using Claim 4.2.9.1 for the third equality, we have (for any G ′ in the support of
�(Gξ)):

Pr[R(G ′) = ξ |�(Gξ) = G ′] =
∑
v

Pr[R(G ′) = v& ξ = v |�(Gξ) = G ′]

=
∑
v

Pr[R(G ′) = v] · Pr[ξ = v |�(Gξ) = G ′]

=
∑
v∈{1,2}

Pr[R(G ′) = v] · Pr[ξ = v]

= Pr[R(G ′) ∈ {1, 2}]
2

≤ 1

2

with equality in case R always outputs an element in the set {1, 2}. Part 2 of the
proposition follows. �

Remarks Concerning Construction 4.2.8. In the proof system of Construction 4.2.8,
the verifier always accepts inputs in the language (i.e., the completeness error equals
zero). The fact that G N I ∈ IP , whereas it is not known whether or not G N I ∈ NP ,
is an indication of the power of interaction and randomness in the context of theorem-
proving. Finally, we note that it is essential that the prover not know the outcome of the
verifier’s internal coin tosses. For a wider perspective on these issues, see the following
advanced subsection.

4.2.3.∗ The Structure of the Class IPIP
In continuation to the foregoing remarks, we briefly discuss several aspects regarding
the “proving power” of interactive proof systems.

1. The completeness and soundness bounds: All interactive proof systems presented in this
book happen to have perfect completeness; that is, the verifier always accepts inputs
IN the language (i.e., the completeness error equals zero). In fact, one can transform
any interactive proof system into an interactive proof system (for the same language) in
which the verifier always accepts inputs in the language.

On the other hand, as shown in Exercise 5, only languages in NP have interactive
proof systems in which the verifier always rejects inputs NOT IN the language (i.e., having
soundness error equal to zero).

2. The privacy of the verifier’s coins: Arthur-Merlin proofs (a.k.a. public-coin proof systems)
are a special case of interactive proofs, where the verifier must send the outcome of any
coin it tosses (and thus need not send any other information). As stated earlier, the

198

4.2. INTERACTIVE PROOF SYSTEMS

proof system of Construction 4.2.8 is not of the public-coin type. Yet one can transform
any interactive proof system into a public-coin interactive proof system (for the same
language), while preserving perfect completeness.

3. Which languages have interactive proof systems? (We have ignored this natural question
until now.) It turns out that every language inPSPACE has an interactive proof system.
In fact,

IP equals PSPACE

We comment that PSPACE is believed to be much larger than NP; in particular,
coNP ⊆ PSPACE , whereas it is commonly believed that coNP �= NP . Also, because
PSPACE is closed under complementation, so is IP .

4. Constant-round interactive proofs: Construction 4.2.8 constitutes a constant-round pro-
tocol (i.e., a constant number of messages are sent). In contrast, in the generic interactive
proof system for PSPACE , the number of communication rounds is polynomially re-
lated to the input length. We comment that coNP is believed NOT to have constant-round
interactive proofs.

We mention that any language having a constant-round interactive proof system also
has a public-coin interactive proof system in which only two messages are sent: The
latter consists of a random challenge from the verifier that is answered by the prover.
In general, for any function r : N → N, any 2r -round proof system can be transformed
into an r -round proof system (for the same language).

4.2.4. Augmentation of the Model

For purposes that will become more clear in Sections 4.3 and 4.4, we augment the
basic definition of an interactive proof system by allowing each of the parties to have a
private input (in addition to the common input). Loosely speaking, these inputs are used
to capture additional information available to each of the parties. Specifically, when
using interactive proof systems as sub-protocols inside larger protocols, the private
inputs are associated with the local configurations of the machines before entering the
sub-protocol. In particular, the private input of the prover may contain information that
enables an efficient implementation of the prover’s task.

Definition 4.2.10 (Interactive Proof Systems, Revisited):

1. An interactive machine is defined as in Definition 4.2.1, except that the machine
has an additional read-only tape called the auxiliary-input tape. The content of
this tape is called auxiliary input.

2. The complexity of such an interactive machine is still measured as a function of the
(common) input length. Namely, the interactive machine A has time-complexity
t : N → N if for every interactive machine B and every string x, it holds that
when interacting with machine B, on common input x, machine A always (i.e.,
regardless of the content of its random tape and its auxiliary-input tape, as well
as the content of B’s tapes) halts within t(|x |) steps.

199

ZERO-KNOWLEDGE PROOF SYSTEMS

3. We denote by 〈A(y), B(z)〉(x) the random variable representing the (local) output
of B when interacting with machine A on common input x, when the random input
to each machine is uniformly and independently chosen, and A (resp., B) has
auxiliary input y (resp., z).

4. A pair of interactive machines (P, V) is called an interactive proof system for
a language L if machine V is polynomial-time and the following two conditions
hold:
� Completeness: For every x ∈ L, there exists a string y such that for every

z ∈ {0, 1}∗,

Pr [〈P(y), V (z)〉(x) = 1] ≥ 2

3

� Soundness: For every x �∈ L, every interactive machine B, and every y, z ∈
{0, 1}∗,

Pr [〈B(y), V (z)〉(x) = 1] ≤ 1

3

We stress that when saying that an interactive machine is polynomial-time, we mean
that its running time is polynomial in the length of the common input. Consequently, it
is not guaranteed that such a machine has enough time to read its entire auxiliary input.

Teaching Tip. The augmented model of interactive proofs is first used in this book in
Section 4.3.3, where the notion of zero-knowledge is extended to account for a priori in-
formation that the verifier may have. One may thus prefer to present Definition 4.2.10 af-
ter presenting the basic definitions of zero-knowledge, that is, postpone Definition 4.2.10
to Section 4.3.3. (However, conceptually speaking, Definition 4.2.10 does belong to
the current section.)

4.3. Zero-Knowledge Proofs: Definitions

In this section we introduce the notion of a zero-knowledge interactive proof system
and present a non-trivial example of such a system (specifically, to claims of the form
“the following two graphs are isomorphic”).

4.3.1. Perfect and Computational Zero-Knowledge

Loosely speaking, we say that an interactive proof system (P, V) for a language L is
zero-knowledge if whatever can be efficiently computed after interacting with P on
input x ∈ L can also be efficiently computed from x (without any interaction). We stress
that this holds with respect to any efficient way of interacting with P , not necessarily the
way defined by the verifier program V . Actually, zero-knowledge is a property of the
prescribed prover P . It captures P’s robustness against attempts to gain knowledge by
interacting with it. A straightforward way of capturing the informal discussion follows.

200

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS

Let (P, V) be an interactive proof system for some language L . We say that (P, V),
or actually P , is perfect zero-knowledge if for every probabilistic polynomial-time
interactive machine V ∗ there exists an (ordinary) probabilistic polynomial-time
algorithm M∗ such that for every x ∈ L the following two random variables are
identically distributed:
� 〈P, V ∗〉(x) (i.e., the output of the interactive machine V ∗ after interacting with

the interactive machine P on common input x)
� M∗(x) (i.e., the output of machine M∗ on input x)

Machine M∗ is called a simulator for the interaction of V ∗ with P .

We stress that we require that for every V ∗ interacting with P , not merely for V , there
exists a (“perfect”) simulator M∗. This simulator, although not having access to the
interactive machine P , is able to simulate the interaction of V ∗ with P . The fact that
such simulators exist means that V ∗ does not gain any knowledge from P (since the
same output could be generated without any access to P).

The Simulation Paradigm

The foregoing discussion follows a general definitional paradigm that is also used in
other chapters of this book (specifically, in Volume 2). The simulation paradigm postu-
lates that whatever a party can do by itself cannot be considered a gain from interaction
with the outside. The validity of this paradigm is evident, provided we bear in mind
that by “doing” we mean “efficiently doing” something (and more so if the complexity
of “doing it alone” is tightly related to the complexity of “doing it after interaction with
the outside”).6 Admittedly, failure to provide a simulation of an interaction with the
outside does NOT necessarily mean that this interaction results in some “real gain” (in
some intuitive sense). Yet what matters is that any “real gain” can NOT occur whenever
we are able to present a simulation. In summary, the approach underlying the simula-
tion paradigm may be overly cautious, but it is certainly valid. (Furthermore, to say the
least, it seems much harder to provide a robust definition of “real gain.”)

Trivial Cases. Note that every language in BPP has a perfect zero-knowledge proof
system in which the prover does nothing (and the verifier checks by itself whether
to accept or reject the common input). To demonstrate the zero-knowledge property
of this “dummy prover,” one can present for every verifier V ∗ a simulator M∗ that is
essentially identical to V ∗ (except that the communication tapes of V ∗, which are never
used, are considered as ordinary work tapes of M∗).

4.3.1.1. Perfect Zero-Knowledge

Unfortunately, the preceding formulation of (perfect) zero-knowledge is slightly too
strict (at least as far as we know).7 We relax the formulation by allowing the simulator
to fail, with bounded probability, to produce an interaction.

6See the discussion of knowledge tightness in Section 4.4.4.2.
7That is, we do not know of any non-trivial case in which that requirement is satisfied. In contrast, non-

trivial cases satisfying the relaxed definition given next are known, and we actually present one (i.e., a perfect
zero-knowledge proof for Graph Isomorphism).

201

ZERO-KNOWLEDGE PROOF SYSTEMS

Definition 4.3.1 (Perfect Zero-Knowledge): Let (P, V) be an interactive proof
system for some language L. We say that (P, V) is perfect zero-knowledge if for
every probabilistic polynomial-time interactive machine V ∗ there exists a prob-
abilistic polynomial-time algorithm M∗ such that for every x ∈ L the following
two conditions hold:

1. With probability at most 1
2 , on input x, machine M∗ outputs a special symbol

denoted ⊥ (i.e., Pr[M∗(x) = ⊥] ≤ 1
2).

2. Let m∗(x) be a random variable describing the distribution of M∗(x) con-
ditioned on M∗(x) �= ⊥ (i.e., Pr[m∗(x) = α] = Pr[M∗(x) = α | M∗(x) �= ⊥]
for every α ∈ {0, 1}∗). Then the following random variables are identically
distributed:
� 〈P, V ∗〉(x) (i.e., the output of the interactive machine V ∗ after interacting with

the interactive machine P on common input x)
� m∗(x) (i.e., the output of machine M∗ on input x, conditioned on not being ⊥)

Machine M∗ is called a perfect simulator for the interaction of V ∗ with P.

Condition 1 can be replaced by a stronger condition requiring that M∗ output the special
symbol (i.e.,⊥) only with negligible probability. For example, one can require that (on
input x) machine M∗ will output⊥ with probability bounded above by 2−p(|x |), for any
polynomial p(·); see Exercise 6. Consequently, the statistical difference between the
random variables 〈P, V ∗〉(x) and M∗(x) can be made negligible (in |x |); see Exercise 8.
Hence, whatever the verifier efficiently computes after interacting with the prover can
be efficiently computed (with only an extremely small error) by the simulator (and
hence by the verifier himself).

4.3.1.2. Computational Zero-Knowledge

Following the spirit of Chapter 3, we observe that for practical purposes there is no need
to be able to “perfectly simulate” the output of V ∗ after it interacts with P . Instead,
it suffices to generate a probability distribution that is computationally indistinguish-
able from the output of V ∗ after it interacts with P . The relaxation is consistent with
our original requirement that “whatever can be efficiently computed after interacting
with P on input x ∈ L can also be efficiently computed from x (without any interac-
tion),” the reason being that we consider computationally indistinguishable ensembles
as being the same. Before presenting the relaxed definition of general zero-knowledge,
we recall the definition of computationally indistinguishable ensembles (see Item 2 in
Definition 3.2.2). Here we consider ensembles indexed by strings from a language L .
We say that the ensembles {Rx}x∈L and {Sx}x∈L are computationally indistinguishable
if for every probabilistic polynomial-time algorithm D, for every polynomial p(·), and
for all sufficiently long x ∈ L , it holds that

|Pr[D(x, Rx) = 1]− Pr[D(x, Sx) = 1]| < 1

p(|x |)

202

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS

Definition 4.3.2 (Computational Zero-Knowledge): Let (P, V) be an interac-
tive proof system for some language L. We say that (P, V) is computational zero-
knowledge (or just zero-knowledge) if for every probabilistic polynomial-time
interactive machine V ∗ there exists a probabilistic polynomial-time algorithm M∗

such that the following two ensembles are computationally indistinguishable:
� {〈P, V ∗〉(x)}x∈L (i.e., the output of the interactive machine V ∗ after it interacts

with the interactive machine P on common input x)
� {M∗(x)}x∈L (i.e., the output of machine M∗ on input x)

Machine M∗ is called a simulator for the interaction of V ∗ with P.

The reader can easily verify (see Exercise 9) that allowing the simulator to output the
special symbol ⊥ (with probability bounded above by, say, 1

2) and considering the
conditional output distribution (as done in Definition 4.3.1) does not add to the power
of Definition 4.3.2.

The Scope of Zero-Knowledge. We stress that both definitions of zero-knowledge
apply to interactive proof systems in the general sense (i.e., having any noticeable gap
between the acceptance probabilities for inputs inside and outside the language). In fact,
the definitions of zero-knowledge apply to any pair of interactive machines (actually
to each interactive machine): Namely, we can say that the interactive machine A is
zero-knowledge on L if whatever can be efficiently computed after the interaction with
A on common input x ∈ L can also be efficiently computed from x itself.

4.3.1.3. An Alternative Formulation of Zero-Knowledge

An alternative formulation of zero-knowledge considers the verifier’s view of the inter-
action with the prover, rather than only the output of the verifier after such an interaction.
By the “verifier’s view of the interaction” we mean the entire sequence of the local con-
figurations of the verifier during an interaction (execution) with the prover. Clearly, it
suffices to consider only the content of the random tape of the verifier and the sequence
of messages that the verifier has received from the prover during the execution (since
the entire sequence of local configurations and the final output are determined by those
objects).

Definition 4.3.3 (Zero-Knowledge, Alternative Formulation): Let (P, V), L,
and V ∗ be as in Definition 4.3.2. We denote by viewP

V ∗(x) a random variable
describing the content of the random tape of V ∗ and the messages V ∗ receives
from P during a joint computation on common input x. We say that (P, V) is zero-
knowledge if for every probabilistic polynomial-time interactive machine V ∗

there exists a probabilistic polynomial-time algorithm M∗ such that the ensembles
{viewP

V ∗(x)}x∈L and {M∗(x)}x∈L are computationally indistinguishable.

A few remarks are in order. First, note that Definition 4.3.3 is obtained from
Definition 4.3.2 by replacing 〈P, V ∗〉(x) with viewP

V ∗(x). The simulator M∗ used in

203

ZERO-KNOWLEDGE PROOF SYSTEMS

Definition 4.3.3 is related to but not equal to the simulator used in Definition 4.3.2 (yet
this fact is not reflected in the text of those definitions). Clearly, 〈P, V ∗〉(x) can be
computed in (deterministic) polynomial time from viewP

V ∗(x) for each V ∗. Although
that is not always true for the opposite direction, Definition 4.3.3 is equivalent to Def-
inition 4.3.2 (by virtue of the universal quantification on the V ∗’s; see Exercise 10).
The latter fact justifies the use of Definition 4.3.3, which is more convenient to work
with, although it seems less natural than Definition 4.3.2. An analogous alternative
formulation of perfect zero-knowledge can be obtained from Definition 4.3.1 and is
clearly equivalent to it.

4.3.1.4.∗ Almost-Perfect (Statistical) Zero-Knowledge

A less drastic (than computational zero-knowledge) relaxation of the notion of perfect
zero-knowledge is the following:

Definition 4.3.4 (Almost-Perfect (Statistical) Zero-Knowledge): Let (P, V) be
an interactive proof system for some language L. We say that (P, V) is almost-
perfect zero-knowledge (or statistical zero-knowledge) if for every probabilistic
polynomial-time interactive machine V ∗ there exists a probabilistic polynomial-
time algorithm M∗ such that the following two ensembles are statistically close
as functions of |x |:
� {〈P, V ∗〉(x)}x∈L (i.e., the output of the interactive machine V ∗ after it interacts

with the interactive machine P on common input x)
� {M∗(x)}x∈L (i.e., the output of machine M∗ on input x).

That is, the statistical difference between 〈P, V ∗〉(x) and M∗(x) is negligible in
terms of |x |.

As in the case of computational zero-knowledge, allowing the simulator to output the
symbol ⊥ (with probability bounded above by, say, 1

2) and considering the conditional
output distribution (as done in Definition 4.3.1) does not add to the power of Definition
4.3.4; see Exercise 8. It is also easy to show that perfect zero-knowledge implies almost-
perfect zero-knowledge, which in turn implies computational zero-knowledge.

The three definitions (i.e., perfect, almost-perfect, and computational zero-
knowledge) correspond to a natural three-stage hierarchy of interpretations of the no-
tion of “close” pairs of probability ensembles. (In all three cases, the pairs of ensembles
being postulated as being close are {〈P, V ∗〉(x)}x∈L and {M∗(x)}x∈L .)

1. The most stringent interpretation of closeness is the requirement that the two ensembles
be identically distributed. This is the requirement in the case of perfect zero-knowledge.

2. A slightly more relaxed interpretation of closeness is that the two ensembles be statis-
tically indistinguishable (or statistically close). This is the requirement in the case of
almost-perfect (or statistical) zero-knowledge.

3. A much more relaxed interpretation of closeness, which suffices for all practical purposes,
is that the two ensembles be computationally indistinguishable. This is the requirement
in the case of computational zero-knowledge.

204

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS

4.3.1.5.∗ Complexity Classes Based on Zero-Knowledge

The various definitions of zero-knowledge give rise to natural complexity classes:

Definition 4.3.5 (Class of Languages Having Zero-Knowledge Proofs): We
denote by ZK (also CZK) the class of languages having (computational) zero-
knowledge interactive proof systems. Likewise, PZK (resp., SZK) denotes the
class of languages having perfect (resp., statistical) zero-knowledge interactive
proof systems.

Clearly,

BPP ⊆ PZK ⊆ SZK ⊆ CZK ⊆ IP
Assuming the existence of (non-uniformly) one-way functions, the last inclusion is an
equality (i.e., CZK = IP); see Proposition 4.4.5 and Theorems 3.5.12 and 4.4.12. On
the other hand, we believe that the first and third inclusions are strict (as equalities in
either case contradict widely believed complexity assumptions). Thus, our belief is that

BPP ⊂ PZK ⊆ SZK ⊂ CZK = IP
The relationship of PZK to SZK remains an open problem (with no evidence either
way).

4.3.1.6.∗ Expected Polynomial-Time Simulators

The formulation of perfect zero-knowledge presented in Definition 4.3.1 is different
from the definition used in some early publications in the literature. The original def-
inition requires that the simulator always output a legal transcript (which has to be
distributed identically to the real interaction), yet it allows the simulator to run in
expected polynomial time rather than in strictly polynomial time. We stress that the
expectation is taken over the coin tosses of the simulator (whereas the input to the
simulator is fixed). This yields the following:

Definition 4.3.6 (Perfect Zero-Knowledge, Liberal Formulation): We say that
(P, V) is perfect zero-knowledge in the liberal sense if for every probabilistic
polynomial-time interactive machine V ∗ there exists an expected polynomial-time
algorithm M∗ such that for every x ∈ L the random variables 〈P, V ∗〉(x) and
M∗(x) are identically distributed.

We stress that by probabilistic polynomial time we mean a strict bound on the run-
ning time in all possible executions, whereas by expected polynomial time we al-
low non-polynomial-time executions but require that the running time be “polynomial
on the average.” Clearly, Definition 4.3.1 implies Definition 4.3.6 (see Exercise 7).
Interestingly, there exist interactive proofs that are perfect zero-knowledge with re-
spect to the liberal definition but are not known to be perfect zero-knowledge with
respect to Definition 4.3.1. We point out that the naive way of transforming an expected

205

ZERO-KNOWLEDGE PROOF SYSTEMS

probabilistic polynomial-time algorithm to one that runs in strict polynomial time is
not suitable for the current context.8

We prefer to adopt Definition 4.3.1, rather than Definition 4.3.6, because we want
to avoid the notion of expected polynomial time. The main reason for our desire to
avoid the latter notion is that the correspondence between average polynomial time and
efficient computations is more controversial than the widely accepted association of
strict polynomial time with efficient computations. Furthermore, the notion of expected
polynomial time is more subtle than one realizes at first glance:

The naive interpretation of expected polynomial time is having an average run-
ning time that is bounded by a polynomial in the input length. This definition of
expected polynomial time is unsatisfactory because it is not closed under reduc-
tions and is (too) machine-dependent. Both aggravating phenomena follow from
the fact that a function can have an average (say over {0, 1}n) that is bounded by
a polynomial (in n) and yet squaring the function will yield a function that is not
bounded by a polynomial (in n). For example, the function f (x) def= 2|x | if x ∈ {0}∗,
and f (x) def= |x |2 otherwise, satisfies E[f (Un)] < n2 + 1, but E[f (Un)2] > 2n .

Hence, a better interpretation of expected polynomial time is having a running
time that is bounded by a polynomial in a function that has an average linear
growth rate. That is, using the naive definition of linear on the average, we say
that f is polynomial on the average if there exist a polynomial p and a linear-
on-the-average function � such that f (x) ≤ p(�(x)) for all sufficiently long x’s.
Note that if f is polynomial on the average, then so is f 2.

An analogous discussion applies to computational zero-knowledge. More specifically,
Definition 4.3.2 requires that the simulator work in polynomial time, whereas a more
liberal notion would allow it to work in expected polynomial time.

We comment that for the sake of elegance it is customary to modify the definitions
that allow expected polynomial-time simulators by requiring that such simulators also
exist for the interaction of expected polynomial-time verifiers with the prover.

4.3.1.7.∗ Honest-Verifier Zero-Knowledge

We briefly discuss a weak notion of zero-knowledge. The notion, called honest-verifier
zero-knowledge, requires simulatability of the view of only the prescribed (or honest)
verifier, rather than simulatability of the view of any possible (probabilistic polynomial-
time) verifier. Although this notion does not suffice for typical cryptographic appli-
cations, it is interesting for at least a couple of reasons: First, this weak notion of
zero-knowledge is highly non-trivial and fascinating by itself. Second, public-coin

8The naive transformation truncates runs of the algorithm (in our case, the simulator) that take more than t
times the expected number of steps. (Such a truncated run is said to produce some fixed output.) The statistical
difference between the output distribution of the original algorithm and the output distribution of the modified
algorithm is at most 1/t . The problem is that t must be bounded by a fixed polynomial in the running time, and
so the statistical difference is not negligible. To see that the analysis of this naive transformation is tight, consider
its effect on the following algorithm: On input 1n , the algorithm first selects uniformly r ∈ {0, 1}n , next takes 2i

idle steps, where i is the length of the longest all-zero prefix of r , and finally runs S(1n), where S is an arbitrary
(strict) probabilistic polynomial-time algorithm.

206

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS

protocols that are zero-knowledge with respect to the honest verifier can be transformed
into similar protocols that are zero-knowledge in general. We stress that in the current
context (of the single prescribed verifier) the formulations of output simulatability (as
in Definition 4.3.2) and view simulatability (as in Definition 4.3.3) are NOT equivalent,
and it is important to use the latter.9

Definition 4.3.7 (Zero-Knowledge with Respect to an Honest Verifier): Let
(P, V), L, and viewP

V (x) be as in Definition 4.3.3. We say that (P, V) is honest-
verifier zero-knowledge if there exists a probabilistic polynomial-time algorithm
M such that the ensembles {viewP

V (x)}x∈L and {M(x)}x∈L are computationally
indistinguishable.

The preceding definition refers to computational zero-knowledge and is a restriction
of Definition 4.3.3. Versions for perfect and statistical zero-knowledge are defined
analogously.

4.3.2. An Example (Graph Isomorphism in PZKPZK)

As mentioned earlier, every language in BPP has a trivial (i.e., degenerate) zero-
knowledge proof system. We now present an example of a non-degenerate zero-
knowledge proof system. Furthermore, we present a zero-knowledge proof system for
a language not known to be inBPP . Specifically, the language is the set of pairs of iso-
morphic graphs, denoted G I (see definition in Section 4.2). Again, the idea underlying
this proof system is presented through a story:

In this story, Petra von Kant claims that there is a footpath between the north gate
and the south gate of her labyrinth (i.e., a path going inside the labyrinth). Virgil
does not believe her. Petra is willing to prove her claim to Virgil, but does not
want to provide him any additional knowledge (and, in particular, not to assist
him to find an inside path from the north gate to the south gate). To prove her
claim, Petra and Virgil repeat the following process a number of times sufficient
to convince Virgil beyond reasonable doubt.

Petra miraculously transports Virgil to a random place in her labyrinth. Then
Virgil asks to be shown the way to either the north gate or the south gate. His choice
is supposed to be random, but he may try to cheat. Petra then chooses a (sufficiently
long) random walk from their current location to the desired destination and guides
Virgil along that walk.

Clearly, if the labyrinth has a path as claimed (and Petra knows her way in the
labyrinth), then Virgil will be convinced of the validity of her claim. If, on the
other hand, the labyrinth has no such path, then at each iteration, with probability
at least 50%, Virgil will detect that Petra is lying. Finally, Virgil will gain no
knowledge from the guided tour, the reason being that he can simulate a guided

9Note that for any interactive proof of perfect completeness, the output of the honest verifier is trivially
simulatable (by an algorithm that always outputs 1). In contrast, many of the negative results presented in Section 4.5
also apply to zero-knowledge with respect to an honest verifier, as defined next. For example, only languages in
BPP have unidirectional proof systems that are zero-knowledge with respect to an honest verifier.

207

ZERO-KNOWLEDGE PROOF SYSTEMS

tour by himself, as follows: First, he selects north or south (as he does in the
real guided tour) and goes to the suitable gate (from outside the labyrinth). Next,
he takes a random walk from the gate to inside the labyrinth while unrolling a
spool of thread behind him, and finally he traces the thread back to the gate. (A
sufficiently long random walk whose length equals the length of the tour guided
by Petra will guarantee that Virgil will visit a random place in the labyrinth, and
the way back will look like a random walk from the location at the end of his
thread to the chosen gate.)

We now get back to the formal exposition.

Construction 4.3.8 (A Perfect Zero-Knowledge Proof for Graph Isomor-
phism):
� Common input: A pair of two graphs, G1 = (V1, E1) and G2 = (V2, E2). Let
φ be an isomorphism between the input graphs; namely, φ is a 1-1 and onto
mapping of the vertex set V1 to the vertex set V2 such that (u, v) ∈ E1 if and only
if (φ(v), φ(u)) ∈ E2.

� Prover’s first step (P1): The prover selects a random isomorphic copy of G2 and
sends it to the verifier. Namely, the prover selects at random, with uniform prob-
ability distribution, a permutation π from the set of permutations over the vertex
set V2 and constructs a graph with vertex set V2 and edge set

F
def= {(π (u), π (v)) : (u, v) ∈ E2}

The prover sends (V2, F) to the verifier.
� Motivating remark: If the input graphs are isomorphic, as the prover claims, then

the graph sent in Step P1 is isomorphic to both input graphs. However, if the input
graphs are not isomorphic, then no graph can be isomorphic to both of them.

� Verifier’s first step (V1): Upon receiving a graph G ′ = (V ′, E ′) from the prover,
the verifier asks the prover to show an isomorphism between G ′ and one of the
input graphs, chosen at random by the verifier. Namely, the verifier uniformly
selects σ ∈ {1, 2} and sends it to the prover (who is supposed to answer with an
isomorphism between Gσ and G ′).

� Prover’s second step (P2): If the message σ received from the verifier equals 2, then
the prover sends π to the verifier. Otherwise (i.e., σ �= 2), the prover sends π ◦ φ
(i.e., the composition of π on φ, defined as π ◦ φ(v)

def= π (φ(v))) to the verifier.
(Remark: The prover treats any σ �= 2 as σ = 1.)

� Verifier’s second step (V2): If the message, denoted ψ , received from the prover
is an isomorphism between Gσ and G ′, then the verifier outputs 1; otherwise it
outputs 0.

Let us denote the prover’s program by PG I .

The verifier program just presented is easily implemented in probabilistic polynomial
time. In case the prover is given an isomorphism between the input graphs as auxiliary
input, the prover’s program can also be implemented in probabilistic polynomial time.
We now show that this pair of interactive machines constitutes a zero-knowledge inter-
active proof system (in the general sense) for the language G I (Graph Isomorphism).

208

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS

Proposition 4.3.9: The language G I has a perfect zero-knowledge interactive
proof system. Furthermore, the programs specified in Construction 4.3.8 satisfy
the following:

1. If G1 and G2 are isomorphic (i.e., (G1,G2) ∈ G I), then the verifier always accepts
(when interacting with PG I).

2. If G1 and G2 are not isomorphic (i.e., (G1,G2) �∈ G I), then no matter with which
machine the verifier interacts, it will reject the input with probability at least 1

2 .

3. The prover (i.e., PG I) is perfect zero-knowledge. Namely, for every probabilistic
polynomial-time interactive machine V ∗, there exists a probabilistic polynomial-
time algorithm M∗ outputting ⊥ with probability at most 1

2 , so that for every x
def=

(G1,G2) ∈ G I , the following two random variables are identically distributed :
� viewPG I

V ∗ (x) (i.e., the view of V ∗ after interacting with PG I , on common input x)
� m∗(x) (i.e., the output of machine M∗, on input x, conditioned on not being⊥).

A zero-knowledge interactive proof system for G I with error probability 2−k (only
in the soundness condition) can be derived by executing the foregoing protocol,
sequentially, k times. We stress that in each repetition of the protocol, both the (pre-
scribed) prover and verifier must use “fresh” coin tosses that are independent of the coin
tosses used in prior repetitions of the protocol. For further discussion, see Section 4.3.4.
We remark that k parallel executions will also decrease the error in the soundness condi-
tion to 2−k , but the resulting interactive proof is not known to be zero-knowledge in the
case in which k grows faster than logarithmic in the input length. In fact, we believe that
such an interactive proof is not zero-knowledge. For further discussion, see Section 4.5.

We stress that it is not known whether or not G I ∈ BPP . Hence, Proposition 4.3.9
asserts the existence of a perfect zero-knowledge proof for a language not known to be
in BPP .

Proof: We first show that these programs indeed constitute a (general) interactive
proof system for G I . Clearly, if the input graphs G1 and G2 are isomorphic, then
the graph G ′ constructed in Step P1 will be isomorphic to both of them. Hence,
if each party follows its prescribed program, then the verifier will always accept
(i.e., output 1). Part 1 follows. On the other hand, if G1 and G2 are not isomorphic,
then no graph can be isomorphic to both G1 and G2. It follows that no matter how
the (possibly cheating) prover constructs G ′, there exists σ ∈ {1, 2} such that G ′

and Gσ are not isomorphic. Hence, if the verifier follows its program, then it will
reject (i.e., output 0) with probability at least 1

2 . Part 2 follows.
It remains to show that PG I is indeed perfect zero-knowledge on G I . This is

indeed the difficult part of the entire proof. It is easy to simulate the output of the
verifier specified in Construction 4.3.8 (since its output is identically 1 for inputs
in the language G I). Also, it is not hard to simulate the output of a verifier that
follows the program specified in Construction 4.3.8, except that at termination
it will output the entire transcript of its interaction with PG I (see Exercise 12).
The difficult part is to simulate the output of an efficient verifier that deviates
arbitrarily from the specified program.

209

ZERO-KNOWLEDGE PROOF SYSTEMS

We shall use here the alternative formulation of (perfect) zero-knowledge and
show how to simulate V ∗’s view of the interaction with PG I for every probabilistic
polynomial-time interactive machine V ∗. As mentioned earlier, it is not hard to
simulate the verifier’s view of the interaction with PG I when the verifier follows
the specified program. However, we need to simulate the view of the verifier in the
general case (in which it uses an arbitrary polynomial-time interactive program).
Following is an overview of our simulation (i.e., of our construction of a simulator
M∗ for each V ∗).

The simulator M∗ incorporates the code of the interactive program V ∗. On in-
put (G1,G2), the simulator M∗ first selects at random one of the input graphs (i.e.,
either G1 or G2) and generates a random isomorphic copy, denoted G ′′, of this
input graph. In doing so, the simulator behaves differently from PG I , but the graph
generated (i.e., G ′′) is distributed identically to the message sent in Step P1 of the
interactive proof. Say that the simulator has generated G ′′ by randomly permuting
G1. Now, if V ∗ asks to see the isomorphism between G1 and G ′′, then the simulator
can indeed answer correctly, and in doing so it completes a simulation of the veri-
fier’s view of the interaction with PG I . However, if V ∗ asks to see the isomorphism
between G2 and G ′′, then the simulator (which, unlike PG I , does not “know” φ)
has no way to answer correctly, and we let it halt with output⊥. We stress that the
simulator “has no way of knowing” whether V ∗ will ask to see an isomorphism
to G1 or to G2. The point is that the simulator can try one of the possibilities at
random, and if it is lucky (which happens with probability exactly 1

2), then it can
output a distribution that will be identical to the view of V ∗ when interacting with
PG I (on common input (G1,G2)). A key fact (see Claim 4.3.9.1, following) is
that the distribution of G ′′ is stochastically independent of the simulator’s choice
of which of the two input graphs to use, and so V ∗ cannot affect the probability
that the simulator will be lucky. A detailed description of the simulator follows.

Simulator M∗. On input x
def= (G1,G2), simulator M∗ proceeds as follows:

1. Setting the random tape of V ∗: Let q(·) denote a polynomial bounding the running
time of V ∗. The simulator M∗ starts by uniformly selecting a string r ∈ {0, 1}q(|x |)

to be used as the content of the random tape of V ∗. (Alternatively, one could
produce coins for V ∗ “on the fly,” that is, during Step 3, which follows.)

2. Simulating the prover’s first step (P1): The simulator M∗ selects at random, with
uniform probability distribution, a “bit” τ ∈ {1, 2} and a permutation ψ from the
set of permutations over the vertex set Vτ . It then constructs a graph with vertex
set Vτ and edge set

F
def= {(ψ(u), ψ(v)) : (u, v) ∈ Eτ } ,

and sets G ′′ def= (Vτ , F).

3. Simulating the verifier’s first step (V1): The simulator M∗ initiates an execution of
V ∗ by placing x on V ∗’s common-input tape, placing r (selected in Step 1) on V ∗’s
random tape, and placing G ′′ (constructed in Step 2) on V ∗’s incoming-message
tape. After executing a polynomial number of steps of V ∗, the simulator can read

210

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS

the outgoing message of V ∗, denoted σ . To simplify the rest of the description,
we normalize σ by setting σ = 1 if σ �= 2 (and leave σ unchanged if σ = 2).

4. Simulating the prover’s second step (P2): If σ = τ , then the simulator halts with
output (x, r,G ′′, ψ).

5. Failure of the simulation: Otherwise (i.e., σ �= τ), the simulator halts with out-
put ⊥.

Using the hypothesis that V ∗ is polynomial-time, it follows that so is the sim-
ulator M∗. It is left to show that M∗ outputs ⊥ with probability at most 1

2 and
that, conditioned on not outputting ⊥, the simulator’s output is distributed as the
verifier’s view in a “real interaction with PG I .” The following claim is the key to
the proof of both claims.

Claim 4.3.9.1: Suppose that the graphs G1 and G2 are isomorphic. Let ξ be a
random variable uniformly distributed in {1, 2}, and let � be a random variable
uniformly distributed over the set of permutations over Vξ . Then for every graph
G ′′ that is isomorphic to G1 (and G2), it holds that

Pr[ξ = 1 |�(Gξ) = G ′′] = Pr[ξ = 2 |�(Gξ) = G ′′] = 1

2

where, as in Claim 4.2.9.1, π (G) denotes the graph obtained from the graph G
by relabeling its nodes using the permutation π .

Claim 4.3.9.1 is identical to Claim 4.2.9.1 (used to demonstrate that Construc-
tion 4.2.8 constitutes an interactive proof for G N I).10 As in the rest of the proof of
Proposition 4.2.9, it follows that any random process with output in {1, 2}, given
�(Gξ), outputs ξ with probability exactly 1

2 . Hence, given G ′′ (constructed by the
simulator in Step 2), the verifier’s program yields (normalized) σ , so that σ �= τ

with probability exactly 1
2 . We conclude that the simulator outputs⊥ with proba-

bility 1
2 . It remains to prove that, conditioned on not outputting⊥, the simulator’s

output is identical to “V ∗’s view of real interactions.” Namely:

Claim 4.3.9.2: Let x = (G1,G2) ∈ G I . Then for every string r , graph H , and
permutation ψ , it holds that

Pr
[
viewPG I

V ∗ (x) = (x, r, H, ψ)
] = Pr[M∗(x) = (x, r, H, ψ) | M∗(x) �= ⊥]

Proof: Let m∗(x) describe M∗(x) conditioned on its not being ⊥. We first ob-
serve that both m∗(x) and viewPG I

V ∗ (x) are distributed over quadruples of the form
(x, r, ·, ·), with uniformly distributed r ∈ {0, 1}q(|x |). Let ν(x, r) be a random vari-
able describing the last two elements of viewPG I

V ∗ (x) conditioned on the second
element equaling r . Similarly, let µ(x, r) describe the last two elements of m∗(x)
(conditioned on the second element equaling r). We need to show that ν(x, r)

10In Construction 4.2.8, the graph�(Gξ) was presented to the prover, and Claim 4.2.9.1 was used to establish
the soundness of the proof system (i.e., analyze what happens in case (G1,G2) �∈ G N I , which means (G1,G2) ∈
G I). Here the graph �(Gξ) is presented to the verifier, and the claim is used to establish the zero-knowledge
property (and so also refers to (G1,G2) ∈ G I).

211

ZERO-KNOWLEDGE PROOF SYSTEMS

and µ(x, r) are identically distributed for every x and r . Observe that once r is
fixed, the message sent by V ∗, on common input x , random tape r , and incoming
message H , is uniquely defined. Let us denote this message by v∗(x, r, H). We
show that both ν(x, r) and µ(x, r) are uniformly distributed over the set

Cx,r
def= {(H, ψ) : H = ψ

(
Gv∗(x,r,H)

)}
where (again)ψ(G) denotes the graph obtained from G by relabeling the vertices
using the permutationψ (i.e., if G = (V, E), thenψ(G) = (V, F), so that (u, v) ∈
E iff (ψ(u), ψ(v)) ∈ F). The proof of this statement is rather tedious and is
unrelated to the subjects of this book (and hence can be skipped with no damage).

The proof is slightly non-trivial because it relates (at least implicitly) to the automor-
phism group of the graph G2 (i.e., the set of permutationsπ for whichπ (G2) is identical
with G2, not just isomorphic to G2). For simplicity, consider first the special case in
which the automorphism group of G2 consists of merely the identity permutation (i.e.,
G2 = π (G2) if and only if π is the identity permutation). In this case, (H, ψ) ∈ Cx,r

if and only if H is isomorphic to (both G1 and) G2 and ψ is the (unique) isomorphism
between H and Gv∗(x,r,H). Hence, Cx,r contains exactly |V2|! pairs, each containing a
different graph H as the first element. In the general case, (H, ψ) ∈ Cx,r if and only
if H is isomorphic to (both G1 and) G2 and ψ is an isomorphism between H and
Gv∗(x,r,H). We stress that v∗(x, r, H) is the same in all pairs containing H . Let aut(G2)
denote the size of the automorphism group of G2. Then each H (isomorphic to G2)
appears in exactly aut(G2) pairs of Cx,r , and each such pair contains a different iso-
morphism between H and Gv∗(x,r,H). The number of different H ’s that are isomorphic
to G2 is |V2|!/aut(G2), and so |Cx,r | = |V2|! also in the general case.

We first consider the random variable µ(x, r) (describing the suffix of m∗(x)). Re-
call that µ(x, r) is defined by the following two-step random process. In the first step,
one selects uniformly a pair (τ, ψ), over the set of pairs ({1, 2} × permutation), and sets
H = ψ(Gτ). In the second step, one outputs (i.e., sets µ(x, r) to) (ψ(Gτ), ψ) if
v∗(x, r, H) = τ (and ignores the (τ, ψ) pair otherwise). Hence, each graph H (iso-
morphic to G2) is generated, at the first step, by exactly aut(G2) different (1, ·)-pairs
(i.e., the pairs (1, ψ) satisfying H = ψ(G1)) and by exactly aut(G2) different (2, ·)-
pairs (i.e., the pairs (2, ψ) satisfying H = ψ(G2)). All these 2 · aut(G2) pairs yield the
same graph H and hence lead to the same value of v∗(x, r, H). It follows that out of the
2 · aut(G2) pairs of the form (τ, ψ) that yield the graph H = ψ(Gτ), only the aut(G2)
pairs satisfying τ = v∗(x, r, H) lead to an output. Hence, for each H (that is isomor-
phic to G2), the probability that µ(x, r) = (H, ·) equals aut(G2)/(|V2|!). Furthermore,
for each H (that is isomorphic to G2),

Pr[µ(x, r) = (H, ψ)] =
{

1
|V2|! if H = ψ

(
Gv∗(x,r,H)

)
0 otherwise

Hence µ(x, r) is uniformly distributed over Cx,r .
We now consider the random variable ν(x, r) (describing the suffix of the veri-

fier’s view in a “real interaction” with the prover). Recall that ν(x, r) is defined by
selecting uniformly a permutation π (over the set V2) and setting ν(x, r) = (π (G2), π)
if v∗(x, r, π (G2)) = 2, and ν(x, r) = (π (G2), π ◦ φ) otherwise, where φ is the iso-
morphism between G1 and G2. Clearly, for each H (that is isomorphic to G2), the
probability that ν(x, r) = (H, ·) equals aut(G2)/(|V2|!). Furthermore, for each H (that

212

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS

is isomorphic to G2),

Pr[ν(x, r) = (H, ψ)] =
{

1
|V2|! if ψ = π ◦ φ2−v∗(x,r,H)

0 otherwise

Observing that H = ψ(Gv∗(x,r,H)) if and only if ψ = π ◦ φ2−v∗(x,r,H), we conclude
that µ(x, r) and ν(x, r) are identically distributed.

The claim follows. �

This completes the proof of Part 3 of the proposition. �

4.3.3. Zero-Knowledge with Respect to Auxiliary Inputs

The definitions of zero-knowledge presented earlier fall short of what is required in
practical applications, and consequently a minor modification should be used. We
recall that these definitions guarantee that whatever can be efficiently computed after
interaction with the prover on any common input can be efficiently computed from the
input itself. However, in typical applications (e.g., when an interactive proof is used
as a sub-protocol inside a larger protocol) the verifier interacting with the prover on
common input x may have some additional a priori information, encoded by a string z,
that may assist it in its attempts to “extract knowledge” from the prover. This danger
may become even more acute in the likely case in which z is related to x . (For example,
consider the protocol of Construction 4.3.8 and the case where the verifier has a priori
information concerning an isomorphism between the input graphs.) What is typically
required is that whatever can be efficiently computed from x and z after interaction
with the prover on any common input x can be efficiently computed from x and z
(without any interaction with the prover). This requirement is formulated next using
the augmented notion of interactive proofs presented in Definition 4.2.10.

Definition 4.3.10 (Zero-Knowledge, Revisited): Let (P, V) be an interactive
proof for a language L (as in Definition 4.2.10). Denote by PL(x) the set of strings
y satisfying the completeness condition with respect to x ∈ L (i.e., Pr[〈P(y),
V (z)〉(x) = 1] ≥ 2

3 for every z ∈ {0, 1}∗). We say that (P, V) is zero-knowledge
with respect to auxiliary input (or is auxiliary-input zero-knowledge) if for
every probabilistic polynomial-time interactive machine V ∗ there exists a prob-
abilistic algorithm M∗, running in time polynomial in the length of its first in-
put, such that the following two ensembles are computationally indistinguishable
(when the distinguishing gap is considered as a function of |x |):
� {〈P(yx), V ∗(z)〉(x)}x∈L ,z∈{0,1}∗ for arbitrary yx ∈ PL (x)
� {M∗(x, z)}x∈L ,z∈{0,1}∗

Namely, for every probabilistic algorithm D with running time polynomial in the
length of the first input, for every polynomial p(·), and for all sufficiently long
x ∈ L, all y ∈ PL(x), and z ∈ {0, 1}∗, it holds that

|Pr[D(x, z, 〈P(y), V ∗(z)〉(x)) = 1]− Pr[D(x, z, M∗(x, z)) = 1]| < 1

p(|x |)
213

ZERO-KNOWLEDGE PROOF SYSTEMS

In this definition, y represents a priori information to the prover, whereas z represents
a priori information to the verifier. Both y and z may depend on the common input x ;
for example, if y facilitates the proving task, then y must depend on x (e.g., in case y
is anNP-witness for x ∈ L ∈ NP). We stress that the local inputs (i.e., y and z) may
not be known, even in part, to the other party. We also stress that the auxiliary input z
(but not y) is also given to the distinguishing algorithm (which can be thought of as an
extension of the verifier).

Recall that by Definition 4.2.10, saying that the interactive machine V ∗ is proba-
bilistic polynomial-time means that its running time is bounded by a polynomial in
the length of the common input. Hence, the verifier program, the simulator, and the
distinguishing algorithm all run in time polynomial in the length of x (and not in time
polynomial in the total length of all their inputs). This convention is essential in many
respects (unless one explicitly bounds the length of the auxiliary input by a polynomial
in the length of x ; see Exercise 11). For example, having allowed the distinguishing
algorithm to run in time proportional to the length of the auxiliary input would have
collapsed computational zero-knowledge to perfect zero-knowledge (e.g., by consider-
ing verifiers that run in time polynomial in the common input, yet have huge auxiliary
inputs of length exponential in the common input).

Definition 4.3.10 refers to computational zero-knowledge. A formulation of perfect
zero-knowledge with respect to auxiliary input is straightforward. We remark that the
perfect zero-knowledge proof for Graph Isomorphism, presented in Construction 4.3.8,
is in fact perfect zero-knowledge with respect to auxiliary input. This fact follows easily
by a minor augmentation to the simulator constructed in the proof of Proposition 4.3.9
(i.e., when invoking the verifier, the simulator should provide it the auxiliary input that is
given to the simulator). In general, a demonstration of zero-knowledge can be extended
to yield zero-knowledge with respect to auxiliary input whenever the simulator used
in the original demonstration works by invoking the verifier’s program as a black box
(see Definition 4.5.10 in Section 4.5.4). All simulators presented in this book have this
property.

Advanced Comment: Implicit Non-Uniformity in Definition 4.3.10

The non-uniform nature of Definition 4.3.10 is captured by the fact that the distinguisher
gets an auxiliary input. It is true that this auxiliary input is also given to both the verifier
program and the simulator; however, if the auxiliary input is sufficiently long, then only
the distinguisher can make use of its suffix (since the distinguisher may be determined
after the polynomial-time bound of the simulator is fixed). It follows that the simula-
tor guaranteed in Definition 4.3.10 produces output that is indistinguishable from the
real interactions also by non-uniform polynomial-size circuits (see Definition 3.2.7).
Namely, for every (even non-uniform) polynomial-size circuit family {Cn}n∈N, ev-
ery polynomial p(·), all sufficiently large n’s, all x ∈ L ∩ {0, 1}n , all y ∈ PL(x), and
z ∈ {0, 1}∗,

|Pr[Cn(x, z, 〈P(y), V ∗(z)〉(x)) = 1]− Pr[Cn(x, z, M∗(x, z)) = 1]| < 1

p(|x |)
214

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS

Following is a sketch of the proof of this claim. We assume, to the contrary, that there
exists a polynomial-size circuit family {Cn}n∈N such that for infinitely many n’s there
exist triples (x, y, z) for which Cn has a non-negligible distinguishing gap. We derive a
contradiction by incorporating the description of Cn together with the auxiliary input
z into a longer auxiliary input, denoted z′. This is done in such a way that both V ∗

and M∗ have insufficient time to reach the description of Cn . For example, let q(·) be
a polynomial bounding the running times of both V ∗ and M∗. Assume, without loss of
generality, that |z| ≤ q(n) (or else the rest of z, which is unreadable by both V ∗ and M∗,
can be ignored). Then we let z′ be the string that results by padding z with blanks to a
total length of q(n) and appending the description of the circuit Cn at its end (i.e., z is a
prefix of z′). Clearly, M∗(x, z′) = M∗(x, z) and 〈P(y), V ∗(z′)〉(x) = 〈P(y), V ∗(z)〉(x).
On the other hand, by using a universal circuit-evaluating algorithm, we get a proba-
bilistic polynomial-time algorithm D such that D(x, z′, α) = Cn(x, z, α), and contra-
diction (to the hypothesis that M∗ produces output that is probabilistic polynomial-
time-indistinguishable from the output of (P, V ∗)) follows.

We mention that Definition 4.3.2 itself has some non-uniform flavor, since it requires
indistinguishability for all but finitely many x’s. In contrast, a fully uniform analogue of
the definition would require only that it be infeasible to find x’s on which the simulation
would fail (with respect to some probabilistic polynomial-time distinguisher). That is,
a fully uniform definition of zero-knowledge requires only that it be infeasible to find
x’s on which a verifier can gain knowledge (and not that such instances do not exist at
all). See further discussion in Section 4.4.2.4.

Advanced Comment: Why Not Go for a Fully Non-Uniform Formulation?

An oversimplified version of Definition 4.3.10 allows the verifier to be modeled by a
(non-uniform) family of (polynomial-size) circuits, and allows the same for the sim-
ulator. The non-uniform circuits are supposed to account for auxiliary inputs, and so
these are typically omitted from such an oversimplified version. For example, one may
require the following:

For every polynomial-size circuit family {Vn}n∈N (representing a possible verifier strategy
machine) there exists a polynomial-size circuit family {Mn}n∈N (representing a simulator)
such that the ensembles {〈P, V|x |〉(x)}x∈L and {M|x |(x)}x∈L are indistinguishable by
polynomial-size circuits.

However, the impression that non-uniform circuits account for auxiliary inputs is wrong,
and in general we find such oversimplified versions unsatisfactory. First, these versions
do not guarantee an “effective” transformation of verifiers to simulators. Indeed, such a
transformation is not required in Definition 4.3.10 either, but there the objects (i.e., ma-
chines) are of fixed size, whereas here we deal with infinite objects (i.e., circuit families).
Thus, the level of “security” offered by the oversimplified definition is unsatisfactory.
Second, the oversimplified version does not guarantee a relation between the size of the
non-uniform part of the verifier and the corresponding part of the simulator, whereas in
Definition 4.3.10 the only non-uniform part is the auxiliary input, which remains un-
changed. Both issues arise when trying to prove a sequential-composition theorem for
a non-constant number of iterations of zero-knowledge proof systems. Finally, we note

215

ZERO-KNOWLEDGE PROOF SYSTEMS

that the oversimplified version does not imply the basic version (i.e., Definition 4.3.2);
consider, for example, a prover that on common input x sends some hard-to-compute
poly(|x |)-bit-long string that depends only on |x | (e.g., the prime-factorization of all
integers in the interval [2|x | + 1, . . . , 2|x | + |x |3]).

4.3.4. Sequential Composition of Zero-Knowledge Proofs

An intuitive requirement that a definition of zero-knowledge proofs must satisfy is that
zero-knowledge proofs should be closed under sequential composition. Namely, if we
execute one zero-knowledge proof after another, then the composed execution must
be zero-knowledge. The same should remain valid even if we execute polynomially
many proofs one after the other. Indeed, as will be shown shortly, the revised defini-
tion of zero-knowledge (i.e., Definition 4.3.10) satisfies this requirement. Interestingly,
zero-knowledge proofs as defined in Definition 4.3.2 are not closed under sequential
composition, and this fact is indeed another indication of the necessity of augmenting
this definition (as done in Definition 4.3.10).

In addition to its conceptual importance, the sequential-composition lemma is an
important tool in the design of zero-knowledge proof systems. Typically, such a proof
system consists of many repetitions of an atomic zero-knowledge proof. Loosely speak-
ing, the atomic proof provides some (but not much) statistical evidence for the validity
of the claim. By repeating the atomic proof sufficiently many times, the confidence
in the validity of the claim is increased. More precisely, the atomic proof offers a gap
between the acceptance probabilities for strings in the language and strings outside the
language. For example, in Construction 4.3.8, pairs of isomorphic graphs (i.e., inputs
in G I) are accepted with probability 1, whereas pairs of non-isomorphic graphs (i.e.,
inputs not in G I) are accepted with probability at most 1

2 . By repeating the atomic
proof, the gap between the two probabilities is further increased. For example, repeat-
ing the proof of Construction 4.3.8 k times will yield a new interactive proof in which
inputs in G I are still accepted with probability 1, whereas inputs not in G I are accepted
with probability at most 1

2k . The sequential-composition lemma guarantees that if the
atomic-proof system is zero-knowledge, then so is the proof system resulting from
repeating the atomic proof polynomially many times.

Before we state the sequential-composition lemma, we remind the reader that the
zero-knowledge property of an interactive proof is actually a property of the prover.
Also, the prover is required to be zero-knowledge only on inputs in the language.
Finally, we stress that when talking about zero-knowledge with respect to auxiliary
input, we refer to all possible auxiliary inputs for the verifier.

Lemma 4.3.11 (Sequential-Composition Lemma): Let P be an interactive
machine (i.e., a prover) that is zero-knowledge with respect to auxiliary input
on some language L. Suppose that the last message sent by P, on input x, bears
a special end-of-proof symbol. Let Q(·) be a polynomial, and let PQ be an in-
teractive machine that, on common input x, proceeds in Q(|x |) phases, each
of them consisting of running P on common input x. (We stress that in case
P is probabilistic, the interactive machine PQ uses independent coin tosses for

216

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS

each of the Q(|x |) phases.) Then PQ is zero-knowledge (with respect to auxiliary
input) on L. Furthermore, if P is perfect zero-knowledge (with respect to auxiliary
input), then so is PQ.

The convention concerning the end-of-proof symbol is introduced for technical pur-
poses (and is redundant in all known proof systems, and furthermore whenever the
number of messages sent during the execution is easily computed from the common
input). Clearly, every machine P can be easily modified so that its last message will
bear an appropriate symbol (as assumed earlier), and doing so will preserve the zero-
knowledge properties of P (as well as the completeness and soundness conditions).

The lemma ignores other aspects of repeating an interactive proof several times,
specifically, the effect on the gap between the acceptance probabilities for inputs inside
and outside of the language. The latter aspect of repeating an interactive proof system
is discussed in Section 4.2.1.3 (see also Exercise 1).

Proof: Let V ∗ be an arbitrary probabilistic polynomial-time interactive machine
interacting with the composed prover PQ . Our task is to construct a (polynomial-
time) simulator M∗ that will simulate the real interactions of V ∗ with PQ .
Following is a very high level description of the simulation. The key idea is
to simulate the real interaction on common input x in Q(|x |) phases correspond-
ing to the phases of the operation of PQ . Each phase of the operation of PQ is
simulated using the simulator guaranteed for the atomic prover P . The informa-
tion accumulated by the verifier in each phase is passed to the next phase using
the auxiliary input.

(In the following exposition, we ignore the auxiliary input to the prover. This merely
simplifies our notation. That is, instead of writing P(y) and PQ(y), where y is the
prover’s auxiliary input, we write P and PQ .)

The first step in carrying out this plan is to partition the execution of an arbitrary
interactive machine V ∗ into phases. The partition may not exist in the code of the
program V ∗, and yet it can be imposed on the executions of this program. This
is done using the phase structure of the prescribed prover PQ , which in turn is
induced by the end-of-proof symbols. Hence, we claim that no matter how V ∗

operates, the interaction of V ∗ with PQ on common input x can be captured by
Q(|x |) successive interactions of a related machine, denoted V ∗∗, with P . Namely:

Claim 4.3.11.1: There exists a probabilistic polynomial-time V ∗∗ such that for
every common input x and auxiliary input z, it holds that

〈PQ, V ∗(z)〉(x) = Z (Q(|x |))

where Z (0) def= z and

Z (i+1) def= 〈P, V ∗∗(Z (i))〉(x) for i = 0, . . . , Q(|x |)− 1

Namely, Z (Q(|x |)) is a random variable describing the output of V ∗∗ after Q(|x |) suc-
cessive interactions with P , on common input x , where the auxiliary input of V ∗∗

in the i + 1 interaction equals the output of V ∗∗ after the i th interaction (i.e., Z (i)).

217

ZERO-KNOWLEDGE PROOF SYSTEMS

Proof: Intuitively, V ∗∗ captures the functionality of V ∗ during each single phase.
By the functionality of V ∗ during a phase we mean the way V ∗ transforms the
content of its work tapes at the beginning of the phase to their content at the
end of the phase, as well as the way V ∗ determines the messages it sends during
this phase. Indeed, this transformation depends on the messages received dur-
ing the current phase. We stress that we can effect this transformation without
“reverse-engineering” (the code of) V ∗, but rather by emulating its execution
while monitoring all its tapes. Details follow.

In order to facilitate this process, we first modify V ∗ so that all its “essen-
tial” activities refer only to its work tapes. Machine V ∗ can be slightly modified
so that it starts its execution by reading the common input, the random input,
and the auxiliary input into special regions in its work tape and never accesses
the aforementioned read-only tapes again. Likewise, V ∗ is modified so that it
starts each active period11 (see Definition 4.2.2) by reading the current incoming
message from the communication tape to a special region in the work tape (and
never accesses the incoming-message tape again during this period). Actually,
this description should be modified so that V ∗ copies only a polynomially long
(in the common input) prefix of each of these tapes, the polynomial being the one
bounding the running time of (the original) V ∗.

(Formally speaking, given an arbitrary V ∗, we construct a machine W ∗ that emulates
V ∗ in a way that satisfies the foregoing conditions; that is, W ∗ will satisfy these
conditions even if V ∗ does not. Machine W ∗ will have several extra work tapes that
will be designated as the common-input, random-input, auxiliary-input, and incoming-
communication tapes of V ∗. Machine W ∗ will start by copying its own common input,
random input, and auxiliary input to the corresponding designated tapes. Likewise,
W ∗ will start each active period by copying the current incoming message from its
own communication tape to the corresponding designated tape (i.e., the incoming-
communication tape of V ∗). After completing these copying activities, W ∗ just emu-
lates the execution of V ∗. Clearly, W ∗ satisfies the requirements postulated. Thus,
formally speaking, whenever we later refer to V ∗, we mean W ∗.)

Consider an interaction of V ∗(z) with PQ , on common input x . By the foregoing
modification, the interaction consists of Q(|x |) phases, so that, except in the
first phase, machine V ∗ never accesses its common-input, random-input, and
auxiliary-input tapes. (In the first phase, machine V ∗ starts by copying the content
of these tapes into its work tapes and never accesses the former tapes again.)
Likewise, when executing the current phase, machine V ∗ does not try to read
messages of previous phases from its incoming-communication tape (yet it may
read these “old” messages from storage in its work tapes). Considering the content
of the work tapes of V ∗ at the end of each of the Q(|x |) phases (of interaction
with PQ) naturally leads us to the construction of V ∗∗.

We are now finally ready present the construction of V ∗∗: On common input
x and auxiliary input z′, machine V ∗∗ starts by copying z′ into the work tape of

11Recall that an active period during an execution of an interactive machine M consists of the steps M takes
from the time the last message is received up to the time at which M completes sending its response message.

218

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS

V ∗. Next, machine V ∗∗ emulates a single phase of the interaction of V ∗ with
PQ (on input x), starting with the foregoing contents of the work tape of V ∗

(instead of starting with an empty work tape). The emulated machine V ∗ regards
the communication tapes of machine V ∗∗ as its own communication tapes. When
V ∗ completes the interaction in the current phase, machine V ∗∗ terminates by
outputting the current contents of the work tape of V ∗. Thus, when z′ equals
a possible content of the work tape of V ∗ after i ≥ 1 phases, the emulated V ∗

behaves as in the i + 1 phase, and the output of V ∗∗ is distributed as the content
of the work tape of V ∗ after i + 1 phases. Actually, the foregoing description
should be slightly modified to deal with the first phase in the interaction with PQ

(i.e., the case i = 0 ignored earlier). Specifically, V ∗∗ copies z′ into the work tape
of V ∗ only if z′ encodes the content of the work tape of V ∗ (we assume, without
loss of generality, that the content of the work tape of V ∗ is encoded differently
from the encoding of an auxiliary input for V ∗). In case z′ encodes an auxiliary
input to V ∗, machine V ∗∗ invokes V ∗ on an empty work tape, and V ∗ regards the
readable tapes of V ∗∗ (i.e., common-input tape, random-input tape, and auxiliary-
input tape) as its own. Observe that Z (1) def= 〈P, V ∗∗(z)〉(x) describes the content
of the work tape of V ∗ after the first phase (in the interaction with PQ on common
input x and auxiliary input z). Likewise, for every i = 2, . . . ,Q(|x |), the random
variable Z (i) def= 〈P, V ∗∗(Z (i−1))〉(x) describes the content of the work tape of V ∗

after i phases. The claim follows. �

Because V ∗∗ is a polynomial-time interactive machine (with auxiliary input)
interacting with P , it follows by the lemma’s hypothesis that there exists a proba-
bilistic machine that simulates these interactions in time polynomial in the length
of the first input. Let M∗∗ denote this simulator.12 Then for every probabilistic
polynomial-time (in x) algorithm D, every polynomial p(·), all sufficiently long
x ∈ L , and all z ∈ {0, 1}∗, we have

|Pr[D(x, z, 〈P, V ∗∗(z)〉(x)) = 1]− Pr[D(x, z, M∗∗(x, z)) = 1]| < 1

p(|x |)
(4.1)

We are now ready to present the construction of a simulator M∗ that simulates
the “real” output of V ∗ after interaction with PQ . We can assume, without loss
of generality, that the output of V ∗ equals the content of its work tapes at the
end of the interaction (since the output of V ∗ is probabilistic polynomial-time-
computable from the content of its work tapes at that time). Machine M∗ uses the
simulator M∗∗ (as a black box).

The simulator M∗: On input (x, z), machine M∗ sets z(0) = z and proceeds in
Q(|x |) phases. In the i th phase, machine M∗ computes z(i) by running machine

12Recall that in the case of perfect zero-knowledge (see Definition 4.3.1) machine M∗∗ may halt with no real
output (but rather with output ⊥). However, by sufficiently many repetitions, we can make the probability of this
event exponentially vanishing. In the rest of the exposition, we assume for simplicity that M∗∗ always halts with
output.

219

ZERO-KNOWLEDGE PROOF SYSTEMS

M∗∗ on input (x, z(i−1)). After Q(|x |) phases are completed, machine M∗ stops
outputting z(Q(|x |)).

Clearly, machine M∗, as constructed here, runs in time polynomial in its first
input. It is left to show that machine M∗ indeed produces output that is com-
putationally indistinguishable from the output of V ∗ (after interacting with PQ).
Namely:

Claim 4.3.11.2: For every probabilistic algorithm D with running time polyno-
mial in its first input, every polynomial p(·), all sufficiently long x ∈ L , and all
z ∈ {0, 1}∗, we have

|Pr[D(x, z, 〈PQ, V ∗(z)〉(x)) = 1]− Pr[D(x, z, M∗(x, z)) = 1]| < 1

p(|x |)
Furthermore, if P is perfect zero-knowledge, then 〈PQ, V ∗(z)〉(x) and M∗(x, z)
are identically distributed.

Proof sketch: We use a hybrid argument (see Chapter 3). In particular, we
define the following Q(|x |)+ 1 hybrids. The i th hybrid, 0 ≤ i ≤ Q(|x |), corre-
sponds to the following random process. We first let V ∗∗ interact with P for i
phases, starting with common input x and auxiliary input z, and denote by Z (i)

the output of V ∗∗ after the i th phase. We next repeatedly iterate M∗∗ for the
remaining Q(|x |)− i phases. In both cases, we use the output of the previous
phase as auxiliary input to the new phase. Formally, the hybrid H (i) is defined as
follows:

H (i)(x, z) def= M∗∗
Q(|x |)−i

(
x, Z (i))

where the Z (j)’s are as defined in Claim 4.3.11.1, and where

M∗∗
0 (x, z′) def= z′ and M∗∗

k (x, z′) def= M∗∗
k−1(x, M∗∗(x, z′))

for k = 1, . . . , Q(|x |)− i

By Claim 4.3.11.1, the Q(|x |) hybrid (i.e., H (Q(|x |))(x, z) = Z (Q(|x |))) equals
〈PQ, V ∗(z)〉(x). On the other hand, recalling the construction of M∗, we see
that the zero hybrid (i.e., H (0)(x, z) = M∗∗

Q(|x |)(x, z)) equals M∗(x, z). Hence, all
that is required to complete the proof is to show that all pairs of two adjacent
hybrids are computationally indistinguishable (as this will imply that the extreme
hybrids, H (Q(|x |)) and H (0), are also indistinguishable). To this end, we rewrite the
i and i − 1 hybrids as follows:

H (i)(x, z) = M∗∗
Q(|x |)−i

(
x, Z (i))

= M∗∗
Q(|x |)−i

(
x,
〈

P, V ∗∗(Z (i−1))〉(x)
)

H (i−1)(x, z) = M∗∗
Q(|x |)−(i−1)

(
x, Z (i−1))

= M∗∗
Q(|x |)−i

(
x, M∗∗(x, Z (i−1)))

where Z (i−1) is as defined in Claim 4.3.11.1.

220

4.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS

Using an averaging argument, it follows that if an algorithm D distingui-
shes the hybrids H (i)(x, z) and H (i−1)(x, z), then there exists a z′ (in the support
of Z (i−1)) such that algorithm D distinguishes the random variables
M∗∗

Q(|x |)−i (x, 〈P, V ∗∗(z′)〉(x)) and M∗∗
Q(|x |)−i (x, M∗∗(x, z′)) at least as well. (In all

cases, D is also given x and z.) Using algorithms M∗∗ and D, we get a new
algorithm D′, with running time polynomially related to the former algorithms,
that distinguishes the random variables (x, z, i, z′, 〈P, V ∗∗(z′)〉(x)) and (x, z, i, z′,
M∗∗(x, z′)) at least as well. Specifically, on input (x, (z, i, z′), α) (whereα is taken
either from 〈P, V ∗∗(z′)〉(x) or from M∗∗(x, z′)), algorithm D′ invokes D on input
(x, z, M∗∗

Q(|x |)−i (x, α)) and outputs whatever D does. Clearly,

|Pr[D′(x, (z, i, z′), 〈P, V ∗∗(z′)〉(x))= 1]− Pr[D′(x, (z, i, z′), M∗∗(x, z′))= 1]|
≥ |Pr[D(x, z, H (i)(x, z)) = 1]− Pr[D(x, z, H (i−1)(x, z)) = 1]|

Note that D′ uses additional input (x, z, i, z′), whereas it distinguishes
〈P, V ∗∗(z′)〉(x) from M∗∗(x, z′). This does not fit the definition of a distinguisher
for (auxiliary-input) zero-knowledge, as the latter is to be given only (x, z′) and
the string to be distinguished. In other words, we have actually constructed a
non-uniform D′ = D′

i,z that, depending on i and z, distinguishes 〈P, V ∗∗(z′)〉(x)
from M∗∗(x, z′). Still, in the case of perfect zero-knowledge, letting D be an ar-
bitrary function (rather than an efficient algorithm), this suffices for contradicting
the hypothesis that M∗∗ perfectly simulates (P, V ∗∗). For the case of compu-
tational zero-knowledge, we use the fact that the definition of auxiliary-input
zero-knowledge implies robustness against non-uniform (polynomial-size) dis-
tinguishers, and we note that D′

i,z falls into this category (provided that D also
does). Thus, in both cases, contradiction (to the hypothesis that M∗∗ simulates
(P, V ∗∗)) follows. �

Further details concerning the proof of Claim 4.3.11.2: At this stage
(assuming the reader has gone through Chapter 3), the reader should be able to
transform the foregoing proof sketch into a detailed proof. The main thing that
is missing is the detail concerning the way in which an algorithm contradict-
ing the hypothesis that M∗∗ is a simulator for (P, V ∗∗) is derived from an algo-
rithm contradicting the statement of Claim 4.3.11.2. These details are presented
next.

We assume, to the contradiction, that there exists a probabilistic polynomial-
time algorithm D and a polynomial p(·) such that for infinitely many x ∈ L , there
exists z ∈ {0, 1}∗ such that

|Pr[D(x, z, 〈PQ, V ∗(z)〉(x)) = 1]− Pr[D(x, z, M∗(x, z)) = 1]| > 1

p(|x |)
It follows that for every such x and z, there exists an i ∈ {1, . . . , Q(|x |)} such that∣∣Pr
[
D
(
x, z, H (i)(x, z)

)= 1
]−Pr

[
D
(
x, z, H (i−1)(x, z)

)= 1
]∣∣> 1

Q(|x |) · p(|x |)

221

ZERO-KNOWLEDGE PROOF SYSTEMS

where the hybrid H (j)’s are as defined earlier. Denote ε(n)
def= 1/(Q(n) · p(n)).

Combining, as before, the definitions of the i and i − 1 hybrids with an averaging
argument, it follows that for each such x , z, and i , there exists a z′ such that∣∣Pr

[
D
(
x, z, M∗∗

Q(|x |)−i (x, 〈P, V ∗∗(z′)〉(x))
) = 1

]
−Pr

[
D
(
x, z, M∗∗

Q(|x |)−i (x, M∗∗(x, z′))
) = 1

]∣∣ > ε(|x |)
This almost leads to the desired contradiction. Namely, the random variables
(x, z′, 〈P, V ∗∗(z′)〉(x)) and (x, z′, M∗∗(x, z′)) can be distinguished using the
algorithms D and M∗∗, provided we “know” i and z. But how do we get to
“know” i and z? The problem is resolved using the fact, pointed out earlier, that
the output of M∗∗ should be indistinguishable from the interactions of V ∗∗ with P
even with respect to non-uniform polynomial-size circuits. Thus, in order to derive
a contradiction, it suffices to construct a non-uniform distinguisher that incorpo-
rates i and z in its description. Alternatively, we can incorporate i and z in a new
auxiliary input, denoted z′′, so that z′ is a prefix of z′′, but z′′ looks the same as z′

to both V ∗ and M∗. Next we shall follow the latter alternative.
Let T denote a polynomial upper bound on the time-complexity of both V ∗

and M∗. Note that for every z′ determined for a pair (x, z), as before, it must
hold that |z′| ≤ T (|x |) (since z′ is a possible record of a partial computation of
M∗(x, z)). Let z′′ = (z′"T (|x |)−|z′|, i, z), where i and z are as before (and " denotes
the blank symbol of the work tape). We construct a probabilistic polynomial-time
algorithm D′ that distinguishes (x, z′′, 〈P, V ∗∗(z′′)〉(x)) and (x, z′′, M∗∗(x, z′′)) for
the aforementioned (x, z, i, z′)-tuples. On input (x, z′′, α) (whereα supposedly is in
either 〈P, V ∗∗(z′′)〉(x) = 〈P, V ∗∗(z′)〉(x) or M∗∗(x, z′′) = M∗∗(x, z′)), algorithm
D′ first extracts i and z from z′′. Next, it uses M∗∗ to compute β = M∗∗

Q(|x |)−i (x, α).
Finally, D′ halts with output D(x, z, β). Using the fact that V ∗∗ and M∗∗ cannot
distinguish the auxiliary inputs z′ and z′′, we have

|Pr[D′(x, z′′, 〈P, V ∗∗(z′′)〉(x)) = 1]− Pr[D′(x, z′′, M∗∗(x, z′′)) = 1]|
= |Pr[D′(x, z′′, 〈P, V ∗∗(z′)〉(x)) = 1]− Pr[D′(x, z′′, M∗∗(x, z′)) = 1]|
= ∣∣Pr

[
D
(
x, z, MQ(|x |)−i (x, 〈P, V ∗∗(z′)〉(x))

) = 1
]

−Pr
[
D
(
x, z, MQ(|x |)−i (x, M∗∗(x, z′))

) = 1
]∣∣

> ε(|x |)
Contradiction (to the hypothesis that M∗∗ is a simulator for (P, V ∗∗)) follows. �

The lemma follows. �

And What About Parallel Composition?

Unfortunately, we cannot prove that zero-knowledge (even with respect to auxiliary
input) is preserved under parallel composition. Furthermore, there exist (auxiliary-
input) zero-knowledge proofs that when played twice in parallel do yield knowledge
(to a “cheating verifier”). For further details, see Section 4.5.4.

The fact that zero-knowledge is not preserved under parallel composition of proto-
cols is indeed bad news. One might even say that this fact is a conceptually annoying

222

4.4. ZERO-KNOWLEDGE PROOFS FOR NPNP

phenomenon. We disagree with that assessment. Our feeling is that the behavior of
protocols and “games” under parallel composition is, in general (i.e., not only in the
context of zero-knowledge), a much more complex issue than their behavior under
sequential composition: in fact, in several other cases (e.g., computationally sound
proofs, proofs of knowledge, and multi-prover proof systems; see Sections 4.8, 4.7,
and 4.11, respectively), parallel composition lags behind sequential composition. Fur-
thermore, the only advantage of parallel composition over sequential composition is in
efficiency. Hence, we do not consider the non-closure under parallel composition to be
a fundamental weakness of the formulation of zero-knowledge. Yet the “non-closure”
of zero-knowledge motivates the search for alternative (related) notions that are pre-
served under parallel composition. (Such notions may be either weaker or stronger
than the formulation of zero-knowledge.) For further details, the reader is referred to
Sections 4.9 and 4.6.

4.4. Zero-Knowledge Proofs for NPNP
This section presents the main thrust of this chapter, namely, a method for constructing
zero-knowledge proofs for every language inNP . The importance of this method stems
from its generality, which is the key to its many applications. Specifically, almost all
statements one might wish to prove in practice can be encoded as claims concerning
membership in languages in NP . In particular, the construction of zero-knowledge
proofs for such statements provides a tool for “forcing” parties to properly execute any
given protocol.

The method for constructing zero-knowledge proofs for NP languages makes es-
sential use of the concept of bit commitment. Hence, we start with a presentation of the
latter concept. (A reader who wishes to have more of the flavor of this application of
commitment schemes before studying them is encouraged to read Section 4.4.2.1 first.)

4.4.1. Commitment Schemes

Commitment schemes are basic ingredients in many cryptographic protocols. They are
used to enable a party to commit itself to a value while keeping it secret. In a later stage
the commitment is “opened,” and it is guaranteed that the “opening” can yield only a
single value determined in the committing phase. Commitment schemes are the digital
analogues of non-transparent sealed envelopes. By putting a note in such an envelope,
a party commits itself to the content of the note while keeping the content secret.

4.4.1.1. Definition

Loosely speaking, a commitment scheme is an efficient two-phase two-party protocol
through which one party, called the sender, can commit itself to a value such that the
following two conflicting requirements are satisfied.

223

ZERO-KNOWLEDGE PROOF SYSTEMS

1. Secrecy (or hiding): At the end of the first phase, the other party, called the receiver, does
not gain any knowledge of the sender’s value. This requirement has to be satisfied even
if the receiver tries to cheat.

2. Unambiguity (or binding): Given the transcript of the interaction in the first phase, there
exists at most one value that the receiver can later (i.e., in the second phase) accept as
a legal “opening” of the commitment. This requirement has to be satisfied even if the
sender tries to cheat.

In addition, one should require that the protocol be viable, in the sense that if both parties
follow it, then at the end of the second phase the receiver gets the value committed to
by the sender. The first phase is called the commit phase, and the second phase is
called the reveal phase. We are requiring that the commit phase yield no knowledge
(at least no knowledge of the sender’s value) to the receiver, whereas the commit phase
does “bind” the sender to a unique value (in the sense that in the reveal phase the
receiver can accept only this value). We stress that the protocol is efficient in the sense
that the predetermined programs of both parties can be implemented in probabilistic
polynomial time. Without loss of generality, the reveal phase may consist of merely
letting the sender send, to the receiver, the original value and the sequence of random
coin tosses that it has used during the commit phase. The receiver will accept the value
if and only if the supplied information matches its transcript of the interaction in the
commit phase. The latter convention leads to the following definition (which refers
explicitly only to the commit phase).

Definition 4.4.1 (Bit-Commitment Scheme): A bit-commitment scheme is a
pair of probabilistic polynomial-time interactive machines, denoted (S, R) (for
sender and receiver), satisfying the following:

� Input specification: The common input is an integer n presented in unary (serving
as the security parameter).
The private input to the sender is a bit, denoted v.

� Secrecy (or hiding): The receiver (even when deviating arbitrarily from the pro-
tocol) cannot distinguish a commitment to 0 from a commitment to 1. Namely, for
every probabilistic polynomial-time machine R∗ interacting with S, the probability
ensembles describing the output of R∗ in the two cases, namely {〈S(0), R∗〉(1n)}n∈N

and {〈S(1), R∗〉(1n)}n∈N, are computationally indistinguishable.
� Unambiguity (or binding): Preliminaries to the requirement:

1. A receiver’s view of an interaction with the sender, denoted (r,m), consists
of the random coins used by the receiver (r) and the sequence of messages
received from the sender (m).

2. Let σ ∈ {0, 1}. We say that a receiver’s view (of such interaction), (r,m), is
a possible σσσ -commitment if there exists a string s such that m describes the
messages received by R when R uses local coins r and interacts with machine
S that uses local coins s and has input (σ, 1n).

(Using the notation of Definition 4.3.3, we say that (r,m) is a possible σ -
commitment if (r,m) = viewS(σ,1n ,s)

R(1n ,r) .)

224

4.4. ZERO-KNOWLEDGE PROOFS FOR NPNP

3. We say that the receiver’s view (r,m) is ambiguous if it is both a possible
0-commitment and a possible 1-commitment.

The unambiguity requirement asserts that for all but a negligible fraction of the
coin tosses of the receiver there exists no sequence of messages (from the sender)
that together with these coin tosses forms an ambiguous receiver view. Namely,
for all but a negligible fraction of the r ∈ {0, 1}poly(n) there is no m such that (r,m)
is ambiguous.

The secrecy requirement is a computational one. On the other hand, the unambiguity
requirement has an information-theoretic flavor (i.e., it does not refer to computational
powers) and is sometimes referred to as perfect (or absolute). Thus, a commitment
scheme as in Definition 4.4.1 is sometimes referred to as computationally hiding and
perfectly binding. A dual definition, requiring information-theoretic secrecy and com-
putational infeasibility of creating ambiguities, is presented in Section 4.8.2. (The latter
is referred to as perfectly hiding and computationally binding.)

Canonical Reveal Phase. The secrecy requirement refers explicitly to the situation
at the end of the commit phase. On the other hand, we stress that the unambiguity
requirement implicitly assumes that the reveal phase takes the following form:

1. The sender sends to the receiver its initial private input v and the random coins s it has
used in the commit phase.

2. The receiver verifies that v and s (together with the coins (r) used by R in the commit
phase) indeed yield the messages that R has received in the commit phase. Verification
is done in polynomial time (by running the programs S and R).

Note that the viability requirement (i.e., asserting that if both parties follow the proto-
col, then at the end of the reveal phase the receiver gets v) is implicitly satisfied by this
convention.

4.4.1.2. Construction Based on Any One-Way Permutation

Some public-key encryption scheme can be used as a commitment scheme. This can
be done by having the sender generate a pair of keys and use the public key together
with the encryption of a value as its commitment to the value. In order to satisfy the
unambiguity requirement, the underlying public-key scheme needs to satisfy additional
requirements (i.e., the set of legitimate public keys should be efficiently recognizable,
and an encryption relative to legitimate public keys should have a unique decryption).
In any case, public-key encryption schemes have additional properties not required
of commitment schemes, and their existence seems to require stronger intractability
assumptions. (Thus, we consider the aforementioned approach to be “conceptually
wrong.”) An alternative construction, presented next, uses any one-way permutation.
Specifically, we use a one-way permutation, denoted f , and a hard-core predicate for
it, denoted b (see Section 2.5). In fact, we can use any 1-1 one-way function.

Construction 4.4.2 (Simple Bit Commitment): Let f : {0, 1}∗ → {0, 1}∗ be a
function, and let b : {0, 1}∗ → {0, 1} be a predicate.

225

ZERO-KNOWLEDGE PROOF SYSTEMS

1. Commit phase: To commit to value v ∈ {0, 1} (using security parameter n), the
sender uniformly selects s ∈ {0, 1}n and sends the pair (f (s), b(s)⊕ v) to the
receiver.

2. (Canonical) reveal phase: In the reveal phase, the sender reveals the bit v and the
string s used in the commit phase. The receiver accepts the value v if f (s) = α

and b(s)⊕ v = σ , where (α, σ) is the receiver’s view of the commit phase.

Proposition 4.4.3: Let f : {0, 1}∗ → {0, 1}∗ be a 1-1 one-way function, and let
b : {0, 1}∗ → {0, 1} be a hard-core predicate of f . Then the protocol presented
in Construction 4.4.2 constitutes a bit-commitment scheme.

Proof: The secrecy requirement follows directly from the fact that b is a hard-
core of f . The unambiguity requirement follows from the 1-1 property of f . In
fact, there exists no ambiguous receiver view. Namely, for each possible receiver
view (α, σ), there is a unique s ∈ {0, 1}|α| such that f (s) = α, and hence a unique
v ∈ {0, 1} such that b(s)⊕ v = σ . �

4.4.1.3. Construction Based on Any One-Way Function

We now present a construction of a bit-commitment scheme that is based on the weakest
assumption possible: the existence of one-way functions. Proving that the assumption
is indeed minimal is left as an exercise (i.e., Exercise 13). On the other hand, by the
results in Chapter 3 (specifically, Theorems 3.3.3 and 3.5.12), the existence of one-way
functions implies the existence of pseudorandom generators expanding n-bit strings
into 3n-bit strings. We shall use such a pseudorandom generator in the construction
presented next.

We start by motivating the construction. Let G be a pseudorandom generator satis-
fying |G(s)| = 3 · |s|. Assume that G has the property that the sets {G(s) : s ∈ {0, 1}n}
and {G(s)⊕ 13n : s ∈ {0, 1}n} are disjoint, where α ⊕ β denotes the bit-by-bit XOR
of the strings α and β. Then the sender can commit itself to the bit v by uniformly
selecting s ∈ {0, 1}n and sending the message G(s)⊕ v3n (vk denotes the all-v k-bit-
long string). Unfortunately, the foregoing assumption cannot be justified in general, and
a slightly more complex variant is required. The key observation is that for most strings
r ∈ {0, 1}3n the sets {G(s) : s ∈ {0, 1}n} and {G(s)⊕ r : s ∈ {0, 1}n} are disjoint. Such
a string r is called good. This observation suggests the following protocol: The receiver
uniformly selects r ∈ {0, 1}3n , hoping that it is good, and sends r to the sender. Hav-
ing received r , the sender commits to the bit v by uniformly selecting s ∈ {0, 1}n and
sending the message G(s) if v = 0, and G(s)⊕ r otherwise.

Construction 4.4.4 (Bit Commitment under General Assumptions): Let G :
{0, 1}∗ → {0, 1}∗ be a function such that |G(s)| = 3 · |s| for all s ∈ {0, 1}∗.
1. Commit phase:

� To receive a commitment to a bit (using security parameter n), the receiver
uniformly selects r ∈ {0, 1}3n and sends it to the sender.

226

4.4. ZERO-KNOWLEDGE PROOFS FOR NPNP

� Upon receiving the message r (from the receiver), the sender commits to value
v ∈ {0, 1} by uniformly selecting s ∈ {0, 1}n and sending G(s) if v = 0, and
G(s)⊕ r otherwise.

2. (Canonical) reveal phase: In the reveal phase, the sender reveals the string s used
in the commit phase. The receiver accepts the value 0 if G(s) = α and accepts the
value 1 if G(s)⊕ r = α, where (r, α) is the receiver’s view of the commit phase.

Such a definition of the (canonical) reveal phase allows the receiver to accept both
values, but we shall show that that happens very rarely (if at all).

Proposition 4.4.5: If G is a pseudorandom generator, then the protocol presented
in Construction 4.4.4 constitutes a bit-commitment scheme.

Proof: The secrecy requirement follows the fact that G is a pseudorandom gen-
erator. Specifically, let Uk denote the random variable uniformly distributed on
strings of length k. Then for every r ∈ {0, 1}3n , the random variables U3n and
U3n ⊕ r are identically distributed. Hence, if it is feasible to find an r ∈ {0, 1}3n

such that G(Un) and G(Un)⊕ r are computationally distinguishable, then either
U3n and G(Un) are computationally distinguishable or U3n ⊕ r and G(Un)⊕ r
are computationally distinguishable. In either case, contradiction to the pseudo-
randomness of G follows.

We now turn to the unambiguity requirement. Following the motivating discus-
sion, we call r ∈ {0, 1}3n good if the sets {G(s) : s ∈ {0, 1}n} and {G(s)⊕ r : s ∈
{0, 1}n} are disjoint. We say that r ∈ {0, 1}3n yields a collision between the seeds
s1 and s2 if G(s1) = G(s2)⊕ r . Clearly, r is good if it does not yield a collision
between any pair of seeds. On the other hand, there is at most one string r that
yields a collision between a given pair of seeds (s1, s2); that is, r = G(s1)⊕ G(s2).
Because there are at most (2n

2) < 22n possible pairs of seeds, fewer than 22n strings
will yield collisions between pairs of seeds, and so all the other 3n-bit-long strings
are good. It follows that with probability at least 1− 22n−3n the receiver selects
a good string, in which case its view (r, α) is unambiguous (since if r is good
and G(s1) = α holds for some s1, then G(s2) �= α ⊕ r must hold for all s2’s). The
unambiguity requirement follows. �

4.4.1.4. Extensions

The definition and the constructions of bit-commitment schemes are easily extended to
general commitment schemes, enabling the sender to commit to a string rather than to a
single bit. Actually, for the purposes of the rest of this section, we need a commitment
scheme by which one can commit to a ternary value. Extending the definition and the
constructions to deal with this special case is even more straightforward.

In the rest of this section we shall need commitment schemes with a seemingly
stronger secrecy requirement than defined earlier. Specifically, instead of requiring
secrecy with respect to all polynomial-time machines, we require secrecy with respect
to all (not necessarily uniform) families of polynomial-size circuits. Assuming the

227

ZERO-KNOWLEDGE PROOF SYSTEMS

existence of non-uniformly one-way functions (see Definition 2.2.6 in Section 2.2),
commitment schemes with non-uniform secrecy can be constructed, using the same
construction as in the uniform case. Thus, we have the following:

Theorem 4.4.6: Suppose there exist non-uniformly one-way functions (as in
Definition 2.2.6). Then there exists a bit-commitment scheme (as in Definition
4.4.1) for which the secrecy condition also holds with respect to polynomial-size
circuits.

4.4.2. Zero-Knowledge Proof of Graph Coloring

Presenting a zero-knowledge proof system for one NP-complete language implies
the existence of a zero-knowledge proof system for every language inNP . This intu-
itively appealing statement does require a proof, which we postpone to a later stage. In
the current section we present a zero-knowledge proof system for one NP-complete
language, specifically Graph 3-Colorability. This choice is indeed arbitrary.

The language Graph 3-Coloring, denoted G3C , consists of all simple (finite) graphs
(i.e., no parallel edges or self-loops)13 that can be vertex-colored using three colors such
that no two adjacent vertices are given the same color. Formally, a graph G = (V, E)
is 3-colorable if there exists a mapping φ : V → {1, 2, 3} such that φ(u) �= φ(v) for
every (u, v) ∈ E .

4.4.2.1. Motivating Discussion

The idea underlying the zero-knowledge proof system for G3C is to break the proof
of the claim that a graph is 3-colorable into polynomially many pieces arranged in
templates so that each template by itself will yield no knowledge and yet all the templates
put together will guarantee the validity of the main claim. Suppose that the prover
generates such pieces of information, places each of them in a separate sealed and non-
transparent envelope, and allows the verifier to open and inspect the pieces participating
in one of the templates. Then certainly the verifier gains no knowledge in the process,
yet its confidence in the validity of the claim (that the graph is 3-colorable) increases.
A concrete implementation of this abstract idea follows.

To prove that the graph G = (V, E) is 3-colorable, the prover generates a random
3-coloring of the graph, denoted φ (actually a random relabeling of a fixed coloring will
do). The color of each single vertex constitutes a piece of information concerning the 3-
coloring. The set of templates corresponds to the set of edges (i.e., each pair (φ(u), φ(v)),
where (u, v) ∈ E , constitutes a template to the claim that G is 3-colorable). Each single
template (being merely a random pair of distinct elements in {1, 2, 3}) will yield no
knowledge. However, if all the templates are OK (i.e., each contains a pair of distinct
elements in {1, 2, 3}), then the graph must be 3-colorable. Consequently, graphs that

13A simple finite graph is a pair (V, E), where V is a finite set and E is a set of 2-subsets of V ; that is,
E ⊆ {e ⊆ V : |e| = 2}. The elements of V are called vertices, and the elements of E are called edges. Although
each edge is an unordered pair of two elements in V , we use the ordered-pair notation (u, v) ∈ E rather than the
notation {u, v} ∈ E . For e = (u, v) ∈ E , we say that u and v are the endpoints of e and that u is adjacent to v.

228

4.4. ZERO-KNOWLEDGE PROOFS FOR NPNP

are not 3-colorable must contain at least one bad template and hence will be rejected
with noticeable probability. Following is an abstract description of the resulting zero-
knowledge interactive proof system for G3C .

• Common input: A simple graph G = (V, E).

• Prover’s first step: Let ψ be a 3-coloring of G. The prover selects a random permutation
π over {1, 2, 3} and sets φ(v)

def= π (ψ(v)) for each v ∈ V . Hence, the prover forms a
random relabeling of the 3-coloring ψ . The prover sends the verifier a sequence of |V |
locked and non-transparent boxes such that the vth box contains the value φ(v).

• Verifier’s first step: The verifier uniformly selects an edge (u, v) ∈ E and sends it to the
prover.

• Motivating remark: The verifier asks to inspect the colors of vertices u and v.

• Prover’s second step: The prover sends to the verifier the keys to boxes u and v.

• Verifier’s second step: The verifier opens boxes u and v and accepts if and only if they
contain two different elements in {1, 2, 3}.

Clearly, if the input graph is 3-colorable, then the prover can cause the verifier to always
accept. On the other hand, if the input graph is not 3-colorable, then any content placed
in the boxes must be invalid on at least one edge, and consequently the verifier will
reject with probability at least 1/|E |. Hence, the foregoing protocol exhibits a noticeable
gap in the acceptance probabilities between the case of inputs in G3C and the case of
inputs not in G3C . The zero-knowledge property follows easily in this abstract setting,
because one can simulate the real interaction by placing a random pair of different colors
in the boxes indicated by the verifier. We stress that this simple argument will not be
possible in the digital implementation, because the boxes are not totally unaffected by
their contents (but rather are affected, yet in an indistinguishable manner). Finally, we
remark that confidence in the validity of the claim (that the input graph is 3-colorable)
can be increased by sequentially applying the foregoing proof sufficiently many times.
(In fact, if the boxes are perfect, as assumed, then one can also use parallel repetitions;
however, the boxes are not perfect in the digital implementation presented next.)

4.4.2.2. The Interactive Proof

We now turn to the digital implementation of the abstract protocol. In this implemen-
tation the boxes are implemented by a commitment scheme. Namely, for each box, we
invoke an independent execution of the commitment scheme. This will enable us to
execute the reveal phase for only some of the commitments, a property that is crucial
to our scheme. For simplicity of exposition, we use the simple commitment scheme
presented in Construction 4.4.2 (or, more generally, any one-way-interaction commit-
ment scheme). We denote by Cs(σ) the commitment of the sender, using coins s, to the
(ternary) value σ .

Construction 4.4.7 (A Zero-Knowledge Proof for Graph 3-Coloring):
� Common input: A simple (3-colorable) graph G = (V, E). Let n

def= |V | and V =
{1, . . . , n}.

229

ZERO-KNOWLEDGE PROOF SYSTEMS

� Auxiliary input to the prover: A 3-coloring of G, denoted ψ .
� Prover’s first step (P1): The prover selects a random permutation π over {1, 2, 3}

and sets φ(v)
def= π (ψ(v)) for each v ∈ V . The prover uses the commitment scheme

to commit itself to the color of each of the vertices. Namely, the prover uniformly
and independently selects s1, . . . , sn ∈ {0, 1}n, computes ci = Csi (φ(i)) for each
i ∈ V , and sends c1, . . . , cn to the verifier.

� Verifier’s first step (V1): The verifier uniformly selects an edge (u, v) ∈ E and
sends it to the prover.

� Prover’s second step (P2): Without loss of generality, we can assume that the
message received from the verifier is an edge, denoted (u, v). (Otherwise, the prover
sets (u, v) to be some predetermined edge of G.) The prover uses the (canonical)
reveal phase of the commitment scheme in order to reveal the colors of vertices
u and v to the verifier. Namely, the prover sends (su, φ(u)) and (sv, φ(v)) to the
verifier.

� Verifier’s second step (V2): The verifier checks whether or not the values corre-
sponding to commitments u and v were revealed correctly and whether or not
these values are different. Namely, upon receiving (s, σ) and (s ′, τ), the verifier
checks whether or not cu = Cs(σ), cv = Cs ′ (τ), and σ �= τ (and both σ and τ are
in {1, 2, 3}). If all conditions hold, then the verifier accepts. Otherwise it rejects.

Let us denote this prover’s program by PG3C .

We stress that the program of the verifier and that of the prover can be implemented in
probabilistic polynomial time. In the case of the prover’s program, this property is made
possible by use of the auxiliary input to the prover. As we shall later see, the foregoing
protocol constitutes a weak interactive proof for G3C . As usual, the confidence can be
increased (i.e., the error probability can be decreased) by sufficiently many successive
applications. However, the mere existence of an interactive proof for G3C is obvious
(since G3C ∈ NP). The punch line is that this protocol is zero-knowledge (also with
respect to auxiliary input). Using the sequential-composition-lemma (Lemma 4.3.11),
it follows that polynomially many sequential applications of this protocol will preserve
the zero-knowledge property.

Proposition 4.4.8: Suppose that the commitment scheme used in Construc-
tion 4.4.7 satisfies the (non-uniform) secrecy and the unambiguity requirements.
Then Construction 4.4.7 constitutes an auxiliary-input zero-knowledge (general-
ized) interactive proof for G3C.

For further discussion of Construction 4.4.7, see Section 4.4.2.4.

4.4.2.3. The Simulator: Proof of Proposition 4.4.8

We first prove that Construction 4.4.7 constitutes a weak interactive proof for G3C .
Assume first that the input graph is indeed 3-colorable. Then if the prover follows the
specified program, the verifier will always accept (i.e., accept with probability 1). On
the other hand, if the input graph is not 3-colorable, then no matter what the prover

230

4.4. ZERO-KNOWLEDGE PROOFS FOR NPNP

does, the n commitments sent in Step P1 cannot correspond to a 3-coloring of the
graph (since such coloring does not exist). We stress that the unique correspondence of
commitments to values is guaranteed by the unambiguity property of the commitment
scheme. It follows that there must exist an edge (u, v) ∈ E such that cu and cv, sent in
Step P1, are not commitments to two different elements of {1, 2, 3}. Hence, no matter
how the prover behaves, the verifier will reject with probability at least 1/|E |. Therefore,
there is a noticeable (in the input length) gap between the acceptance probabilities in
the case in which the input is in G3C and in the case in which it is not.

We shall now show that PG3C , the prover program specified in Construction 4.4.7, is
indeed zero-knowledge for G3C . The claim is proved without reference to auxiliary-
input (to the verifier), but an extension of the argument to auxiliary-input zero-
knowledge is straightforward. Again, we use the alternative formulation of zero-
knowledge (i.e., Definition 4.3.3) and show how to simulate V ∗’s view of the interaction
with PG3C for every probabilistic polynomial-time interactive machine V ∗. As in the
case of the Graph Isomorphism proof system (i.e., Construction 4.3.8), it is easy to
simulate the verifier’s view of the interaction with PG3C , provided that the verifier fol-
lows the specified program. However, we need to simulate the view of the verifier in
the general case (in which the verifier uses an arbitrary polynomial-time interactive
program). Following is an overview of our simulation (i.e., of our construction of a
simulator M∗ for an arbitrary V ∗).

The simulator M∗ incorporates the code of the interactive program V ∗. On input
a graph G = (V, E), the simulator M∗ (not having access to a 3-coloring of G) first
uniformly and independently selects n values e1, . . . , en ∈ {1, 2, 3} and constructs a
commitment to each of them. (These ei ’s constitute a “pseudo-coloring” of the graph
in which the endpoints of each edge will be colored differently with probability 2

3 .)
In doing so, the simulator behaves very differently from PG3C , but nevertheless the
sequence of commitments thus generated is computationally indistinguishable from
the sequence of commitments to a valid 3-coloring sent by PG3C in Step P1. If V ∗,
when given the commitments generated by the simulator, asks to inspect an edge (u, v)
such that eu �= ev, then the simulator can indeed answer correctly, and in doing so
it completes a simulation of the verifier’s view of the interaction with PG3C . How-
ever, if V ∗ asks to inspect an edge (u, v) such that eu = ev, then the simulator has
no way to answer correctly, and we let it halt with output ⊥. We stress that we do
not assume that the simulator “knows” a priori which edge the verifier V ∗ will ask to
inspect. The validity of the simulator stems from a different source. If the verifier’s
request were oblivious of the prover’s commitment, then with probability 2

3 the veri-
fier would have asked to inspect an edge that was properly colored. Using the secrecy
property of the commitment scheme, it follows that the verifier’s request is “almost
oblivious” of the values in the commitments. The zero-knowledge claim follows (yet,
with some effort). Further details follow. We start with a detailed description of the
simulator.

Simulator M∗. On input a graph G = (V, E), where n = |V |, the simulator M∗ pro-
ceeds as follows:

231

ZERO-KNOWLEDGE PROOF SYSTEMS

1. Setting the random tape of V ∗: Let q(·) denote a polynomial bounding the running time
of V ∗. The simulator M∗ starts by uniformly selecting a string r ∈ {0, 1}q(n) to be used
as the content of the local random tape of V ∗.

2. Simulating the prover’s first step (P1): The simulator M∗ uniformly and independently
selects n values e1, . . . , en ∈ {1, 2, 3} and n random strings s1, . . . , sn ∈ {0, 1}n to be used
for committing to these values. The simulator computes, for each i ∈ V , a commitment
di = Csi (ei).

3. Simulating the verifier’s first step (V1): The simulator M∗ initiates an execution of
V ∗ by placing G on V ∗’s common-input tape, placing r (selected in Step 1) on V ∗’s
local random tape, and placing the sequence (d1, . . . , dn) (constructed in Step 2) on
V ∗’s incoming-message tape. After executing a polynomial number of steps of V ∗, the
simulator can read the outgoing message of V ∗, denoted m. Again, we assume without
loss of generality that m ∈ E and let (u, v) = m. (Actually, m �∈ E is treated as in Step P2
of PG3C ; namely, (u, v) is set to be some predetermined edge of G.)

4. Simulating the prover’s second step (P2): If eu �= ev , then the simulator halts with output
(G, r, (d1, . . . , dn), (su, eu, sv, ev)).

5. Failure of the simulation: Otherwise (i.e., eu = ev), the simulator halts with output ⊥.

Using the hypothesis that V ∗ is polynomial-time, it follows that so is the simulator M∗.
It is left to show that M∗ outputs⊥ with probability at most 1

2 and that, conditioned on
not outputting ⊥, the simulator’s output is computationally indistinguishable from the
verifier’s view in a “real interaction with PG3C .” The proposition will follow by running
the simulator n times and outputting the first output different from ⊥. We now turn to
proving the two claims.

Claim 4.4.8.1: For every sufficiently large graph G = (V, E), the probability
that M∗(G) = ⊥ is bounded above by 1

2 .
(Actually, a stronger claim can be proved: For every polynomial p and all

sufficiently large graphs G = (V, E), the probability that M∗(G) = ⊥ is bounded
above by 1

3 + 1
p(|V |) .)

Proof: Let us denote by pu,v(G, r, (e1, . . . , en)) the probability, taken over all the
choices of s1, . . . , sn ∈ {0, 1}n , that V ∗, on input G, random coins r , and prover
message (Cs1 (e1), . . . ,Csn (en)), replies with the message (u, v). We assume, for
simplicity, that V ∗ always answers with an edge of G (since otherwise its message
is treated as if it were an edge of G). We first claim that for every sufficiently
large graph G = (V, E), every r ∈ {0, 1}q(n), every edge (u, v) ∈ E , and every
two sequences α, β ∈ {1, 2, 3}n , it holds that

|pu,v(G, r, α)− pu,v(G, r, β)| ≤ 1

2|E | (4.2)

Actually, we can prove the following sub-claim.

Request Obliviousness Sub-Claim: For every polynomial p(·), every suffi-
ciently large graph G = (V, E), every r ∈ {0, 1}q(n), every edge (u, v) ∈ E , and

232

4.4. ZERO-KNOWLEDGE PROOFS FOR NPNP

every two sequences α, β ∈ {1, 2, 3}n , it holds that

|pu,v(G, r, α)− pu,v(G, r, β)| ≤ 1

p(n)

The Request Obliviousness Sub-Claim is proved using the non-uniform secrecy
of the commitment scheme. The reader should be able to fill out the details of
such a proof at this stage. (Nevertheless, a proof of the sub-claim follows.)

Proof of the Request Obliviousness Sub-Claim: Assume, on the contrary, that
there exists a polynomial p(·) and an infinite sequence of integers such that for each
integer n (in the sequence) there exists an n-vertex graph Gn = (Vn, En), a string
rn ∈ {0, 1}q(n), an edge (un, vn) ∈ En , and two sequences αn, βn ∈ {1, 2, 3}n such that∣∣pun ,vn (Gn, rn, αn)− pun ,vn (Gn, rn, βn)

∣∣ > 1

p(n)

We construct a circuit family {An} by letting An incorporate the interactive machine V ∗,
the graph Gn , and rn, un, vn, αn, βn , all being as in the contradiction hypothesis. On
input y (supposedly a sequence of commitments to either αn or βn), circuit An runs V ∗
(on input Gn , coins rn , and prover’s message y) and outputs 1 if and only if V ∗ replies
with (un, vn). Clearly, {An} is a (non-uniform) family of polynomial-size circuits. The
key observation is that An distinguishes commitments to αn from commitments to βn ,
since

Pr
[

An
(
CU (1)

n
(e1), . . . ,CU (n)

n
(en)
) = 1

] = pun ,vn (Gn, rn, (e1, . . . , en))

where the U (i)
n ’s denote, as usual, independent random variables uniformly distributed

over {0, 1}n . Contradiction to the (non-uniform) secrecy of the commitment scheme
follows by a standard hybrid argument (which relates the indistinguishability of se-
quences of commitments to the indistinguishability of single commitments).

Returning to the proof of Claim 4.4.8.1, we now use this sub-claim to upper-bound
the probability that the simulator outputs ⊥. The intuition is simple: Because the
requests of V ∗ are almost oblivious of the values to which the simulator has
committed itself, it is unlikely that V ∗ will request to inspect an illegally colored
edge more often than it would if it had made the request without looking at the
commitment. Thus, V ∗ asks to inspect an illegally colored edge with probability
approximately 1

3 , and so Pr[M∗(G) = ⊥] ≈ 1
3 . A more rigorous (but straightfor-

ward) analysis follows.
Let M∗

r (G) denote the output of machine M∗ on input G, conditioned on the
event that it chooses the string r in Step 1. We remind the reader that M∗

r (G) = ⊥
only in the case in which the verifier, on input G, random tape r , and a commitment
to some pseudo-coloring (e1, . . . , en), asks to inspect an edge (u, v) that is illegally
colored (i.e., eu = ev). Let E(e1,. . .,en) denote the set of edges (u, v) ∈ E that are
illegally colored (i.e., satisfy eu = ev) with respect to (e1, . . . , en). Then, fixing an
arbitrary r and considering all possible choices of e = (e1, . . . , en) ∈ {1, 2, 3}n ,
we have

Pr[M∗
r (G) = ⊥] =

∑
e∈{1,2,3}n

1

3n
·
∑

(u,v)∈Ee

pu,v(G, r, e)

233

ZERO-KNOWLEDGE PROOF SYSTEMS

(Recall that pu,v(G, r, e) denotes the probability that the verifier will ask to inspect
(u, v) when given a sequence of random commitments to the values e.) Define
Bu,v to be the set of n-tuples (e1, . . . , en) ∈ {1, 2, 3}n satisfying eu = ev. Clearly,
|Bu,v| = 3n−1, and

{(e, (u, v)) : e ∈ {1, 2, 3}n & (u, v) ∈ Ee} = {(e, (u, v)) : e ∈ {1, 2, 3}n & eu = ev}
= {(e, (u, v)) : (u, v) ∈ E & e ∈ Bu,v}

By straightforward calculation we get

Pr[M∗
r (G) = ⊥] = 1

3n
·
∑

e∈{1,2,3}n

∑
(u,v)∈Ee

pu,v(G, r, e)

= 1

3n
·
∑

(u,v)∈E

∑
e∈Bu,v

pu,v(G, r, e)

≤ 1

3n
·
∑

(u,v)∈E

|Bu,v| ·
(

pu,v(G, r, (1, . . . , 1))+ 1

2|E |
)

= 1

6
+ 1

3
·
∑

(u,v)∈E

pu,v(G, r, (1, . . . , 1))

= 1

6
+ 1

3

where the inequality is due to Eq. (4.2). The claim follows. �

For simplicity, we assume in the sequel that on common input G ∈ G3C the prover
gets the lexicographically first 3-coloring of G as auxiliary input. This enables us to
omit the auxiliary input to PG3C (which is now implicit in the common input) from
the notation. The argument is easily extended to the general case where PG3C gets an
arbitrary 3-coloring of G as auxiliary input.

Claim 4.4.8.2: The ensemble consisting of the output of M∗ on input G =
(V, E) ∈ G3C , conditioned on it not being ⊥, is computationally indistinguish-
able from the ensemble {viewPG3C

V ∗ (G)}G∈G3C . Namely, for every probabilistic
polynomial-time algorithm A, every polynomial p(·), and all sufficiently large
graphs G = (V, E),∣∣Pr[A(M∗(G)) = 1 | M∗(G) �= ⊥]− Pr

[
A
(
viewPG3C

V ∗ (G)
) = 1

]∣∣ < 1

p(|V |)
We stress that these ensembles are very different (i.e., the statistical distance
between them is very close to the maximum possible), and yet they are com-
putationally indistinguishable. Actually, we can prove that these ensembles are
indistinguishable also by (non-uniform) families of polynomial-size circuits. At
first glance it seems that Claim 4.4.8.2 follows easily from the secrecy property
of the commitment scheme. Indeed, Claim 4.4.8.2 is proved using the secrecy
property of the commitment scheme, but the proof is more complex than one
might anticipate at first glance. The difficulty lies in the fact that the foregoing
ensembles consist not only of commitments to values but also of openings of some

234

4.4. ZERO-KNOWLEDGE PROOFS FOR NPNP

of the values. Furthermore, the choice of which commitments are to be opened
depends on the entire sequence of commitments. (We take advantage of the fact
that the number of such openings is a constant.)

Proof: Let m∗(G) denote the distribution of M∗(G) conditioned on M∗(G) �= ⊥.
For any algorithm A, we denote the distinguishing gap of A, regarding the en-
sembles in the claim, by εA(G); that is,

εA(G) def= ∣∣Pr[A(m∗(G)) = 1]− Pr
[
A
(
viewPG3C

V ∗ (G)
) = 1

]∣∣ (4.3)

Our goal is to prove that for every probabilistic polynomial-time algorithm A,
the value of εA(G) is negligible as a function of the number of vertices in G.
Recall that for G = (V, E) both m∗(G) and viewPG3C

V ∗ (G) are sequences of the
form (r, (α1, . . . , α|V |), (u, v), (su, σu, sv, σv)), where r ∈ {0, 1}q(|V |), (u, v) ∈ E ,
σu �= σv ∈ {1, 2, 3}, αu = Csu (σu), and αv = Csv (σv). In both cases, the pair (u, v)
is called the verifier’s request.

Given a graph G = (V, E), we define for each edge (u, v) ∈ E two random
variables describing, respectively, the output of M∗ and the view of V ∗ in a real
interaction in the case in which the verifier’s request equals (u, v). Specifically:
� µu,v(G) describes M∗(G) (equivalently, m∗(G)) conditioned on M∗(G) (equiva-

lently, m∗(G)) having the verifier’s request equal to (u, v).
� νu,v(G) describes viewPG3C

V ∗ (G) conditioned on viewPG3C
V ∗ (G) having the verifier’s

request equal to (u, v).

Let pu,v(G) denote the probability that m∗(G) has the verifier’s request equal
to (u, v). Similarly, let qu,v(G) denote the probability that viewPG3C

V ∗ (G) has the
verifier’s request equal to (u, v).

Assume, contrary to the claim, that the ensembles mentioned in the claim are
computationally distinguishable. Then one of the following cases must occur.

Case 1: There is a non-negligible difference between the probabilistic profile of
the request of V ∗ when interacting with PG3C and that of the verifier’s request in
the output represented by m∗(G). Formally, there exists a polynomial p(·) and an
infinite sequence of integers such that for each integer n (in the sequence) there
exists an n-vertex graph Gn = (Vn, En) and an edge (un, vn) ∈ En such that∣∣pun ,vn (Gn)− qun ,vn (Gn)

∣∣ > 1

p(n)

Otherwise, for every polynomial p′, all but finitely many G’s, and all edges (u, v)
in such G = (V, E), it holds that

|pu,v(G)− qu,v(G)| ≤ 1

p′(|V |) (4.4)

Case 2: An algorithm distinguishing the foregoing ensembles also does so con-
ditioned on V ∗ making a particular request. Furthermore, this request occurs with
non-negligible probability that is about the same for both ensembles. Formally,
there exists a probabilistic polynomial-time algorithm A, a polynomial p(·), and

235

ZERO-KNOWLEDGE PROOF SYSTEMS

an infinite sequence of integers such that for each integer n (in the sequence) there
exists an n-vertex graph Gn = (Vn, En) and an edge (un, vn) ∈ En such that the
following conditions hold:
� qun ,vn (Gn) > 1

p(n)
� |pun ,vn (Gn)− qun ,vn (Gn)| < 1

3·p(n)2

� |Pr[A(µun ,vn (Gn)) = 1]− Pr[A(νun ,vn (Gn)) = 1]| > 1
p(n)

The fact that if Case 1 does not hold, then Case 2 does hold follows by breaking
the probability space according to the edge being revealed. The obvious details
follow:

Consider an algorithm A that distinguishes the simulator’s output from the real in-
teraction for infinitely many graphs G = (V, E), where the distinguishing gap is a
reciprocal of a polynomial in the size of G; i.e., εA(G) > 1/poly(|V |). Let requ,v(α)
denote the event that in transcript α, the verifier’s request equals (u, v). Then there
must be an edge (u, v) in G such that∣∣Pr[A(m∗(G)) = 1 & requ,v(m∗(G))]

− Pr
[

A
(
viewPG3C

V ∗ (G)
) = 1 & requ,v

(
viewPG3C

V ∗ (G)
)]∣∣ ≥ εA(G)

|E |
Note that

pu,v(G) = Pr[requ,v(m∗(G))]

qu,v(G) = Pr
[
requ,v

(
viewPG3C

V ∗ (G)
)]

Pr[A(µu,v(G)) = 1] = Pr[A(m∗(G)) = 1 | requ,v(m∗(G))]

Pr[A(νu,v(G)) = 1] = Pr
[

A
(
viewPG3C

V ∗ (G)
) = 1

∣∣ requ,v

(
viewPG3C

V ∗ (G)
)]

Thus, omitting G from some of the notations, we have

|pu,v · Pr[A(µu,v(G)) = 1]− qu,v · Pr[A(νu,v(G)) = 1]| ≥ εA(G)

|E |
Setting p(|V |) def= 2|E |

εA(G) (i.e., so that εA(G)
|E | = 2

p(|V |)) and using Eq. (4.4) (with p′ =
3p2), we get |pu,v − qu,v| < 1

3p(|V |)2 and

|qu,v · Pr[A(µu,v(G)) = 1]− qu,v · Pr[A(νu,v(G)) = 1]| > 1

p(|V |)
for all but finitely many of these G’s. Thus, both qu,v > 1/p(|V |) and

|Pr[A(µu,v(G)) = 1]− Pr[A(νu,v(G)) = 1]| > 1/p(|V |)
follow.

Case 1 can immediately be discarded because it leads easily to contradiction
(to the non-uniform secrecy of the commitment scheme): The idea is to use the
Request Obliviousness Sub-Claim appearing in the proof of Claim 4.4.8.1. Details
are omitted. We are thus left with Case 2.

We are now going to show that Case 2 also leads to contradiction. To this
end we shall construct a circuit family that will distinguish commitments to
different sequences of values. Interestingly, neither of these sequences will equal

236

4.4. ZERO-KNOWLEDGE PROOFS FOR NPNP

the sequence of commitments generated either by the prover or by the simulator.
Following is an overview of the construction. The nth circuit gets a sequence
of 3n commitments and produces from it a sequence of n commitments (part of
which is a subsequence of the input). When the input sequence to the circuit is
taken from one distribution, the circuit generates a subsequence corresponding
to the sequence of commitments generated by the prover. Likewise, when the
input sequence (to the circuit) is taken from the other distribution, the circuit will
generate a subsequence corresponding to the sequence of commitments generated
by the simulator. We stress that the circuit does so without knowing from which
distribution the input is taken. After generating an n-long sequence, the circuit
feeds it to V ∗, and depending on V ∗’s behavior the circuit may feed part of the
sequence to algorithm A (mentioned in Case 2). Following is a detailed description
of the circuit family.

Let us denote by ψn the (lexicographically first) 3-coloring of Gn = (Vn, En)
used by the prover, where Vn = {1, . . . , n}. We construct a circuit family, denoted
{An}, by letting An incorporate the interactive machine V ∗, the “distinguishing”
algorithm A, the graph Gn , the 3-coloring ψn , and the edge (un, vn), all being
as guaranteed in Case 2. The input to circuit An will be a sequence of commit-
ments to 3n values, each in {1, 2, 3}. The circuit will distinguish commitments to
a uniformly chosen 3n-long sequence from commitments to the fixed sequence
1n2n3n (i.e., the sequence consisting of n 1-values, followed by n 2-values, fol-
lowed by n 3-values). Following is a description of the operation of An . In this
description, for e ∈ {1, 2, 3}, we denote by C(e) the random variable obtained by
uniformly selecting s ∈ {0, 1}n and outputting Cs(e). We extend this notation to
sequences over {1, 2, 3} (i.e., C(e1, . . . , et) = C(e1), . . . ,C(et), where indepen-
dent randomization is used in each commitment).

Operation of An: On input y = (y1, . . . , y3n) (where each yi supposedly is a
commitment to an element of {1, 2, 3}), the circuit An proceeds as follows:

� An first selects uniformly a permutation π over {1, 2, 3} and computes φ(i) =
π (ψn(i)) for each i ∈ Vn .

Note that (φ(un), φ(vn)) is uniformly distributed among the six possible pairs
of distinct elements of {1, 2, 3}.

� For each i ∈ Vn \ {un, vn}, the circuit sets ci = yφ(i)·n−n+i (i.e., ci = yi if φ(i) = 1,
ci = yn+i if φ(i) = 2, and ci = y2n+i if φ(i) = 3).

Note that each y j is used at most once and that 2n + 2 of the y j ’s are not used
at all.

� The circuit uniformly selects sun , svn ∈ {0, 1}n and sets cun = Csun
(φ(un)) and cvn =

Csvn
(φ(vn)).

In case y is taken from the distribution C(1n2n3n), the sequence c1, . . . , cn just
formed is distributed exactly as the sequence of commitments sent by the prover
in Step P1. On the other hand, suppose that y is uniformly distributed among all
possible commitments to all possible 3n-long sequences (i.e., y is formed by uni-
formly selectingα ∈ {1, 2, 3}3n and outputting C(α)). Then the sequence c1, . . . , cn

just formed is distributed exactly as the sequence of commitments formed by the

237

ZERO-KNOWLEDGE PROOF SYSTEMS

simulator in Step 2, conditioned on vertices un and vn being assigned different
colors.

� The circuit initiates an execution of V ∗ by placing Gn on V ∗’s common-input tape,
placing a uniformly selected r ∈ {0, 1}q(n) on V ∗’s local random tape, and placing
the sequence (c1, . . . , cn) on V ∗’s incoming-message tape. The circuit reads the
outgoing message of V ∗, denoted m.

� If m �= (un, vn), then the circuit outputs 0.
� Otherwise (i.e., m = (un, vn)), the circuit invokes algorithm A and outputs

A
(
Gn, r, (c1, . . . , cn),

(
sun , φ(un), svn , φ(vn)

))
Clearly, the size of An is polynomial in n. We now evaluate the distinguishing
ability of An . Let us first consider the probability that circuit An will output 1 on
input a random commitment to the sequence 1n2n3n . The reader can easily verify
that the sequence (c1, . . . , cn) constructed by circuit An is distributed identically to
the sequence sent by the prover in Step P1. Hence, recalling some of the notations
introduced earlier, we get

Pr[An(C(1n2n3n)) = 1] = qun ,vn (Gn) · Pr
[
A
(
νun ,vn (Gn)

) = 1
]

On the other hand, we consider the probability that circuit An will output 1
on input a random commitment to a uniformly chosen 3n-long sequence over
{1, 2, 3}. The reader can easily verify that the sequence (c1, . . . , cn) constructed
by circuit An is distributed identically to the sequence (d1, . . . , dn) generated by
the simulator in Step 2, conditioned on eun �= evn . (Recall that di = C(ei).) Letting
T3n denote a random variable uniformly distributed over {1, 2, 3}3n , we get

Pr[An(C(T3n)) = 1] = p′un ,vn
(Gn) · Pr

[
A
(
µun ,vn (Gn)

) = 1
]

where p′un ,vn
(Gn) denotes the probability that in Step 3 of the simulation the

verifier will answer with (un, vn), conditioned on eun �= evn . Using the fact that
the proof of Claim 4.4.8.1 actually establishes that |Pr[M∗(Gn) �= ⊥]− 2

3 | is
negligible in n, it follows that |p′un ,vn

(Gn)− pun ,vn (Gn)| < 1
3·p(n)2 for all but at

most finitely many Gn’s.

Justification for the last assertion: Note that p′un ,vn
(Gn) and pun ,vn (Gn) refer to

the same event (i.e., V ∗’s request equals (un, vn)), but under a different conditional
space (i.e., either eun �= evn or M∗(Gn) �= ⊥). In fact, it is instructive to consider in
both cases the event that V ∗’s request equals (un, vn) and eun �= evn . Denoting the latter
event by X , we have14

14For further justification of the following equations, let X ′ denote the event that V ∗’s request equals (un, vn),

and observe that X is the conjunction of X ′ and eun �= evn . Then:
� By definition, p′un ,vn

(Gn) = Pr[X ′|eun �= evn], which equals Pr[X ′ & eun �= evn]/Pr[eun �= evn] =
Pr[X]/Pr[eun �= evn].

� By definition, pun ,vn (Gn) = Pr[X ′|M∗(Gn) �= ⊥]. Note that the conjunction of M∗(Gn) �= ⊥ and X ′

implies eun �= evn , and so the former conjunction implies X . On the other hand, X implies M∗(Gn) �= ⊥.
It follows that Pr[M∗(Gn) �= ⊥] · Pr[X ′|M∗(Gn) �= ⊥] = Pr[X ′ & M∗(Gn) �= ⊥] = Pr[X & M∗(Gn) �=
⊥] = Pr[X]. We conclude that pun ,vn (Gn) = Pr[X]/Pr[M∗(Gn) �= ⊥].

238

4.4. ZERO-KNOWLEDGE PROOFS FOR NPNP

� p′un ,vn
(Gn) = Pr[X |eun �= evn] = Pr[X]/Pr[eun �= evn]

� pun ,vn (Gn) = Pr[X |M∗(Gn) �= ⊥] = Pr[X]/Pr[M∗(Gn) �= ⊥]

Using Pr[eun �= evn] = 2
3 ≈ Pr[M∗(Gn) �= ⊥], where≈ denotes equality up to a neg-

ligible (in n) quantity, it follows that |p′un ,vn
(Gn)− pun ,vn (Gn)| is negligible (in n).

Using the conditions of case 2, and omitting Gn from the notation, it follows that∣∣p′un ,vn
− qun ,vn

∣∣ ≤ ∣∣p′un ,vn
− pun ,vn

∣∣+ ∣∣pun ,vn − qun ,vn

∣∣ < 2

3 · p(n)2

Combining the foregoing, we get

|Pr[An(C(1n2n3n)) = 1]− Pr[An(C(T3n)) = 1]|
= ∣∣qun ,vn · Pr

[
A
(
νun ,vn

) = 1
]− p′un ,vn

· Pr
[
A
(
µun ,vn

) = 1
]∣∣

≥ qun ,vn ·
∣∣Pr
[
A
(
νun ,vn

) = 1
]− Pr

[
A
(
µun ,vn

) = 1
]∣∣− ∣∣p′un ,vn

− qun ,vn

∣∣
>

1

p(n)
· 1

p(n)
− 2

3 · p(n)2
= 1

3 · p(n)2

Hence, the circuit family {An} distinguishes commitments to {1n2n3n} from com-
mitments to {T3n}. Combining an averaging argument with a hybrid argument, we
conclude that there exists a polynomial-size circuit family that distinguishes com-
mitments. This contradicts the non-uniform secrecy of the commitment scheme.

Having reached contradiction in both cases, Claim 4.4.8.2 follows. �

Combining Claims 4.4.8.1 and 4.4.8.2 (and using Exercise 9), the zero-knowledge
property of PG3C follows. This completes the proof of the proposition. �

4.4.2.4. Concluding Remarks

Construction 4.4.7 has been presented using a unidirectional commitment scheme. A
fundamental property of such schemes is that their secrecy is preserved in case (poly-
nomially) many instances are invoked simultaneously. The proof of Proposition 4.4.8
indeed took advantage on this property. We remark that Construction 4.4.4 also pos-
sesses this simultaneous secrecy property (although it is not unidirectional), and hence
the proof of Proposition 4.4.8 can be carried out if the commitment scheme used is
the one of Construction 4.4.4 (see Exercise 15). We recall that this latter construc-
tion constitutes a commitment scheme if and only if such schemes exist at all (since
Construction 4.4.4 is based on any one-way function, and the existence of one-way
functions is implied by the existence of commitment schemes).

Proposition 4.4.8 assumes the existence of a non-uniformly secure commitment
scheme. The proof of the proposition makes essential use of the non-uniform security
by incorporating instances in which the zero-knowledge property fails into circuits that
contradict the security hypothesis. We stress that the sequence of “bad” instances is
not necessarily constructible by efficient (uniform) machines. In other words, the zero-
knowledge requirement has some non-uniform flavor. A uniform analogue of zero-
knowledge would require only that it be infeasible to find instances in which a verifier
gains knowledge (and not that such instances do not exist at all). Using a uniformly

239

ZERO-KNOWLEDGE PROOF SYSTEMS

secure commitment scheme, Construction 4.4.7 can be shown to be uniformly zero-
knowledge.

By itself, Construction 4.4.7 has little practical value, since it offers a very mod-
erate acceptance gap (between inputs from inside and outside of the language). Yet,
repeating the protocol, on common input G = (V, E), for k · |E | times (and letting the
verifier accept only if all iterations are acceptance) will yield an interactive proof for
G3C with error probability bounded by e−k , where e ≈ 2.718 is the natural-logarithm
base. Namely, on common input G ∈ G3C , the verifier always accepts, whereas on
common input G �∈ G3C , the verifier accepts with probability bounded above by e−k

(no matter what the prover does). We stress that by virtue of the sequential-composition
lemma (Lemma 4.3.11), if these iterations are performed sequentially, then the result-
ing (strong) interactive proof is zero-knowledge as well. Setting k to be any super-
logarithmic function of |G| (e.g., k = |G|), the error probability of the resulting in-
teractive proof is negligible. We remark that it is unlikely that the interactive proof
that results by performing these k · |E | iterations in parallel is zero-knowledge; see
Section 4.5.4.

An important property of Construction 4.4.7 is that the prescribed prover (i.e., PG3C)
can be implemented in probabilistic polynomial time, provided that it is given as aux-
iliary input a 3-coloring of the common-input graph. As we shall see, this property is
essential for application of Construction 4.4.7 to the design of cryptographic protocols.

As mentioned earlier, the choice of G3C as a “bootstrapping” NP-complete lan-
guage is totally arbitrary. It is quite easy to design analogous zero-knowledge proofs
for other popular NP-complete languages using the underlying ideas presented in
Section 4.4.2.1 (i.e., the motivating discussion).

4.4.3. The General Result and Some Applications

The theoretical and practical importance of a zero-knowledge proof for Graph
3-Coloring (e.g., Construction 4.4.7) follows from the fact that it can be applied to
prove, in zero-knowledge, any statement having a short proof that can be efficiently
verified. More precisely, a zero-knowledge proof system for a specific NP-complete
language (e.g., Construction 4.4.7) can be used to present zero-knowledge proof sys-
tems for every language inNP .

Before presenting zero-knowledge proof systems for every language inNP , let us
recall some conventions and facts concerningNP . We first recall that every language
L ∈ NP is characterized by a binary relation R satisfying the following properties:

• There exists a polynomial p(·) such that for every (x, y) ∈ R, it holds that |y| ≤ p(|x |).
• There exists a polynomial-time algorithm for deciding membership in R.

• L = {x : ∃w s.t. (x, w) ∈ R}.
(Such a w is called a witness for the membership of x ∈ L .)

Actually, each language inNP can be characterized by infinitely many such relations.
Yet for each L ∈ NP , we fix and consider one characterizing relation, denoted RL .
Because G3C is NP-complete, we know that L is polynomial-time-reducible (i.e.,

240

4.4. ZERO-KNOWLEDGE PROOFS FOR NPNP

Karp-reducible) to G3C . Namely, there exists a polynomial-time-computable function
f such that x ∈ L if and only if f (x) ∈ G3C . Last, we observe that the standard
reduction of L to G3C , denoted fL , has the following additional property:

• There exists a polynomial-time-computable function, denoted gL , such that for every
(x, w) ∈ RL, it holds that gL (x, w) is a 3-coloring of fL (x).

We stress that this additional property is not required by the standard definition of a
Karp reduction. Yet it can be easily verified (see Exercise 16) that the standard reduction
fL (i.e., the composition of the generic reduction of L to S AT , the standard reductions
of S AT to 3S AT , and the standard reduction of 3S AT to G3C) does have such a
corresponding gL . Using these conventions, we are ready to “reduce” the construction
of zero-knowledge proofs forNP to a zero-knowledge proof system for G3C .

Construction 4.4.9 (A Zero-Knowledge Proof for a Language L ∈∈ NPNP):
� Common input: A string x (supposedly in L).
� Auxiliary input to the prover: A witness, w, for the membership of x ∈ L (i.e., a

string w such that (x, w) ∈ RL) .
� Local pre-computation: Each party computes G

def= fL (x). The prover computes
ψ

def= gL (x, w).
� Invoking a zero-knowledge proof for G3C : The parties invoke a zero-knowledge

proof on common input G. The prover enters this proof with auxiliary input ψ .

Clearly, if the prescribed prover in the G3C proof system can be implemented in prob-
abilistic polynomial time when given an NP-witness (i.e., a 3-coloring) as auxiliary
input, then the same holds for the prover in Construction 4.4.9.

Proposition 4.4.10: Suppose that the sub-protocol used in the last step of
Construction 4.4.9 is indeed an auxiliary-input zero-knowledge proof for G3C.
Then Construction 4.4.9 constitutes an auxiliary-input zero-knowledge proof
for L.

Proof: The fact that Construction 4.4.9 constitutes an interactive proof for L is
immediate from the validity of the reduction (and the fact that it uses an interactive
proof for G3C). At first glance it seems that the zero-knowledge property of
Construction 4.4.9 follows just as easily. There is, however, a minor issue that
one should not ignore: The verifier in the zero-knowledge proof for G3C invoked
in Construction 4.4.9 possesses not only the common-input graph G but also
the original common input x that reduces to G. This extra information might
have helped this verifier to extract knowledge in the G3C interactive proof if it
were not the case that this proof system is also zero-knowledge with respect to
the auxiliary input. Details follow.

Suppose we need to simulate the interaction of a machine V ∗ with the prover of
Construction 4.4.9, on common input x . Without loss of generality, we can assume
that machine V ∗ invokes an interactive machine V ∗∗ that interacts with the prover

241

ZERO-KNOWLEDGE PROOF SYSTEMS

of the G3C interactive proof, on common input G = fL(x), and has auxiliary
input x . Using the hypothesis that the G3C interactive proof is auxiliary-input
zero-knowledge, it follows that there exists a simulator M∗∗ that on input (G, x)
simulates the interaction of V ∗∗ with the G3C prover (on common input G and the
verifier’s auxiliary input x). Hence the simulator for Construction 4.4.9, denoted

M∗, operates as follows: On input x , the simulator M∗ computes G
def= fL(x) and

outputs M∗∗(G, x). The proposition follows. �

An alternative way of resolving the minor difficulty addressed earlier is to observe that
the function fL (i.e., the one induced by the standard reductions) can be inverted in
polynomial time (see Exercise 17). In any case, we immediately get the following:

Theorem 4.4.11: Suppose that there exists a commitment scheme satisfying the
(non-uniform) secrecy and unambiguity requirements. Then every language in
NP has an auxiliary-input zero-knowledge proof system. Furthermore, the pre-
scribed prover in this system can be implemented in probabilistic polynomial time
provided it gets the correspondingNP-witness as auxiliary input.

We remind the reader that the condition of the theorem is satisfied if (and only if)
there exist (non-uniformly) one-way functions: See Theorem 3.5.12 (asserting that one-
way functions imply pseudorandom generators), Proposition 4.4.5 (asserting that pseu-
dorandom generators imply commitment schemes), and Exercise 13 (asserting that
commitment schemes imply one-way functions).

Applications: An Example

A typical application of Theorem 4.4.11 is to enable one party to prove some property
of its secret without revealing the secret. For concreteness, consider a party, denoted
S, that makes a commitment to another party, denoted R. Suppose that at a later stage,
party S is willing to reveal partial information about the committed value but is not
willing to reveal all of it. For example, party S may want to reveal a single bit indicating
whether or not the committed value is larger than some value specified by R. If party S
sends only this bit, party R cannot know if the bit sent is indeed the correct one. Using
a zero-knowledge proof allows S to convince R of the correctness of the revealed bit
without yielding any additional knowledge. The existence of such a zero-knowledge
proof follows from Theorem 4.4.11 and the fact that the statement to be proved is of
NP type (and that S knows the correspondingNP-witness).

A reader who is not fully convinced of the validity of the foregoing claims (i.e., regarding
the applicability of Theorem 4.4.11) may want to formalize the story as follows: Let v
denote the value to which S commits, let s denote the randomness it uses in the commitment
phase, and let c

def= Cs(v) be the resulting commitment (relative to the commitment scheme
C). Suppose that S wants to prove to R that c is a commitment to a value greater than u. So
what S wants to prove (in zero-knowledge) is that there exist v and s such that c = Cs(v)
and v > u, where c and u are known to R. Indeed, this is an NP-type statement, and S
knows the corresponding NP-witness (i.e., (v, s)), since it has picked v and s by itself.

242

4.4. ZERO-KNOWLEDGE PROOFS FOR NPNP

Formally, we define a language

L
def= {(c, u) : ∃v, s s.t. c = Cs(v) and v > u}

Clearly, the language L is in NP , and the NP-witness for (c, u) ∈ L is a pair (v, s), as
shown. Hence, Theorem 4.4.11 can be applied.

Additional examples are presented in Exercise 18. Other applications will appear in
Volume 2.

We stress that because it is a general (and in some sense generic) result, the con-
struction underlying Theorem 4.4.11 cannot be expected to provide a practical solution
(especially in simple cases). Theorem 4.4.11 should be viewed as a plausibility argu-
ment: It asserts that there is a wide class of cryptographic problems (that amount to
proving the consistency of a secret-dependent action with respect to some public infor-
mation) that are solvable in principle. Thus, when faced with such a problem in practice,
one can infer that a solution does exist. This is merely a first step, to be followed by the
search for a practical solution.

Zero-Knowledge for Any Language in IPIP
Interestingly, the result of Theorem 4.4.11 can be extended “to the maximum,” in the
sense that under the same conditions every language having an interactive proof system
also has a zero-knowledge interactive proof system. Namely:

Theorem 4.4.12: Suppose that there exists a commitment scheme satisfying the
(non-uniform) secrecy and unambiguity requirements. Then every language in
IP has a zero-knowledge proof system.

We believe that this extension (of Theorem 4.4.11 to Theorem 4.4.12) does not have
much practical significance. Theorem 4.4.12 is proved by first converting the inter-
active proof for L into a public-coin interactive proof with perfect completeness (see
Section 4.2.3). In the latter proof system, the verifier is supposed to send random strings
(regardless of the prover’s previous messages) and decide whether or not to accept by
applying some polynomial-time predicate to the full transcript of the communication.
Thus, we can modify this proof system by letting the new prover send commitments
to the messages sent by the original (public-coin-system) prover, rather than sending
these messages in the clear. Once this “encrypted” interaction is completed, the prover
proves in zero-knowledge that the original verifier would have accepted the hidden
transcript (this is an NP statement). Thus, Theorem 4.4.12 is proved by applying
Theorem 4.4.11.

4.4.4. Second-Level Considerations

When presenting zero-knowledge proof systems for every language in NP , we made
no attempt to present the most efficient construction possible. Our main concern was
to present a proof that is as simple to explain as possible. However, once we know
that zero-knowledge proofs for NP exist, it is natural to ask how efficient they can

243

ZERO-KNOWLEDGE PROOF SYSTEMS

be. More importantly, we introduce and discuss a more refined measure of the “actual
security” of a zero-knowledge proof, called knowledge tightness.

In order to establish common ground for comparing zero-knowledge proofs, we have
to specify a desired measure of error probability for these proofs. An instructive choice,
used in the sequel, is to consider the complexity of zero-knowledge proofs with error
probability 2−k , where k is a parameter that may depend on the length of the common
input. Another issue to bear in mind when comparing zero-knowledge proofs concerns
the assumptions under which they are valid. Throughout this entire subsection we stick
to the assumption used thus far (i.e., the existence of one-way functions).

4.4.4.1. Standard Efficiency Measures

Natural and standard efficiency measures to be considered are as follows:

• The communication complexity of the proof. The most important communication mea-
sure is the round complexity (i.e., the number of message exchanges). The total number
of bits exchanged in the interaction is also an important consideration.

• The computational complexity of the proof (specifically, the number of elementary steps
taken by each of the parties).

Communication complexity seems more important than computational complexity as
long as the trade-off between them is “reasonable.”

To demonstrate these measures, we consider the zero-knowledge proof for G3C pre-
sented in Construction 4.4.7. Recall that this proof system has a very moderate accep-
tance gap, specifically 1/|E |, on common input graph G = (V, E). Thus, Construction
4.4.7 has to be applied sequentially k · |E | times in order to result in a zero-knowledge
proof with error probability e−k , where e ≈ 2.718 is the natural-logarithm base. Hence,
the round complexity of the resulting zero-knowledge proof is O(k · |E |), the bit com-
plexity is O(k · |E | · |V |2), and the computational complexity is O(k · |E | · poly(|V |)),
where the polynomial poly(·) depends on the commitment scheme in use.

Much more efficient zero-knowledge proof systems can be custom-made for spe-
cific languages in NP . Furthermore, even if one adopts the approach of reducing the
construction of zero-knowledge proof systems for NP languages to the construction
of a zero-knowledge proof system for a single NP-complete language, efficiency
improvements can be achieved. For example, using Exercise 20, one can present
zero-knowledge proofs for the Hamiltonian-cycle problem (again with error 2−k) having
round complexity O(k), bit complexity O(k · |V |2+ε), and computational complexity
O(k · |V |2+O(ε)), where ε > 0 is a constant depending on the desired security of the
commitment scheme (in Construction 4.4.7 and in Exercise 20 we chose ε = 1). Note
that complexities depending on the instance size are affected by reductions among
problems, and hence a fair comparison is obtained by considering the complexities for
the generic problem (i.e., Bounded Halting).

The round complexity of a protocol is a very important efficiency consideration, and
it is desirable to reduce it as much as possible. In particular, it is desirable to have zero-
knowledge proofs with constant numbers of rounds and negligible error probability.
This goal is pursued in Section 4.9.

244

4.4. ZERO-KNOWLEDGE PROOFS FOR NPNP

4.4.4.2. Knowledge Tightness

The foregoing efficiency measures are generic in the sense that they are applicable to
any protocol (independent of whether or not it is zero-knowledge). Because security
and efficiency often are convertible from one to the other (especially in this context),
one should consider refined measures of efficiency only in conjunction with a refined
measure of security.

In contrast to the generic (efficiency) measures, we consider a (security) measure
specific to zero-knowledge, called knowledge tightness. Intuitively, knowledge tight-
ness is a refinement of zero-knowledge that is aimed at measuring the “actual security”
of the proof system, namely, how much harder the verifier needs to work, when not
interacting with the prover, in order to compute something that it can compute after in-
teracting with the prover. Thus, knowledge tightness is the ratio between the (expected)
running time of the simulator and the running time of the verifier in the real interaction
simulated by the simulator. Note that the simulators presented thus far, as well as all
known simulators, operate by repeated random trials, and hence an instructive measure
of tightness should consider their expected running times (assuming they never err,
i.e., never output the special ⊥ symbol), rather than the worst case. (Alternatively,
one can consider the running time of a simulator that outputs ⊥ with probability at
most 1

2 .)

Definition 4.4.13 (Knowledge Tightness): Let t : N → N be a function. We say
that a zero-knowledge proof for language L has knowledge tightness t(·) if there
exists a polynomial p(·) such that for every probabilistic polynomial-time verifier
V ∗ there exists a simulator M∗ (as in Definition 4.3.2) such that for all sufficiently
long x ∈ L we have

TimeM∗(x)− p(|x |)
TimeV ∗(x)

≤ t(|x |)

where TimeM∗(x) denotes the expected running time of M∗ on input x, and
TimeV ∗(x) denotes the running time of V ∗ on common input x.

We assume a model of computation that allows one machine to emulate another
machine at the cost of only the running time of the latter machine. The purpose of
polynomial p(·) in the foregoing definition is to take care of generic overhead created
by the simulation (this is important only in case the verifier V ∗ is extremely fast). We
remark that the definition of zero-knowledge does not guarantee that the knowledge
tightness is polynomial. Yet all known zero-knowledge proofs, and, more generally, all
zero-knowledge properties demonstrated using a single simulator with black-box access
to V ∗, have polynomial knowledge tightness. In particular, Construction 4.3.8 (like the
construction in Exercise 20) has knowledge tightness 2, whereas Construction 4.4.7 has
knowledge tightness approximately 3

2 . We believe that knowledge tightness is a very
important efficiency consideration and that it is desirable to have it be a constant.

We comment that the notion of knowledge tightness is also instructive in reconciling
statements like the following:

245

ZERO-KNOWLEDGE PROOF SYSTEMS

1. Executing Construction 4.4.7 O(log n) times in parallel, where n is the number of vertices
in the graph, results in a zero-knowledge proof system.

2. Executing Construction 4.4.7 more than O(log n) times (say O((log n) · (log log n))
times) in parallel is not known to result in a zero-knowledge proof system. (Further-
more, it is unlikely that the resulting proof system can be shown to be zero-knowledge;
see Section 4.5.4.2.)

The gap between these conflicting statements seems less dramatic once one real-
izes that executing Construction 4.4.7 k(n) = O(log n) times in parallel results in a
zero-knowledge proof system of knowledge tightness approximately (3/2)k(n). (See
Exercise 19.)

4.5.∗ Negative Results

In this section we review some negative results concerning zero-knowledge. These re-
sults indicate that some of the shortcomings of the results and constructions presented in
previous sections are unavoidable. Most importantly, Theorem 4.4.11 asserts the exis-
tence of (computational) zero-knowledge interactive proof systems forNP , assuming
that one-way functions exist. Three questions arise naturally:

1. Unconditional results: Can one prove the existence of (computational) zero-knowledge
proof systems for NP without making any assumptions?

2. Perfect zero-knowledge: Can one present perfect zero-knowledge proof systems forNP
even under some reasonable assumptions?

3. The role of randomness and interaction: For example, can one present error-free zero-
knowledge proof systems for NP?

The answers to all these questions seem to be negative.
Another important question concerning zero-knowledge proofs is their preservation

under parallel composition. We shall show that, in general, zero-knowledge is not pre-
served under parallel composition (i.e., there exists a pair of zero-knowledge protocols
that when executed in parallel will leak knowledge, in a strong sense). Furthermore,
we shall consider some natural proof systems, obtained via parallel composition of
zero-knowledge proofs (e.g., the one of Construction 4.4.7), and indicate that it is
unlikely that the resulting composed proofs can be proved to be zero-knowledge.

Organization. We start by reviewing some results regarding the essential roles of both
randomness and interaction in Theorem 4.4.11 (i.e., the existence of zero-knowledge
proofs forNP). For these results we also present the relatively simple proof ideas (see
Section 4.5.1). Next, in Section 4.5.2, we claim that the existence of zero-knowledge
proofs for NP implies some form of average-case one-way hardness, and so the as-
sumption in Theorem 4.4.11 cannot be totally eliminated. In Section 4.5.3 we consider
perfect zero-knowledge proof systems, and in Section 4.5.4, the composition of zero-
knowledge protocols.

246

4.5.∗∗ NEGATIVE RESULTS

Jumping ahead, we mention that all the results presented in this section, except
Theorem 4.5.8 (i.e., the limitation of perfect zero-knowledge proofs), apply also to
zero-knowledge arguments as defined and discussed in Section 4.8.

4.5.1. On the Importance of Interaction and Randomness

We call a proof system trivial if it is a proof system for a language in BPP .
Because languages in BPP can be decided by the verifier without any interaction
with the prover, such proof systems are of no use (at least as far as cryptography is
concerned).

On the Triviality of Unidirectional Zero-Knowledge Proofs. A unidirectional proof
system is one in which a single message is sent (i.e., from the prover to the verifier).
We show that such proof systems, which constitute a special class of interactive proofs
that includes NP-type proofs as special cases, are too restricted to allow non-trivial
zero-knowledge proofs.

Theorem 4.5.1: Suppose that L has a unidirectional zero-knowledge proof
system. Then L ∈ BPP .

Proof Idea: Given a simulator M for the view of the honest verifier in this system
(as guaranteed by Definition 4.3.3), we construct a decision procedure for L . On
input x , we invoke M(x) and obtain (w, r), wherew supposedly is a message sent
by the prover and r ∈ {0, 1}� supposedly is the random tape of the verifier. We
uniformly select r ′ ∈ {0, 1}� and decide as the true verifier would have decided
upon receiving the message w and using r ′ as the content of its random tape.
The hypothesis that M is a good simulator is used in the analysis of the case
x ∈ L , whereas the soundness of the proof system (and the fact that r ′ is selected
independently of w) is used for the case x �∈ L . �

On the Essential Role of the Verifier’s Randomness. We next show that randomiza-
tion on the verifier’s part is necessary for the non-triviality of zero-knowledge proof
systems. It follows that a non-zero error probability is essential to the non-triviality
of zero-knowledge proof systems, because otherwise the verifier could always set its
random tape to be all zeros. (In fact, we can directly prove that a non-zero sound-
ness error is essential to the non-triviality of zero-knowledge proof systems and derive
Theorem 4.5.2 as a special case.15)

Theorem 4.5.2: Suppose that L has a zero-knowledge proof system in which the
verifier program is deterministic. Then L ∈ BPP .

15Again, given a simulator M for the view of the honest verifier in this system, we construct a decision
procedure for L . On input x , we invoke M(x) and accept if and only if the output corresponds to a transcript that
the honest verifier would have accepted. The hypothesis that M is a good simulator is used in the analysis of the
case x ∈ L , whereas the perfect soundness of the proof system is used for the case x �∈ L . Theorem 4.5.2 follows
because deterministic verifiers necessarily have zero soundness error.

247

ZERO-KNOWLEDGE PROOF SYSTEMS

Proof Idea: Because the verifier is deterministic, the prover can fully determine
each of its future messages. Thus the proof system can be converted into an equiv-
alent one in which the prover simply sends to the verifier the full transcript of
an execution in the original proof system. Observe that the completeness, sound-
ness, and zero-knowledge properties of the original proof system are preserved
and that the resulting proof system is unidirectional. We conclude by applying
Theorem 4.5.1. �

On the Essential Role of the Prover’s Randomness. Finally, we show that random-
ization on the prover’s part is also necessary for the non-triviality of zero-knowledge
proof systems.

Theorem 4.5.3: Suppose that L has an auxiliary-input zero-knowledge proof
system in which the prover program is deterministic. Then L ∈ BPP .

Note that the hypothesis (i.e., the type of zero-knowledge requirement) is stronger here.
(Computationally unbounded deterministic provers may suffice for the non-triviality
of the bare definition of zero-knowledge (i.e., Definition 4.3.2).)

Proof Idea: Suppose, without loss of generality, that the verifier is the party
sending the first message in this proof system. We consider a cheating verifier
that given an auxiliary input z1, . . . , zt sends zi as its i th message. The remaining
messages of this verifier are determined arbitrarily. We first observe that because
the prover is deterministic, in a real interaction the first i ≤ t responses of the
prover are determined by z1, . . . , zi . Thus, that must be essentially the case in
the simulation. We construct a decision procedure for L by emulating the in-
teraction of the prescribed prover with the prescribed verifier on common input
equal to the input to the procedure, denoted x . Toward this end, we uniformly
select and fix a random tape, denoted r , for the verifier. The emulation pro-
ceeds in iterations corresponding to the prover’s messages. To obtain the prover’s
next message, we first determine the next verifier message (by running the pro-
gram of the prescribed verifier on input x , coins r , and incoming messages as
recorded thus far). Next, we invoke the simulator on input (x, (z1, . . . , zi)), where
z1, . . . , zi are the verifier’s messages determined thus far, and so we obtain and
record the prover’s i th message. Our final decision is determined by the verifier’s
decision. �

4.5.2. Limitations of Unconditional Results

Recall that Theorem 4.4.12 asserts the existence of zero-knowledge proofs for all lan-
guages in IP , provided that non-uniformly one-way functions exist. In this subsection
we consider the question of whether or not this sufficient condition is also neces-
sary. The following results seem to provide some (yet, weak) indication in that direc-
tion. Specifically, the existence of zero-knowledge proof systems for languages
outside of BPP implies (very weak) forms of one-wayness. In a dual way, the

248

4.5.∗∗ NEGATIVE RESULTS

existence of zero-knowledge proof systems for languages that are hard to approxi-
mate (in some average-case sense) implies the existence of one-way functions (but not
of non-uniformly one-way functions). In the rest of this subsection we merely provide
precise statements of these results.

Non-Triviality of ZK Implies Weak Forms of One-Wayness. By the non-triviality of
zero-knowledge we mean the existence of zero-knowledge proof systems for languages
outside of BPP (as the latter have trivial zero-knowledge systems in which the prover
does nothing). Let us clarify what we mean by “weak forms of one-wayness.” Our
starting point is the definition of a collection of one-way functions (i.e., Definition 2.4.3).
Recall that these are collections of functions, indexed by some I ⊆ {0, 1}∗, that are easy
to sample and evaluate but typically hard to invert. That is, a typical function fi (for
i ∈ I) is hard to invert on a typical image. Here we require only that there exist functions
in the collection that are hard to invert on a typical image.

Definition 4.5.4 (Collection of Functions with One-Way Instances): A collec-
tion of functions { fi : Di → {0, 1}∗}i∈I is said to have one-way instances if there
exist three probabilistic polynomial-time algorithms I , D, and F such that the
following two conditions hold:

1. Easy to sample and compute: As in Definition 2.4.3.

2. Some functions are hard to invert: For every probabilistic polynomial-time algo-
rithm A′, every polynomial p(·), and infinitely many i ∈ I ,

Pr
[

A′(i, fi (Xi)) ∈ f −1
i (fi (Xi))

]
<

1

p(|i |)
where Xi = D(i).

Actually, because the hardness condition does not refer to the distribution induced by
I , we can omit I from the definition and refer only to the index set I . Such a collection
contains infinitely many functions that are hard to invert, but there may be no efficient
way of selecting such a function (and thus the collection is of no real value). Still, we
stress that the hardness condition has an average-case flavor; each of these infinitely
many functions is hard to invert in a strong probabilistic sense, not merely in the worst
case.

Theorem 4.5.5: If there exist zero-knowledge proofs for languages outside of
BPP , then there exist collections of functions with one-way instances.

We remark that the mere assumption that BPP ⊂ IP is not known to imply any
form of (average) one-wayness. Even the existence of a language in NP that is not
in BPP does not imply any form of average-case hardness; it merely implies the
existence of a function that is easy to compute but hard to invert in the worst case (see
Section 2.1).

249

ZERO-KNOWLEDGE PROOF SYSTEMS

ZK for “Hard” Languages Yields One-Way Functions. Our notion of hard languages
is the following:

Definition 4.5.6: We say that a language L is hard to approximate if there
exists a probabilistic polynomial-time algorithm S such that for every proba-
bilistic polynomial-time algorithm A, every polynomial p(·), and all sufficiently
large n’s,

Pr[A(Xn) = χL(Xn)] <
1

2
+ 1

p(n)

where Xn
def= S(1n), and χL is the characteristic function of the language L (i.e.,

χL(x) = 1 if x ∈ L, and χL(x) = 0 otherwise).

For example, if f is a one-way permutation and b is a hard-core predicate for f , then
the language L f

def= {x ∈ {0, 1}∗ : b(f −1(x)) = 1} ∈ NP is hard to approximate (under
the uniform distribution).

Theorem 4.5.7: If there exist zero-knowledge proofs for languages that are hard
to approximate, then there exist one-way functions.

We stress that the mere existence of languages that are hard to approximate is not known
to imply the existence of one-way functions (see Section 2.1).

4.5.3. Limitations of Statistical ZK Proofs

A theorem bounding the class of languages possessing perfect zero-knowledge proof
systems follows. In fact, the bound refers even to statistical (i.e., almost-perfect) zero-
knowledge proof systems (see Section 4.3.1.4). We start with some background. By
AMwe denote the class of languages having interactive proofs that proceed as follows.
First the verifier sends a random string to the prover, next the prover answers with some
string, and finally the verifier decides whether to accept or reject based on a deterministic
computation (depending on the common input and the two strings). It is believed that
coNP is not contained in AM (or, equivalently, NP is not contained in coAM).
Additional support for this belief is provided by the fact that coNP ⊆ AM implies the
collapse of the Polynomial-Time Hierarchy. In any case, the result we wish to mention
is the following:

Theorem 4.5.8: If there exists a statistical (almost-perfect) zero-knowledge proof
system for a language L, then L ∈ coAM. (In fact, L ∈ coAM ∩AM.)

The theorem remains valid under several relaxations of statistical zero-knowledge
(e.g., allowing the simulator to run in expected polynomial-time). Hence, if some
NP-complete language has a statistical zero-knowledge proof system, then coNP ⊆
AM, which is unlikely.

250

4.5.∗∗ NEGATIVE RESULTS

We stress that Theorem 4.5.8 does not apply to perfect (or statistical) zero-knowledge
arguments, defined and discussed in Section 4.8. Hence, there is no conflict between
Theorem 4.5.8 and the fact that under some reasonable complexity assumptions, perfect
zero-knowledge arguments do exist for every language inNP .

4.5.4. Zero-Knowledge and Parallel Composition

We present two negative results regarding parallel composition of zero-knowledge
protocols. These results are very different in terms of their conceptual standing: The
first result asserts the failure (in general) of the parallel-composition conjecture (i.e.,
the conjecture that running any two zero-knowledge protocols in parallel will result
in a zero-knowledge protocol), but says nothing about specific natural candidates. The
second result refers to a class of interactive proofs that contains several interesting
and natural examples, and it asserts that the members of this class cannot be proved
zero-knowledge using a general paradigm (known by the name “black-box simulation”).
The relation of the second result to this subsection follows from the fact that some of the
members in this class are obtained by parallel composition of natural zero-knowledge
proofs. We mention that it is hard to conceive an alternative way of demonstrating the
zero-knowledge property of protocols (other than by providing a black-box simulator).

We stress that by “parallel composition” we mean playing several copies of the pro-
tocol in parallel, where the prescribed (honest) parties execute each copy independently
of the other copies. Specifically, if a party is required to toss coins in a certain round,
then it will toss independent coins for each of the copies.

4.5.4.1. Failure of the Parallel-Composition Conjecture

As a warning about trusting unsound intuitions, we mention that for several years
(following the introduction of zero-knowledge proofs) some researchers insisted that
the following must be true:

Parallel-Composition Conjecture: Let P1 and P2 be two zero-knowledge pro-
vers. Then the prover that results from running both of them in parallel is also
zero-knowledge.

However, the parallel-composition conjecture is simply wrong.

Proposition 4.5.9: There exist two provers, P1 and P2, such that each is zero-
knowledge, and yet the prover that results from running both of them in parallel
yields knowledge (e.g., a cheating verifier can extract from this prover a solution
to a problem that is not solvable in polynomial time). Furthermore, the foregoing
holds even if the zero-knowledge property of each of the Pi ’s can be demonstrated
with a simulator that uses the verifier as a black box (as in Definition 4.5.10).

Proof Idea: Consider a prover, denoted P1, that sends “knowledge” to the ver-
ifier if and only if the verifier can answer some randomly chosen hard question
(i.e., we stress that the question is chosen by P1). Answers to such hard questions

251

ZERO-KNOWLEDGE PROOF SYSTEMS

look pseudorandom, yet P1 (which is not computationally bounded) can verify
their correctness. Now consider a second (computationally unbounded) prover,
denoted P2, that answers these hard questions. Each of these provers (by itself) is
zero-knowledge: P1 is zero-knowledge because it is unlikely that any probabilistic
polynomial-time verifier can answer its questions, whereas P2 is zero-knowledge
because its answers can be simulated by random strings. Yet, once they are played
in parallel, a cheating verifier can answer the question of P1 by sending it to P2 and
using the answer obtained from P2 to gain knowledge from P1. To turn this idea
into a proof we need to construct a hard problem with the previously postulated
properties. �

The foregoing proposition refutes the parallel-composition conjecture by means of
exponential-time provers. Assuming the existence of one-way functions, the parallel-
composition conjecture can also be refuted for probabilistic polynomial-time provers
(with auxiliary inputs). For example, consider the following two provers P1 and P2,
which make use of proofs of knowledge (see Section 4.7). Let C be a bit-commitment
scheme (which we know to exist provided that one-way functions exist). On common
input C(1n, σ), where σ ∈ {0, 1}, prover P1 proves to the verifier, in zero-knowledge,
that it knows σ . (To this end the prover is given as auxiliary input the coins used in
the commitment.) In contrast, on common input C(1n, σ), prover P2 asks the verifier
to prove that it knows σ , and if P2 is convinced, then it sends σ to the verifier. This
verifier employs the same proof-of-knowledge system used by the prover P1. Clearly,
each prover is zero-knowledge, and yet their parallel composition is not.

Similarly, using stronger intractability assumptions, one can also refute the parallel-
composition conjecture with respect to almost-perfect zero-knowledge (rather than
with respect to computational zero-knowledge). (Here we let the provers use a perfect
zero-knowledge, computationally sound proof of knowledge; see Section 4.8.)

4.5.4.2. Problems Occurring with “Natural” Candidates

By definition, to show that a prover is zero-knowledge, one has to present, for each
prospective verifier V ∗, a corresponding simulator M∗ (which simulates the interac-
tion of V ∗ with the prover). However, all known demonstrations of zero-knowledge
proceed by presenting one “universal” simulator that uses any prospective verifier V ∗

as a black box. In fact, these demonstrations use as a black box (or oracle) the next-
message function determined by the verifier program (i.e., V ∗), its auxiliary input, and
its random input. (This property of the simulators is implicit in our constructions of the
simulators in previous sections.) We remark that it is hard to conceive an alternative
way of demonstrating the zero-knowledge property (because a non-black-box usage of
a verifier seems to require some “reverse engineering” of its code). This difficulty is
greatly amplified in the context of auxiliary-input zero-knowledge.

Definition 4.5.10 (Black-Box Zero-Knowledge):
� Next-message function: Let B be an interactive Turing machine, and let x, z, and

r be strings representing a common input, an auxiliary input, and a random

252

4.5.∗∗ NEGATIVE RESULTS

input, respectively. Consider the function Bx,z,r (·) describing the messages sent by
machine B such that Bx,z,r (m) denotes the message sent by B on common input
x, auxiliary input z, random input r , and sequence of incoming messages m. For
simplicity, we assume that the output of B appears as its last message.

� Black-box simulator: We say that a probabilistic polynomial-time oracle machine
M is a black-box simulator for the prover P and the language L if for every
polynomial-time interactive machine B, every probabilistic polynomial-time or-
acle machine D, every polynomial p(·), all sufficiently large x ∈ L, and every
z, r ∈ {0, 1}∗,∣∣Pr

[
DBx,z,r (〈P, Br (z)〉(x)) = 1

]− Pr
[
DBx,z,r

(
M Bx,z,r (x)

) = 1
]∣∣ < 1

p(|x |)
where Br (z) denotes the interaction of machine B with auxiliary input z and
random input r .

� We say that P is black-box zero-knowledge if it has a black-box simulator.

Essentially, the definition says that a black-box simulator mimics the interaction of
prover P with any polynomial-time verifier B relative to any auxiliary input (i.e., z)
that B may get and any random input (i.e., r) that B may choose. The simulator
does so (efficiently) merely by using oracle calls to Bx,z,r (which specifies the next
message that B sends on input x , auxiliary input z, and random input r). The simula-
tion is indistinguishable from the true interaction even if the distinguishing algorithm
(i.e., D) is given access to the oracle Bx,z,r . An equivalent formulation is presented in
Exercise 21. Clearly, if P is black-box zero-knowledge, then it is zero-knowledge with
respect to auxiliary input (and has polynomially bounded knowledge tightness, see
Definition 4.4.13).

Theorem 4.5.11: Suppose that (P, V) is an interactive proof system with negli-
gible error probability for the language L. Further suppose that (P, V) has the
following properties:
� Constant round: There exists an integer k such that for every x ∈ L, on input x the

prover P sends at most k messages.
� Public coins: The messages sent by the verifier V are predetermined consecutive

segments of its random tape.
� Black-box zero-knowledge: The prover P has a black-box simulator (over the

language L).

Then L ∈ BPP .

The theorem also holds for computationally sound zero-knowledge proof systems de-
fined and discussed in Section 4.8.

We remark that both Construction 4.3.8 (zero-knowledge proof for Graph Isomor-
phism) and Construction 4.4.7 (zero-knowledge proof for Graph Colorability) are
constant-round, use public coins, and are black-box zero-knowledge (for the corre-
sponding language). However, they do not have negligible error probability. Yet, re-
peating each of these constructions polynomially many times in parallel yields an

253

ZERO-KNOWLEDGE PROOF SYSTEMS

interactive proof, with negligible error probability, for the corresponding language.16

Clearly the resulting proof systems are constant-round and use public coins. Hence,
unless the corresponding languages are in BPP , these resulting proof systems are not
black-box zero-knowledge.

Theorem 4.5.11 is sometimes interpreted as pointing to an inherent limitation of
interactive proofs with public coins (also known as Arthur-Merlin games). Such proofs
cannot be both round-efficient (i.e., have constant number of rounds and negligible
error) and black-box zero-knowledge (unless they are trivially so, i.e., the language
is in BPP). In other words, when constructing round-efficient zero-knowledge proof
systems (for languages not inBPP), one should use “private coins” (i.e., let the verifier
send messages depending upon, but not revealing, its coin tosses). This is indeed the
approach taken in Section 4.9.

4.6.∗ Witness Indistinguishability and Hiding

In light of the non-closure of zero-knowledge under parallel composition (see
Section 4.5.4), alternative “privacy” criteria that are preserved under parallel composi-
tion are of practical and theoretical importance. Two notions, called witness indistin-
guishability and witness hiding, that refer to the “privacy” of interactive proof systems
(of languages inNP) are presented in this section. Both notions seem weaker than zero-
knowledge, yet they suffice for some specific applications.

We remark that witness indistinguishability and witness hiding, like zero-knowledge,
are properties of the prover (and, more generally, of any interactive machine).

4.6.1. Definitions

In this section we confine ourselves to proof systems for languages inNP . Recall that
a witness relation for a language L ∈ NP is a binary relation RL that is polynomially
bounded (i.e., (x, y) ∈ RL implies |y| ≤ poly(|x |)), is polynomial-time-recognizable
and characterizes L by

L = {x : ∃y s.t. (x, y) ∈ RL}

For x ∈ L , any y satisfying (x, y) ∈ RL is called a witness (for the membership x ∈ L).
We let RL(x) denote the set of witnesses for the membership x ∈ L; that is, RL(x) def=
{y : (x, y) ∈ RL}.

16In fact, a super-logarithmic number of repetitions will suffice in the case of Construction 4.3.8, as well as
for a modified version of Construction 4.4.7. The modified proof system invokes Construction 4.4.7 on the graph
resulting from the input graph by applying a special polynomial-time reduction that is guaranteed by the so-called
PCP theorem. Specifically, this reduction reduces G3C to itself, so that non-members of G3C are mapped into
graphs for which every three-way partition of the vertex set has at least a constant fraction of violating edges (i.e.,
edges with both endpoints on the same side of the partition). Let ε > 0 be the constant guaranteed by the PCP
theorem. Then the resulting proof system has perfect completeness and soundness error at most 1− ε, and so a
super-logarithmic number of repetitions will yield negligible error probability.

254

4.6.∗∗ WITNESS INDISTINGUISHABILITY AND HIDING

4.6.1.1. Witness Indistinguishability

Loosely speaking, an interactive proof for a language L ∈ NP is witness-independent
(resp., witness-indistinguishable) if the verifier’s view of the interaction with the prover
is statistically independent (resp., “computationally independent”) of the auxiliary in-
put of the prover. Actually, we shall specialize the requirement to the case in which the
auxiliary input constitutes anNP-witness to the common input; namely, for a witness
relation RL of the language L ∈ NP , we consider only interactions on common input
x ∈ L , where the prover is given an auxiliary input in RL(x). By saying that the view
is computationally independent of the witness, we mean that for every two choices
of auxiliary inputs, the resulting views are computationally indistinguishable. Analo-
gously to the discussion in Section 4.3, we obtain equivalent definitions by considering
the verifier’s view of the interaction with the prover or the verifier’s output after such
an interaction. In the actual definition, we adopt the latter (i.e., “output”) formulation
and use the notation of Definition 4.3.10.

Definition 4.6.1 (Witness Indistinguishability/Independence): Let (P, V), L ∈
NP and V ∗ be as in Definition 4.3.10, and let RL be a fixed witness relation
for the language L. We say that (P, V) is witness-indistinguishable for RL if
for every probabilistic polynomial-time interactive machine V ∗ and every two
sequences W 1 = {w1

x}x∈L and W 2 = {w2
x}x∈L , such that w1

x , w
2
x ∈ RL(x), the

following two ensembles are computationally indistinguishable:

� {〈P(w1
x), V ∗(z)〉(x)}x∈L ,z∈{0,1}∗

� {〈P(w2
x), V ∗(z)〉(x)}x∈L ,z∈{0,1}∗

Namely, for every probabilistic polynomial-time algorithm D, every polynomial
p(·), all sufficiently long x ∈ L, and all z ∈ {0, 1}∗, it holds that∣∣Pr

[
D
(
x, z,

〈
P
(
w1

x

)
, V ∗(z)

〉
(x)
) = 1

]
−Pr

[
D
(
x, z,

〈
P
(
w2

x

)
, V ∗(z)

〉
(x)
) = 1

]∣∣ < 1

p(|x |)
We say that (P, V) is witness-independent for RL if the foregoing ensembles
are identically distributed. Namely, for every x ∈ L, every w1

x , w
2
x ∈ RL(x), and

z ∈ {0, 1}∗, the random variables 〈P(w1
x), V ∗(z)〉(x) and 〈P(w2

x), V ∗(z)〉(x) are
identically distributed.

In particular, z may equal (w1
x , w

2
x). A few additional comments are in order:

• Proof systems in which the prover ignores its auxiliary input are (trivially) witness-
independent. In particular, exponential-time provers can afford to ignore their auxiliary
input (without any decrease in the probability that they will convince the verifier) and so
can be trivially witness-independent. Yet probabilistic polynomial-time provers cannot
afford to ignore their auxiliary input (since otherwise they become useless). Hence,
for probabilistic polynomial-time provers (for languages outside BPP), the witness-
indistinguishability requirement may be non-trivial.

255

ZERO-KNOWLEDGE PROOF SYSTEMS

• Any zero-knowledge proof system for a language in NP is witness-indistinguishable
(since the the distribution corresponding to each witness can be approximated by the
same simulator; see details later). Likewise, perfect zero-knowledge proofs are witness-
independent.

• On the other hand, witness indistinguishability does NOT imply zero-knowledge. In
particular, any proof system for a language having unique witnesses is trivially witness-
indistinguishable, but may not be zero-knowledge. For example, for a one-way permuta-
tion f , consider the (“unnatural”) witness relation {(f (w), w) : w ∈ {0, 1}∗}, character-
izing the set of all strings, and a prover that on common input f (w) and auxiliary input
w sends w to the verifier.

• It is relatively easy to see that witness indistinguishability and witness independence are
preserved under sequential composition. In the next subsection, we show that they are
also preserved under parallel composition.

An Augmented Notion. An augmented notion of witness indistinguishability requires
that whenever the common inputs to the proof system are computationally indistinguish-
able, so are the corresponding views of the verifier. That is, we augment Definition 4.6.1
as follows:

Definition 4.6.2 (Strong Witness Indistinguishability): Let (P, V) and all other
notation be as in Definition 4.6.1. We say that (P, V) is strongly witness-
indistinguishable for RL if for every probabilistic polynomial-time interac-
tive machine V ∗ and for every two probability ensembles {(X 1

n, Y 1
n , Z 1

n)}n∈N and
{(X 2

n, Y 2
n , Z 2

n)}n∈N, such that each (Xi
n, Y i

n , Zi
n) ranges over (RL × {0, 1}∗)∩

({0, 1}n × {0, 1}∗ × {0, 1}∗), the following holds:

If {(X1
n, Z1

n)}n∈N and {(X2
n, Z2

n)}n∈N are computationally indistinguishable, then
so are {〈P(Y 1

n), V ∗(Z1
n)〉(X1

n)}n∈N and {〈P(Y 2
n), V ∗(Z2

n)〉(X2
n)}n∈N.

We stress that {(X 1
n, Y 1

n , Z 1
n)}n∈N and {(X 2

n, Y 2
n , Z 2

n)}n∈N are not required to be compu-
tationally indistinguishable; such a requirement would trivialize the definition at least
as far as probabilistic polynomial-time provers are concerned. Definition 4.6.1 can be
obtained from Definition 4.6.2 by considering the special case in which X 1

n and X 2
n are

identically distributed (and observing that no computational requirement was placed
on the {(Xi

n, Y i
n , Zi

n)}n∈N’s). On the other hand, assuming that one-way permutations
exist, witness indistinguishability does not imply strong witness indistinguishability
(see Exercise 25). Still, one can easily show that any zero-knowledge proof system for
a language inNP is strongly witness-indistinguishable.

Proposition 4.6.3: Let (P, V) be an auxiliary-input zero-knowledge proof system
for a language L ∈ NP . Then (P, V) is strongly witness-indistinguishable.

Proof Idea: Using the simulator M∗, guaranteed for V ∗, we obtain that Ei def=
{〈P(Y i

n), V ∗(Zi
n)〉(Xi

n)}n∈N and Si def= {M∗(Xi
n, Zi

n)}n∈N are computationally
indistinguishable for both i’s. Thus, if E1 and E2 are not computationally

256

4.6.∗∗ WITNESS INDISTINGUISHABILITY AND HIDING

indistinguishable, then S1 and S2 are not computationally indistinguishable. Incor-
porating M∗ into the distinguisher, it follows that {(X 1

n, Z 1
n)}n∈N and {(X 2

n, Z 2
n)}n∈N

are not computationally indistinguishable either. �

4.6.1.2. Witness-Hiding

We now turn to the notion of witness-hiding. Intuitively, a proof system for a language
inNP is witness-hiding if after interacting with the prover it is still infeasible for the
verifier to find anNP-witness for the common input. Clearly, such a requirement can
hold only if it is infeasible to find witnesses from scratch. Because eachNP language
has instances for which witness-finding is easy, we must consider the task of witness-
finding for specially selected hard instances. This leads to the following definitions.

Definition 4.6.4 (Distribution of Hard Instances): Let L ∈ NP , and let RL

be a witness relation for L. Let X
def= {Xn}n∈N be a probability ensemble such

that Xn ranges over L ∩ {0, 1}n. We say that X is hard for RL if for every
probabilistic polynomial-time (witness-finding) algorithm F, every polynomial
p(·), all sufficiently large n’s, and all z ∈ {0, 1}poly(n),

Pr[F(Xn, z) ∈ RL(Xn)] <
1

p(n)

For example, if f is a (length-preserving and non-uniformly) one-way function, then
the probability ensemble { f (Un)}n∈N is hard for the witness relation {(f (w), w) : w ∈
{0, 1}∗}, where Un is uniform over {0, 1}n .

Definition 4.6.5 (Witness-Hiding): Let (P, V), L ∈ NP , and RL be as in the
foregoing definitions. Let X = {Xn}n∈N be a hard-instance ensemble for RL. We
say that (P, V) is witness-hiding for the relation RL under the instance ensemble
X if for every probabilistic polynomial-time machine V ∗, every polynomial p(·),
all sufficiently large n’s, and all z ∈ {0, 1}∗,

Pr[〈P(Yn), V ∗(z)〉(Xn) ∈ RL(Xn)] <
1

p(n)

where Yn is arbitrarily distributed over RL(Xn).

We remark that the relationship between the two privacy criteria (i.e., witness indistin-
guishability and witness-hiding) is not obvious. Yet zero-knowledge proofs (for NP)
are also witness-hiding (for any corresponding witness relation and any hard distribu-
tion). We mention a couple of extensions of Definition 4.6.5:

1. One can say that (P, V) is universally witness-hiding for RL if the proof system (P, V)
is witness-hiding for RL under every ensemble of hard instances for RL . (Alterna-
tively, one can require only that (P, V) be witness-hiding for RL under every efficiently
constructible17 ensemble of hard instances for RL .)

17See Definition 3.2.5.

257

ZERO-KNOWLEDGE PROOF SYSTEMS

2. Variants of the foregoing definitions, in which the auxiliary input z is replaced by a
distribution Zn that may depend on Xn , are of interest too. Here we consider en-
sembles {(Xn, Zn)}n∈N, where Xn ranges over L ∩ {0, 1}n . Such an ensemble is hard
for RL if for every probabilistic polynomial-time algorithm F , the probability that
F(Xn, Zn) ∈ RL (Xn) is negligible. The system (P, V) is witness-hiding for RL under
{(Xn, Zn)}n∈N if for every probabilistic polynomial-time verifier V ∗, the probability that
〈P(Yn), V ∗(Zn)〉(Xn) ∈ RL (Xn) is negligible.

4.6.2. Parallel Composition

In contrast to zero-knowledge proof systems, witness-indistinguishable proofs offer
some robustness under parallel composition. Specifically, parallel composition of
witness-indistinguishable proof systems results in a witness-indistinguishable system,
provided that the original prover is probabilistic polynomial-time.

Lemma 4.6.6 (Parallel-Composition Lemma for Witness Indistinguish-
ability): Let L ∈ NP and RL be as in Definition 4.6.1, and suppose that P
is probabilistic polynomial-time and (P, V) is witness-indistinguishable (resp.,
witness-independent) for RL. Let Q(·) be a polynomial, and let PQ denote a
program that on common input x1, . . . , xQ(n) ∈ {0, 1}n and auxiliary input
w1, . . . , wQ(n) ∈ {0, 1}∗ invokes P in parallel Q(n) times, so that in the i th copy
P is invoked on common input xi and auxiliary input wi . Then PQ is witness-
indistinguishable (resp., witness-independent) for

RQ
L

def= {(x, w) : ∀i, (xi , wi) ∈ RL}
where x = (x1, . . . , xm) and w = (w1, . . . , wm), so that m = Q(n) and |xi | = n
for each i .

Proof Sketch: Both the computational and information-theoretic versions fol-
low by a hybrid argument. We concentrate on the computational version. To avoid
cumbersome notation, we consider a generic n for which the claim of the lemma
fails. (By contradiction, there must be infinitely many such n’s, and a precise argu-
ment will actually handle all these n’s together.) Namely, suppose that by using a
verifier program V ∗

Q it is feasible to distinguish the witnessesw1 = (w1
1, . . . , w

1
m)

and w2 = (w2
1, . . . , w

2
m) used by PQ in an interaction on common input x ∈

Lm . Then for some i , the program V ∗
Q also distinguishes the hybrid witnesses

h
(i) = (w1

1, . . . , w
1
i , w

2
i+1, . . . , w

2
m) and h

(i+1) = (w1
1, . . . , w

1
i+1, w

2
i+2, . . . , w

2
m).

Rewrite h
(i) = (w1, . . . , wi , w

2
i+1, wi+2, . . . , wm) and h

(i+1) = (w1, . . . , wi , w
1
i+1,

wi+2, . . . , wm), where w j
def= w1

j if j ≤ i , and w j
def= w2

j if j ≥ i + 2. We derive a
contradiction by constructing a verifier V ∗ that distinguishes (the witnesses used
by P in) interactions with the original prover P . Details follow.

The program V ∗ incorporates the programs P and V ∗
Q and proceeds by inter-

acting with the actual prover P and simulating m − 1 other interactions with (a
copy of program) P . The real interaction with P is viewed as the i + 1 copy in

258

4.6.∗∗ WITNESS INDISTINGUISHABILITY AND HIDING

an interaction of V ∗
Q (with PQ), whereas the simulated interactions are associated

with the other copies. Specifically, in addition to the common input x , machine V ∗

gets the appropriate i and the sequences x and (w1, . . . , wi , wi+2, . . . , wm) as part
of its auxiliary input. For each j �= i + 1, machine V ∗ will use x j as common input
and w j as auxiliary input to the j th copy of P . Machine V ∗ invokes V ∗

Q on com-
mon input x and provides it an interface to a virtual interaction with PQ . The i + 1
component of a message α = (α1, . . . , αm) sent by V ∗

Q is forwarded to the prover
P , and all other components are kept for the simulation of the other copies. When
P answers with a message β, machine V ∗ computes the answers for the other
copies of P (by feeding the program P the corresponding auxiliary input and the
corresponding sequence of incoming messages). It follows that V ∗ can distinguish
the case in which P uses the witnessw1

i+1 from the case in which P usesw2
i+1. �

This proof easily extends to the case in which several proof systems are executed
concurrently in a totally asynchronous manner (i.e., sequential and parallel executions
being two special cases).18 The proof also extends to strong witness indistinguishability.
Thus we have the following:

Lemma 4.6.7 (Parallel Composition for Strong Witness Indistinguishability):
Let L ∈ NP , RL , (P, V), Q, RQ

L , and PQ be as in Lemma 4.6.6. Then if P is
strongly witness-indistinguishable (for RL), then so is PQ (for RQ

L).

4.6.3. Constructions

In this section we present constructions of witness-indistinguishable and witness-hiding
proof systems.

4.6.3.1. Constructions of Witness-Indistinguishable Proofs

Using the parallel-composition lemma (Lemma 4.6.7) and the observation that zero-
knowledge proofs are (strongly) witness-indistinguishable, we derive the following:

Theorem 4.6.8: Assuming the existence of (non-uniformly) one-way functions,
every language inNP has a constant-round (strongly) witness-indistinguishable
proof system with negligible error probability. In fact, the error probability can
be made exponentially small.

We remark that no such result is known for zero-knowledge proof systems. Namely, the
known proof systems forNP variously

• are not constant-round (e.g., Construction 4.4.9), or

• have noticeable error probability (e.g., Construction 4.4.7), or

18That is, executions of polynomially many instances of the proof system are arbitrarily interleaved (in a
manner determined by the adversary); see suggestions for further reading in Section 4.12.2.

259

ZERO-KNOWLEDGE PROOF SYSTEMS

• require stronger intractability assumptions (see Section 4.9.1), or

• are only computationally sound (see Section 4.9.2).

4.6.3.2. Constructions of Witness-Hiding Proofs

Witness-indistinguishable proof systems are not necessarily witness-hiding. For ex-
ample, any language with unique witnesses has a proof system that yields the unique
witness (and so may fail to be witness-hiding), yet this proof system is trivially witness-
independent. On the other hand, for some relations, witness indistinguishability implies
witness-hiding, provided that the prover is probabilistic polynomial-time. For example:

Proposition 4.6.9: Let {(f 0
i , f 1

i) : i ∈ I } be a collection of (non-uniform) claw-
free functions, and let

R
def= {(x, w) : w = (σ, r) ∧ x = (i, x ′) ∧ x ′ = f σi (r)}

Suppose that P is a probabilistic polynomial-time interactive machine that is
witness-indistinguishable for R. Then P is also witness-hiding for R under the
distribution generated by setting i = I (1n) and x ′ = f 0

i (D(0, i)), where I and D
are as in Definition 2.4.6.

By a collection of non-uniform claw-free functions we mean that even non-uniform
families of circuits {Cn} fail to form claws on input distribution I (1n), except with
negligible probability. We remark that the foregoing proposition does not relate to the
purpose of interacting with P (e.g., whether P is proving membership in a language,
knowledge of a witness, and so on).

Proof Idea: The proposition is proved by contradiction. Suppose that some prob-
abilistic polynomial-time interactive machine V ∗ finds witnesses after interacting
with P . By the witness indistinguishability of P , it follows that V ∗ is performing
equally well regardless of whether the witness used by P is of the form (0, ·) or
is of the form (1, ·). Combining the programs V ∗ and P with the algorithm D,
we derive a claw-forming algorithm (and hence a contradiction). Specifically, the
claw-forming algorithm, on input i ∈ I , uniformly selects σ ∈ {0, 1}, randomly
generates r = D(σ, i), computes x = (i, f σi (r)), and emulates an interaction of
V ∗ with P on common input x and auxiliary input (σ, r) to P . By the witness
indistinguishability of P , the output of V ∗ is computationally independent of
the value of σ . Therefore, if on common input x , machine V ∗ outputs a witness
w ∈ R(x), then, with probability approximately 1

2 , we have w = (1− σ, r ′), and
a claw is formed (since f σi (r) = f 1−σ

i (r ′)). Finally, observe that we need to ana-
lyze the performance of the claw-forming algorithm on input distribution I (1n),
and in this case the common input in the emulation of (P, V ∗) is distributed as in
the hypothesis of the proposition. �

Furthermore, everyNP-relation can be “slightly modified” so that, for the modified
relation, witness indistinguishability implies witness hiding. Given a relation R, the

260

4.6.∗∗ WITNESS INDISTINGUISHABILITY AND HIDING

modified relation, denoted R2, is defined by

R2
def= {((x1, x2), w) : |x1| = |x2| ∧ ∃i s.t. (xi , w) ∈ R} (4.5)

Namely, w is a witness under R2 for the instance (x1, x2) if and only if w is a witness
under R for either x1 or x2.

Proposition 4.6.10: Let R and R2 be as before, and let P be a probabilistic
polynomial-time interactive machine that is witness-indistinguishable for R2.
Then P is witness-hiding for R2 under every distribution of pairs of hard instances
induced by an efficient algorithm that randomly selects pairs in R. That is:

Let S be a probabilistic polynomial-time algorithm that on input 1n outputs
(x, w) ∈ R, so that |x | = n and Xn denotes the distribution induced on the first ele-
ment in the output of S(1n). Suppose that {Xn}n∈N is an ensemble of hard instances
for R. Then P is witness-hiding under the ensemble {(X (1)

n , X (2)
n)}n∈N, where X (1)

n

and X (2)
n denote two independent copies of Xn.

Proof Idea: Let S and {Xn}n∈N be in the hypothesis. Suppose that some interac-
tive machine V ∗ finds witnesses, with non-negligible probability (under the fore-
going distribution), after interacting with P . By the witness indistinguishability
of P it follows that V ∗ is performing equally well regardless of whether the wit-
ness w used by P on common input (x1, x2) satisfies (x1, w) ∈ R or (x2, w) ∈ R.
Combining the programs V ∗ and P with the algorithm S, we derive an algorithm,
denoted F∗, that finds witnesses for R (under the distribution Xn): On input
x ∈ L , algorithm F∗ generates at random (x ′, w′) = S(1|x |) and sets x = (x, x ′)
with probability 1

2 , and x = (x ′, x) otherwise. Algorithm F∗ emulates an inter-
action of V ∗ with P on common input x and auxiliary input w′ to P , and when
V ∗ outputs a witness w, algorithm F∗ checks whether or not (x, w) ∈ R. By the
witness indistinguishability of P , the verifier cannot tell the case in which P uses
a witness to the first element of x from the case in which it uses a witness to
the second. Also, by construction of F∗, if the input to F∗ is distributed as Xn ,
then the proof system is emulated on common input (X (1)

n , X (2)
n), where X (1)

n and
X (2)

n denote two independent copies of Xn . Thus, by the foregoing hypothesis, V ∗

finds a witness for x with non-negligible probability (taken over the distribution
of x and the random choices of F∗). It follows that {Xn}n∈N is not hard for R. �

4.6.4. Applications

Applications of the notions presented in this section are scattered in various places in
this book. In particular, strong witness-indistinguishable proof systems are used in the
construction of constant-round zero-knowledge arguments forNP (see Section 4.9.2),
witness-independent proof systems are used in the zero-knowledge proof for Graph
Non-Isomorphism (see Section 4.7.4.3), and witness-hiding proof systems are used for
the efficient identification scheme based on factoring (in Section 4.7.5).

261

ZERO-KNOWLEDGE PROOF SYSTEMS

4.7.∗ Proofs of Knowledge

This section addresses the concept of “proofs of knowledge.” Loosely speaking, these
are proofs in which the prover asserts “knowledge” of some object (e.g., a 3-coloring
of a graph) and not merely its existence (e.g., the existence of a 3-coloring of the graph,
which in turn implies that the graph is in the language G3C). But what is meant by
saying that a machine knows something? Indeed, the main thrust of this section is to
address this question. Before doing so, we point out that “proofs of knowledge,” and in
particular zero-knowledge “proofs of knowledge,” have many applications to the design
of cryptographic schemes and cryptographic protocols. Some of these applications
are discussed in Section 4.7.4. Of special interest is the application to identification
schemes, which is discussed in Section 4.7.5. Finally, in Section 4.7.6 we introduce the
notion of strong proofs of knowledge.

4.7.1. Definition

4.7.1.1. A Motivating Discussion

What does it mean to say that a MACHINE knows something? Any standard dictionary
suggests several meanings for the verb to know, and most meanings are phrased with
reference to awareness, a notion that is certainly inapplicable in our context. We must
look for a behavioristic interpretation of the verb to know. Indeed, it is reasonable to
link knowledge with ability to do something, be it (at the least) the ability to write down
whatever one knows. Hence, we shall say that a machine knows a stringα if it can output
the string α. But this seems total nonsense: A machine has a well-defined output – either
the output equals α or it does not. So what can be meant by saying that a machine can
do something? Loosely speaking, it means that the machine can be easily modified so
that it will do whatever is claimed. More precisely, it means that there exists an efficient
machine that, using the original machine as a black box, outputs whatever is claimed.

So much for defining the “knowledge of machines.” Yet, whatever a machine knows
or does not know is “its own business.” What can be of interest and reference to the
outside is the question of what can be deduced about the knowledge of a machine after
interacting with it. Hence, we are interested in proofs of knowledge (rather than in mere
knowledge).

For the sake of simplicity, let us consider a concrete question: How can a machine
prove that it knows a 3-coloring of a graph? An obvious way is simply to send the
3-coloring to the verifier. Yet we claim that applying Construction 4.4.7 (i.e., the zero-
knowledge proof system for G3C) sufficiently many times results in an alternative way
of proving knowledge of a 3-coloring of the graph.

Loosely speaking, we say that an interactive machine V constitutes a verifier for
knowledge of 3-coloring if the probability that the verifier is convinced by a machine
P to accept the graph G is inversely proportional to the difficulty of extracting a
3-coloring of G when using machine P as a black box. Namely, the extraction of
the 3-coloring is done by an oracle machine, called an extractor, that is given access

262

4.7.∗∗ PROOFS OF KNOWLEDGE

to a function specifying the behavior of P (i.e., the messages it sends in response to
particular messages it may receive). We require that the (expected) running time of the
extractor, on input G and with access to an oracle specifying P’s messages, be inversely
related (by a factor polynomial in |G|) to the probability that P convinces V to accept G.
In case P always convinces V to accept G, the extractor runs in expected polynomial
time. The same holds in case P convinces V to accept with noticeable probability.
(We stress that the latter special cases do not suffice for a satisfactory definition; see
advanced comment in Section 4.7.1.4.)

4.7.1.2. Technical Preliminaries

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a binary relation. Then R(x) def= {s : (x, s) ∈ R} and L R
def=

{x : ∃s s.t. (x, s) ∈ R}. If (x, s) ∈ R, then we call s a solution for x . We say that R
is polynomially bounded if there exists a polynomial p such that |s| ≤ p(|x |) for all
(x, s) ∈ R. We say that R is anNP-relation if R is polynomially bounded and, in addi-
tion, there exists a polynomial-time algorithm for deciding membership in R (indeed, it
follows that L R ∈ NP). In the sequel, we confine ourselves to polynomially bounded
relations. In fact, all the applications presented in this book refer toNP-relations.

We wish to be able to consider in a uniform manner all potential provers, without
making distinctions based on their running time, internal structure, and so forth. Yet
we observe that these interactive machines can be given auxiliary input that will enable
them to “know” and to prove more. Likewise, they may have the good fortune to select a
random input that will be more enabling than another. Hence, statements concerning the
knowledge of the prover refer not only to the prover’s program but also to the specific
auxiliary and random inputs it receives. Therefore, we fix an interactive machine as
well as all the inputs (i.e., the common input, the auxiliary input, and the random
input) to this machine. For such a prover + inputs template, we consider both the
acceptance probability (of the verifier) when interacting with this template and the use
of this template as an oracle to a “knowledge extractor.” This motivates the following
definition.

Definition 4.7.1 (Message-Specification Function): Denote by Px,y,r (m) the
message sent by machine P on common input x, auxiliary input y, and random
input r , after receiving messages m. The function Px,y,r is called the message-
specification function of machine P with common input x, auxiliary input y, and
random input r .

An oracle machine with access to the function Px,y,r will represent the knowledge of
machine P on common input x , auxiliary input y, and random input r . This oracle
machine, called the knowledge extractor, will try to find a solution to x (i.e., an s ∈
R(x)). The running time of the extractor will be required to be inversely related to
the corresponding acceptance probability (of the verifier when interacting with P on
common input x and when P has auxiliary input y and random input r .)

263

ZERO-KNOWLEDGE PROOF SYSTEMS

4.7.1.3. Knowledge Verifiers

Now that all the machinery is ready, we present the definition of a system for proofs of
knowledge. Actually, the definition is a generalization (to be motivated by the subse-
quent applications) in which we allow an error parameter specified by the function κ .
At first reading, one can set the function κ to be identically zero.

Definition 4.7.2 (System for Proofs of Knowledge): Let R be a binary relation
and κ : N → [0, 1]. We say that an interactive function V is a knowledge verifier
for the relation R with knowledge error κ if the following two conditions hold:
� Non-triviality: There exists an interactive machine P such that for every (x, y) ∈ R

all possible interactions of V with P on common input x and auxiliary input y are
accepting.

� Validity (with error κ): There exists a polynomial q(·) and a probabilistic oracle
machine K such that for every interactive function P, every x ∈ L R, and every
y, r ∈ {0, 1}∗, machine K satisfies the following condition:

Denote by p(x, y, r) the probability that the interactive machine V ac-
cepts, on input x, when interacting with the prover specified by Px,y,r . If
p(x, y, r) > κ(|x |), then, on input x and with access to oracle Px,y,r , ma-
chine K outputs a solution s ∈ R(x) within an expected number of steps
bounded by

q(|x |)
p(x, y, r)− κ(|x |)

The oracle machine K is called a universal knowledge extractor.

When κ(·) is identically zero, we simply say that V is a knowledge verifier for the
relation R. An interactive pair (P, V) such that V is a knowledge verifier for a
relation R and P is a machine satisfying the non-triviality condition (with respect
to V and R) is called a system for proofs of knowledge for the relation R.

An alternative formulation of the validity condition follows. It postulates the existence of
a probabilistic oracle machine K (as before). However, instead of requiring K Px,y,r (x) to
always output a solution within an expected time inversely proportional to p(x, y, r)−
κ(|x |), the alternative requires K Px,y,r (x) to run in expected polynomial time and output
a solution with probability at least p(x, y, r)− κ(|x |). In fact, we can further relax the
alternative formulation by requiring that a solution be output with probability at least
(p(x, y, r)− κ(|x |))/poly(|x |).

Definition 4.7.3 (Validity with Error κκ , Alternative Formulation): Let V ,
Px,y,r (with x ∈ L R), and p(x, y, r) be as in Definition 4.7.2. We say that V
satisfies the alternative validity condition with error κ if there exists a prob-
abilistic oracle machine K and a positive polynomial q such that on input x
and with access to oracle Px,y,r , machine K runs in expected polynomial time
and outputs a solution s ∈ R(x) with probability at least (p(x, y, r)− κ(|x |))/
q(|x |).

264

4.7.∗∗ PROOFS OF KNOWLEDGE

The two formulations of validity are equivalent in the case of NP-relations. The
idea underlying the equivalence is that, in the current context, success probability and
expected running time can be converted from one to the other.

Proposition 4.7.4: Let R be an NP-relation, and let V be an interactive ma-
chine. Referring to this relation R, machine V satisfies (with error κ) the validity
condition of Definition 4.7.2 if and only if V satisfies (with error κ) the alternative
validity condition of Definition 4.7.3.

Proof Sketch: Suppose that V satisfies the alternative formulation (with error κ),
and let K be an adequate extractor and q an adequate polynomial. Using the hy-
pothesis that R is an NP-relation, it follows that when invoking K we can
determine whether or not K has succeeded. Thus, we can iteratively invoke
K until it succeeds. If K succeeds with probability s(x, y, r) ≥ (p(x, y, r)−
κ(|x |))/q(|x |), then the expected number of invocations is 1/s(x, y, r), which is
as required in Definition 4.7.2.

Suppose that V satisfies (with error κ) the validity requirement of Definition
4.7.2, and let K be an adequate extractor and q an adequate polynomial (such
that K runs in expected time q(|x |)/(p(x, y, r)− κ(|x |))). Let p be a polyno-
mial bounding the length of solutions for R (i.e., (x, s) ∈ R implies |s| ≤ p(|x |)).
Then we proceed with up to p(|x |) iterations: In the i th iteration, we emulate
the computation of K Px,y,r (x) with time bound 2i+1 · q(|x |). In case the current
iteration yields a solution, we halt outputting this solution. Otherwise, with prob-
ability 1

2 , we continue to the next iteration (and with probability 1
2 we halt with a

special failure symbol). In case the last iteration is completed without obtaining a
solution, we simply find a solution by exhaustive search (using time 2p(|x |) ·
poly(|x |)). Observe that the i th iteration is executed with probability at most
2−(i−1), and so our expected running time is at most

p(|x |)∑
i=1

2−(i−1) · (2i+1 · q(|x |))+ 2−p(|x |) · (2p(|x |) · poly(|x |))
= 4 · p(|x |) · q(|x |)+ poly(|x |)

To evaluate the success probability of the new extractor, note that the probabil-
ity that K Px,y,r (x) will run for more than twice its expected running time (i.e.,
twice q(|x |)/(p(x, y, r)− κ(|x |))) is less than 1

2 . Also observe that in iteration

i
def= − log2(p(x, y, r)− κ(|x |)) we emulate these many steps (i.e., 2q(|x |)/

(p(x, y, r)− κ(|x |)) steps). Thus, the probability that we can extract a solution in
one of the first i iterations is at least 1

2 · 2−(i−1) = p(x, y, r)− κ(|x |), as required
in the alternative formulation. �

Comment. The proof of Proposition 4.7.4 actually establishes that the formulation of
Definition 4.7.2 implies the formulation of Definition 4.7.3 with q ≡ 1. Thus, the for-
mulation of Definition 4.7.3 with q ≡ 1 is equivalent to its general formulation (i.e.,

265

ZERO-KNOWLEDGE PROOF SYSTEMS

with an arbitrary polynomial q). We shall use this fact in the proofs of Propositions 4.7.5
and 4.7.6.

4.7.1.4. Discussion

In view of Proposition 4.7.4, we can freely use either of the two formulations of va-
lidity. The formulation of Definition 4.7.2 typically is more convenient when analyz-
ing the effect of a proof of knowledge as a sub-protocol, whereas the formulation of
Definition 4.7.3 typically is more convenient when demonstrating that a given system
is a proof of knowledge. We mention that variants of Proposition 4.7.4 also hold when
R is not anNP-relation (see Exercise 29).

A Reflection. The notion of a proof of knowledge (and, more so, the notion of a
knowledge extractor used in formalizing it) is related to the simulation paradigm. This
relation is evident in applications in which the knowledge verifier takes some action
A after being convinced that the knowledge prover knows K, where action A is such
that it causes no harm to the knowledge verifier if the knowledge prover indeed knows
K. Following the simulation paradigm, our definition asserts that if action A is taken
after the verifier becomes convinced that the prover knows K, then no harm is caused,
since in some sense we can simulate a situation in which the prover actually knowsK.
Indeed, using the knowledge extractor, we can simulate the prover’s view of the entire
interaction (i.e., the proof process and the action taken afterward by the convinced
verifier): In case the prover fails, action A is not taken, and so the entire interaction is
easy to simulate. In case the prover succeeds in convincing the verifier, we extract the
relevant knowledge K and reach a situation in which actionA causes no harm (i.e.,A
can be simulated based on K).

About Soundness. In the foregoing definitions, we imposed no requirements regarding
what happens when the knowledge verifier for R is invoked on common input not
in L R . The natural requirement is that on input x /∈ L R the verifier will accept with
probability at most κ(|x |). This holds in many natural cases, but not in the conclusion
of Proposition 4.7.6. See further comments in Sections 4.7.3–4.7.6.

An Advanced Comment. A key feature of both formulations of validity is that they
handle all possible values of p(x, y, r) in a “uniform” fashion. This is crucial to most
applications (e.g., see Section 4.7.4) in which a proof of knowledge is used as a sub-
protocol (rather than as the end protocol). Typically, in the former applications (i.e.,
using a proof of knowledge as a sub-protocol), the knowledge error function is required
to be negligible (or even zero). In such cases, we need to deal with all possible values
of p(x, y, r) that are not negligible, but we do not know a priori the value of p(x, y, r).
We warn that the fact that p(x, y, r) is not negligible (as a function of |x |) does not
mean that it is noticeable (as a function of |x |).19

19Recall that a function µ : N → R is negligible if for every positive polynomial p and all sufficiently large
n’s, it holds that µ(n) < 1/p(n), whereas a function ν : N → R is noticeable if there exists a polynomial p such
that for all sufficiently large n’s, it holds that ν(n) > 1/p(n). A function f : N → R may be neither negligible nor
noticeable: For example, consider the function f , defined by f (n)

def= 2−n if n is odd, and f (n)
def= n−2 otherwise.

266

4.7.∗∗ PROOFS OF KNOWLEDGE

4.7.2. Reducing the Knowledge Error

The knowledge error can be reduced by sequential repetitions of the proof system.
Specifically, the error drops exponentially with the number of repetitions.

Proposition 4.7.5: Let R be a polynomially bounded relation, and let t : N → N

be a polynomially bounded function. Suppose that (P, V) is a system for proof of
knowledge for the relation R with knowledge error κ . Then the proof system that
results by repeating (P, V) sequentially t(|x |) times on common input x is a system
for proof of knowledge for the relation R with knowledge error κ ′(n) def= κ(n)t(n).

Proof Sketch: Let (P ′, V ′) denote the protocol obtained by t sequential repeti-
tions of (P, V), as in the proposition. To analyze the validity property of V ′, we
use the formulation of Definition 4.7.3. Given an extractor K1 for the basic sys-
tem, we construct an extractor K for the composed system (P ′, V ′) as follows. On
input x , machine K uniformly selects i ∈ {1, . . . , t(|x |)}, emulates the first i − 1
iterations of the basic proof system (P, V), and invokes K1 with oracle access to
the residual prover determined by the transcript of these i − 1 iterations. That is,
given oracle access to a prover strategy for the composed proof system, we first
use it to emulate the first i − 1 iterations in (P ′, V ′), resulting in a transcript α.
We then define a prover strategy for the basic proof system by considering the
way in which the composed-system prover behaves in the i th iteration given that
α is the transcript of the first i − 1 iterations. Using this (basic-system) prover
strategy as oracle, we invoke K1 in an attempt to extract a solution to x .

It is left to analyze the success probability of extractor K for fixed x ∈ L R

and y and r as before. Let t
def= t(|x |), κ def= κ(|x |), and δ def= p(x, y, r)− κ t . (We

shall omit this fixed (x, y, r) also from the following notations.) Our aim is to
show that K extracts a solution for x with probability at least δ/poly(|x |). Toward
this goal, let us denote by ai−1 the probability that the verifier accepts in each
of the first i − 1 iterations of the composed proof system. For every possible
transcript α of the first i − 1 iterations, we denote by p′(α) the probability that
the verifier accepts in the i th iteration when α describes the transcript of the first
i − 1 iterations. Note that if K tries to extract a solution after emulating i − 1
iterations resulting in transcriptα, then its success probability is at least p′(α)− κ .
Let ci be the expected value of p′(α) when α is selected at random among all
(i − 1)-iteration transcripts in which the verifier accepts. Then ai = ai−1 · ci , and
the probability that K extracts a solution after emulating i − 1 iterations is at least
ai−1 · (ci − κ).

Claim: Either c1 − κ ≥ δ/t or there exists an i ≥ 2 such that ai−1 · (ci − κ) >
δ/t .

In both cases we have established an adequate lower bound on the success
probability of K ; that is, K succeeds with probability at least δ/t2, where an extra
factor of t is to account for the probability that K will select a good i .

Proof: Observe that if a1 = c1 < κ + (δ/t), then there must exist an i ≥ 2 such
that ai−1 < κ i−1 + ((i − 1)δ/t) and ai ≥ κ i + (iδ/t), since at = κ t + δ. Using

267

ZERO-KNOWLEDGE PROOF SYSTEMS

this i , we have

ai−1 · (ci − κ) = ai − ai−1 · κ
>

(
κ i + iδ

t

)
−
(
κ i + (i − 1)δ

t

)
= δ

t

The claim follows, and so does the proposition. �

What About Parallel Composition?. As usual (see Section 4.3.4), the effect of parallel
composition is more complex than the effect of sequential composition. Consequently,
a result analogous to Proposition 4.7.5 is not known to hold in general. Still, parallel
execution of some popular zero-knowledge proofs of knowledge can be shown to reduce
the knowledge error exponentially in the number of repetitions; see Exercise 27.

Getting Rid of Tiny Error. ForNP-relations, whenever the knowledge error is smaller
than the probability of finding a solution by a random guess, one can set the knowledge
error to zero.

Proposition 4.7.6: Let R be an NP-relation, and let q(·) be a polynomial such
that (x, y) ∈ R implies |y| ≤ q(|x |). Suppose that (P, V) is a system for proofs of

knowledge for the relation R, with knowledge error κ(n) def= 2−q(n). Then (P, V) is
a system for proofs of knowledge for the relation R (with zero knowledge error).

Proof Sketch: Again, we use the formulation of Definition 4.7.3. Given a know-
ledge extractor K substantiating the hypothesis, we construct a new knowledge
extractor that first invokes K , and in case K fails, it uniformly selects a q(|x |)-bit-
long string and outputs it if and only if it is a valid solution for x . Let p(x, y, r) be
as in Definitions 4.7.2 and 4.7.3, and let s(x, y, r) ≥ p(x, y, r)− κ(|x |) denote
the success probability of K Px,y,r (x). Then the new knowledge extractor succeeds
with probability at least

s ′(x, y, r) def= s(x, y, r)+ (1− s(x, y, r)) · 2−q(|x |)

The reader can easily verify that s ′(x, y, r) ≥ p(x, y, r)/2 (by separately consid-
ering the cases p(x, y, r) ≥ 2 · κ(|x |) and p(x, y, r) ≤ 2 · κ(|x |)), and the propo-
sition follows. �

4.7.3. Zero-Knowledge Proofs of Knowledge for NPNP
The zero-knowledge proof systems for Graph Isomorphism (i.e., Construction 4.3.8)
and for Graph 3-Coloring (i.e., Construction 4.4.7) are in fact proofs of knowledge (with
some knowledge error) for the corresponding languages. Specifically, Construction
4.3.8 is a proof of knowledge of an isomorphism with knowledge error 1

2 , whereas

268

4.7.∗∗ PROOFS OF KNOWLEDGE

Construction 4.4.7 (when applied on common input G = (V, E)) is a proof of knowl-
edge of a 3-coloring with knowledge error 1− 1

|E | ; see Exercise 26. By iterating each
construction sufficiently many times, we can get the knowledge error to be exponen-
tially small (see Proposition 4.7.5). In fact, using Proposition 4.7.6, we get proofs of
knowledge with zero error. In particular, we have the following:

Theorem 4.7.7: Assuming the existence of (non-uniformly) one-way functions,
every NP-relation has a zero-knowledge system for proofs of knowledge. Fur-
thermore, inputs not in the corresponding language are accepted by the verifier
with exponentially vanishing probability.

4.7.4. Applications

We briefly review some of the applications of (zero-knowledge) proofs of knowledge.
Typically, zero-knowledge proofs of knowledge are used for “mutual disclosure” of the
same information. Suppose that Alice and Bob both claim that they know something
(e.g., a 3-coloring of a common-input graph), but each is doubtful of the other’s claim.
Employing a zero-knowledge proof of knowledge in both directions is indeed a (con-
ceptually) simple solution to the problem of convincing each other of their knowledge.

Before describing the applications, let us briefly comment on how their security
is proved. Typically, a zero-knowledge proof of knowledge is used as a sub-protocol,
and rejecting in this sub-protocol means that the verifying party detects cheating. The
proof of security for the high-level protocol is by a simulation argument that utilizes
the knowledge extractor, but invokes it only in case the verifying party does not detect
cheating. Our definition of (the validity condition of) proofs of knowledge guarantees
that the simulation will run in expected polynomial time, regardless of the (a priori
unknown) probability that the verifying party will accept.

In all applications, the proof of knowledge employed has negligible soundness error
(i.e., inputs not in the corresponding language are accepted by the verifier with negligible
probability).

4.7.4.1. Non-Oblivious Commitment Schemes

When using a commitment scheme, the receiver is guaranteed that after the commit
phase the sender is committed to at most one value (in the sense that it can later “reveal”
only this value). Yet the receiver is not guaranteed that the sender “knows” to what value
the sender is committed. Such a guarantee can be useful in many settings and can be
obtained by using a proof of knowledge. For more details, see Section 4.9.2.

4.7.4.2. Protecting against Chosen Message Attacks

An obvious way of protecting against chosen message attacks on a (public-key) en-
cryption scheme is to augment the ciphertext by a zero-knowledge proof of knowledge
of the cleartext. Thus, the benefit (to the adversary) of a chosen message attack is es-
sentially eliminated. However, one should note that the resulting encryption scheme
employs bidirectional communication between the sender and the receiver (of the

269

ZERO-KNOWLEDGE PROOF SYSTEMS

encrypted message). (Definitions and alternative constructions of encryption schemes
secure against chosen message attacks will be presented in Chapter 5 of Volume 2.)

4.7.4.3. A Zero-Knowledge Proof System for GNI

The interactive proof of Graph Non-Isomorphism (G N I) presented in Construction
4.2.8 is not zero-knowledge (unless G N I ∈ BPP). A cheating verifier can construct
an arbitrary graph H and learn whether or not H is isomorphic to the first input graph
by sending H as a query to the prover. There is an even more appealing refutation of
the claim that Construction 4.2.8 is auxiliary-input zero-knowledge (e.g., the verifier
can check whether or not its auxiliary input is isomorphic to one of the common-
input graphs). We observe, however, that Construction 4.2.8 “would have been zero-
knowledge” if the verifier had always known the answers to its queries (as is the case for
an honest verifier). Thus, we can modify Construction 4.2.8 to obtain a zero-knowledge
proof for G N I by having the verifier prove to the prover that he (i.e., the verifier) knows
the answer to his query graph (i.e., that he knows an isomorphism to the appropriate
input graph), and the prover answers the query only if she is convinced of this claim.
Certainly, the verifier’s proof of knowledge should not yield the answer (otherwise
the prover could use that information in order to cheat, thus foiling the soundness
requirement). If the verifier’s proof of knowledge is perfect zero-knowledge, then cer-
tainly it does not yield the answer. In fact, it suffices that the verifier’s proof of knowledge
is witness-independent (as defined in Section 4.6).

4.7.5. Proofs of Identity (Identification Schemes)

Identification schemes are useful in large distributed systems in which the users are not
acquainted with one another. In such distributed systems, one wishes to allow users to
authenticate themselves to other users. This goal is achieved by identification schemes,
defined next. In the sequel, we shall also see that identification schemes are intimately
related to proofs of knowledge. We hint that a person’s identity can be linked to his
ability to do something and in particular to his ability to prove knowledge of some sort.

4.7.5.1. Definition

Loosely speaking, an identification scheme consists of a public file containing records
for each user and an identification protocol. Each (public) record consists of the name (or
identity) of a user and auxiliary identification information to be used when invoking the
identification protocol (as discussed later). The public file is established and maintained
by a trusted party that vouches for the authenticity of the records (i.e., that each record
has been submitted by the user whose name is specified in it). All users can read the
public file at all times. Alternatively, the trusted party can supply each user with a
signed copy of its public record. Suppose, now, that Alice wishes to prove to Bob

that it is indeed she who is communicating with him. To this end, Alice invokes
the identification protocol, with the (public-file) record corresponding to her name as a
parameter. Bob verifies that the parameter in use indeed matches Alice’s public record

270

4.7.∗∗ PROOFS OF KNOWLEDGE

and proceeds by executing his role in the protocol. It is required that Alice always be
able to convince Bob (that she is indeed Alice), whereas nobody else can fool Bob into
believing that she/he is Alice. Furthermore, Carol should not be able to impersonate
Alice even after receiving polynomially many proofs of identity from Alice.

The identification information is generated by Alice using a randomized algorithm.
Clearly, if the identification information is to be of any use, then Alicemust keep secret
the random coins she used to generate her record. Furthermore, Alice must use these
stored coins during the execution of the identification protocol, but this must be done
in a way that will not allow anyone else to impersonate her later.

Conventions. In the following definition, we adopt the formalism and notations of
interactive machines with auxiliary input (presented in Definition 4.2.10). We recall
that when M is an interactive machine, we denote by M(y) the machine that results
by fixing y to be the auxiliary input of machine M . In the following definition, n is
the security parameter, and we assume with little loss of generality that the names
(i.e., identities) of the users are encoded by strings of length n. If A is a probabilistic
algorithm and x, r ∈ {0, 1}∗, then Ar (x) denotes the output of algorithm A on input x
and random coins r .

Motivation. Algorithm I in the following definition corresponds to the procedure used
to generate identification information, and (P, V) corresponds to the identification
protocol itself. The interactive machines B ′ and B ′′ represent two components of the
adversary behavior (i.e., interacting with the user in order to extract its secrets and later
trying to impersonate it). On a first reading, the reader can ignore algorithm B ′ and
the random variable Tn (in the security condition). Doing so, however, yields a weaker
condition that typically is unsatisfactory.

Definition 4.7.8 (Identification Scheme): An identification scheme consists of a
pair (I,�), where I is a probabilistic polynomial-time algorithm and� = (P, V)
is a pair of probabilistic polynomial-time interactive machines satisfying the
following conditions:
� Viability: For every n ∈ N, every α ∈ {0, 1}n, and every s ∈ {0, 1}poly(n),

Pr [〈P(s), V 〉(α, Is(α)) = 1] = 1

� Security: For every pair of probabilistic polynomial-time interactive machines B ′

and B ′′, every polynomial p(·), all sufficiently large n ∈ N, every α ∈ {0, 1}n, and
every z,

Pr
[〈B ′′(z, Tn), V 〉(α, ISn (α)

) = 1
]
<

1

p(n)

where Sn is a random variable uniformly distributed over {0, 1}poly(n) and Tn is a
random variable describing the output of B ′(z) after interacting with P(Sn), on
common input (α, ISn (α)), for polynomially many times.

Algorithm I is called the information-generating algorithm, and the pair (P, V)
is called the identification protocol.

271

ZERO-KNOWLEDGE PROOF SYSTEMS

Hence, to use the identification scheme, a user, say Alice, whose identity is en-
coded by the string α, should first uniformly select a secret string s, compute i

def= Is(α),
ask the trusted third party to place the record (α, i) in the public file, and store the string
s in a safe place. The viability condition asserts that Alice can convince Bob of her
identity by executing the identification protocol: Alice invokes the program P using
the stored string s as auxiliary input, andBob uses the program V and makes sure that the
common input is the public record containing α (which is in the public file). Ignoring
for a moment the algorithm B ′ and the random variable Tn , the security condition
implies that it is infeasible for a party to impersonate Alice if all that this party has
is the public record of Alice and some unrelated auxiliary information (represented
by the auxiliary input z). However, such a security condition may not suffice in many
applications, since a user wishing to impersonate Alice may ask her first to prove
her identity to him/her. The (full) security condition asserts that even if Alice has
proved her identity to Carol many times in the past, still it is infeasible for Carol to
impersonate Alice. We stress that Carol cannot impersonate Alice to Bob provided
that she cannot interact concurrently with both Alice and Bob. In case this condition
does not hold, nothing is guaranteed (and indeed Carol can easily impersonate Alice
by referring Bob’s questions to Alice and answering as Alice does).

4.7.5.2. Identification Schemes and Proofs of Knowledge

A natural way to determine a person’s identity is to ask him/her to supply a proof of
knowledge of a fact that the person is supposed to know. Let us consider a specific (but
in fact quite generic) example.

Construction 4.7.9 (Identification Scheme Based on a One-Way Function):
Let f be a function. On input an identity α ∈ {0, 1}n, the information-generating
algorithm uniformly selects a string s ∈ {0, 1}n and outputs f (s). (The pair
(α, f (s)) is the public record for the user named α.) The identification proto-
col consists of a proof of knowledge of the inverse of the second element in the
public record. Namely, in order to prove its identity, user α proves that it knows a
string s such that f (s) = r , where (α, r) is a record in the public file. (The proof
of knowledge in use is allowed to have negligible knowledge error.)

Proposition 4.7.10: If f is a one-way function and the proof of knowledge in use
is zero-knowledge, then Construction 4.7.9 constitutes an identification scheme.

Hence, identification schemes exist if one-way functions exist. Practical identification
schemes can be constructed based on specific intractability assumptions. For example,
assuming the intractability of factoring, the so-called Fiat-Shamir identification scheme,
which is actually a proof of knowledge of a modular square root, follows.

Construction 4.7.11 (The Fiat-Shamir Identification Scheme, Basic Version):
On input an identity α ∈ {0, 1}n, the information-generating algorithm uniformly
selects a composite number N that is the product of two n-bit-long primes and
a residue s mod N, and it outputs the pair (N , s2 mod N). (The pair (α, (N , s2

272

4.7.∗∗ PROOFS OF KNOWLEDGE

mod N)) is the public record for user α.) The identification protocol consists
of a proof of knowledge of the corresponding modular square root. Namely, in
order to prove its identity, user α proves that it knows a modular square root of

r
def= s2 mod N, where (α, (r, N)) is a record in the public file. (Again, negligible

knowledge error is allowed.)

The proof of knowledge of modular square roots is analogous to the proof system
for Graph Isomorphism presented in Construction 4.3.8. Namely, in order to prove
knowledge of a square root of r ≡ s2 (mod N), the prover repeats the following steps
sufficiently many times:

Construction 4.7.12 (Atomic Proof of Knowledge of Modular Square Root):
This refers to the common input (r, N), where the prescribed prover has auxiliary
input s such that r ≡ s2 (mod N):

� The prover randomly selects a residue g modulo N and sends h
def= g2 mod N to

the verifier.
� The verifier uniformly selects σ ∈ {0, 1} and sends it to the prover.
� Motivation: In case σ = 0, the verifier asks for a square root of h mod N, whereas

in case σ = 1 the verifier asks for a square root of h · r mod N. In the sequel, we
assume, without loss of generality, that σ ∈ {0, 1}.

� The prover replies with a
def= g · sσ mod N.

� The verifier accepts if and only if the messages h and a sent by the prover satisfy
a2 ≡ h · rσ mod N.

When Construction 4.7.12 is repeated k times, either sequentially or in parallel, the
resulting protocol constitutes a proof of knowledge of a modular square root, with
knowledge error 2−k (see Exercise 27). In case these repetitions are conducted sequen-
tially, the resulting protocol is zero-knowledge. Yet, for use in Construction 4.7.11, it
suffices that the proof of knowledge be witness-hiding under the relevant distribution
(see Definition 4.6.5), even when polynomially many executions take place concur-
rently (in an asynchronous manner). Hence the resulting identification scheme has
constant-round complexity. We remark that for identification purposes it suffices to
perform Construction 4.7.12 super-logarithmically many times. Furthermore, fewer
repetitions can also be of value: When applying Construction 4.7.12 for k = O(log n)
times and using the resulting protocol in Construction 4.7.11, we get a scheme (for
identification) in which impersonation can occur with probability at most 2−k .

4.7.5.3. Identification Schemes and Proofs of Ability

As hinted earlier, a proof of knowledge of a string (i.e., the ability to output the string)
is a special case of a proof of ability to do something. It turns out that identification
schemes can also be based on the more general concept of proofs of ability. We avoid
defining this concept and confine ourself to two “natural” examples of using a proof of
ability as a basis for identification.

It is everyday practice to identify people by their ability to produce their signatures.
This practice can be carried into the digital setting. Specifically, the public record of

273

ZERO-KNOWLEDGE PROOF SYSTEMS

Alice consists of her name and the verification key corresponding to her secret signing
key in a predetermined signature scheme. The identification protocol consists of Alice
signing a random message chosen by the verifier.

A second popular means of identification consists of identifying people by their
ability to answer personal questions correctly. A digital analogue of this common
practice follows. We use pseudorandom functions (see Section 3.6) and zero-knowledge
proofs (of membership in a language). The public record of Alice consists of her name
and a “commitment” to a randomly selected pseudorandom function (e.g., either via
a string-commitment to the index of the function or via a pair consisting of a random
domain element and the value of the function at that point). The identification protocol
consists of Alice returning the value of the function at a random location chosen by the
verifier and supplying a zero-knowledge proof that the value returned indeed matches
the function appearing in the public record. We remark that the digital implementation
offers more security than the everyday practice. In the everyday setting, the verifier
is given the list of all possible question-and-answer pairs and is trusted not to try to
impersonate the user. Here we have replaced the possession of the correct answers with
a zero-knowledge proof that the answer is correct.

4.7.6. Strong Proofs of Knowledge

Definitions 4.7.2 and 4.7.3 rely in a fundamental way on the notion of expected running
time. Specifically, these definitions refer to the expected running time of the knowledge
extractor. For reasons discussed in Section 4.3.1.6, we prefer to avoid the notion of
expected running time whenever possible. Thus, we consider next a more stringent
definition in which the knowledge extractor is required to run in strict polynomial time,
rather than in expected time inversely proportional to the acceptance probability (as
in Definition 4.7.2). (We also take the opportunity to postulate, in the definition, that
instances not in L R are accepted with negligible probability; this is done by extending
the scope of the validity condition also to x’s not in L R .)

4.7.6.1. Definition

Definition 4.7.13 (System of Strong Proofs of Knowledge): Let R be a binary
relation. We say that an interactive function V is a strong knowledge verifier
for the relation R if the following two conditions hold:

� Non-triviality: As in Definition 4.7.2.
� Strong validity: There exists a negligible function µ : N → [0, 1] and a pro-

babilistic (strict) polynomial-time oracle machine K such that for every inter-
active function P and every x, y, r ∈ {0, 1}∗, machine K satisfies the following
condition:

Let p(x, y, r) and Px,y,r be as in Definition 4.7.2. If p(x, y, r) > µ(|x |), then on
input x and access to oracle Px,y,r , machine K outputs a solution s ∈ R(x) with
probability at least 1− µ(|x |).

The oracle machine K is called a strong knowledge extractor.

274

4.7.∗∗ PROOFS OF KNOWLEDGE

An interactive pair (P, V) such that V is a strong knowledge verifier for a re-
lation R, and P is a machine satisfying the non-triviality condition (with re-
spect to V and R), is called a system for strong proofs of knowledge for the
relation R.

Our choice of using µ (rather than a different negligible function µ′) as an upper
bound on the failure probability of the extractor (in the strong validity requirement)
is immaterial. Furthermore, for NP-relations, requiring the existence of an extractor
that succeeds with noticeable probability is equivalent to requiring the existence of an
extractor that fails with exponentially vanishing probability. (That is, in the case of
NP-relations, the failure probability can be decreased by successive applications of
the extractor.) This strong validity requirement is stronger than the validity (with error
µ) requirement of Definition 4.7.2, in two ways:

1. The extractor in Definition 4.7.13 runs in (strict) polynomial time, regardless of the
value of p(x, y, r), whereas the extractor in Definition 4.7.2 runs in expected time
poly(n)/(p(x, y, r)− µ(|x |)). Note, however, that the extractor in Definition 4.7.13 is
allowed to fail with probability at most µ(|x |), whereas the extractor in Definition 4.7.2
can never fail.

2. The strong validity requirement implies that x /∈ L R is accepted by the verifier with
probability at mostµ(|x |), whereas this is not required in Definition 4.7.2. This soundness
condition is natural in the context of the current definition that, unlike Definition 4.7.2,
always allows for non-zero (but negligible) error probability.

4.7.6.2. An Example: Strong (ZK) Proof of Knowledge of Isomorphism

Sequentially repeating the (zero-knowledge) proof systems for Graph Isomorphism
(i.e., Construction 4.3.8) sufficiently many times yields a strong proof of knowledge of
isomorphism. The key observation is that each application of the basic proof system
(i.e., Construction 4.3.8) results in one of two possible situations, depending on whether
the verifier asks to see an isomorphism to the first or second graph. If the prover answers
correctly in both cases, then we can retrieve an isomorphism between the input graphs
(by composing the isomorphisms provided in the two cases). If the prover fails in both
cases, then the verifier will reject regardless of what the prover does from that point on.
Specifically, the preceding discussion suggests the following construction of a strong
knowledge extractor (where we refer to repeating the basic proof systems n times and
set µ(n) = 2−n).

Strong Knowledge Extractor for Graph Isomorphism. On input (G1,G2) and access
to the prover-strategy oracle P∗, we proceed in n iterations, starting with i = 1. Initially,
T (the transcript thus far) is empty.

1. Obtain the intermediate graph G ′ from the prover strategy (i.e., G ′ = P∗(T)).

2. Extract the prover’s answers to both possible verifier moves. That is, for j = 1, 2, let
ψ j ← P∗(T, j). We say that ψ j is correct if it is an isomorphism between G j and G ′.

275

ZERO-KNOWLEDGE PROOF SYSTEMS

3. If both ψ j ’s are correct, then φ← ψ−1
2 ψ1 is an isomorphism between G1 and G2. In

this case we output φ and halt.

4. In caseψ j is correct for a single j , and i < n, we let T ← (T, j) and proceed to the next
iteration (i.e., i ← i + 1). Otherwise, we halt, with no output.

It can be easily verified that if this extractor halts with no output in any iteration i < n,
then the verifier (in the real interaction) accepts with probability zero. Similarly, if
the extractor halts with no output in iteration n, then the verifier (in the real interac-
tion) accepts with probability at most 2−n . Thus, whenever p((G1,G2), ·, ·) > 2−n , the
extractor succeeds in recovering an isomorphism between the two input graphs.

4.7.6.3. Strong (ZK) Proofs of Knowledge for NPNP-Relations

A similar argument can be applied to some zero-knowledge proof systems for NP .
In particular, consider n sequential repetitions of the following basic (zero-knowledge)
proof system for the Hamiltonian-cycle (HC) problem. We consider directed graphs
(and the existence of directed Hamiltonian cycles).

Construction 4.7.14 (Basic Proof System for HC):
� Common input: a directed graph G = (V, E), with n

def= |V |.
� Auxiliary input to prover: a directed Hamiltonian cycle, C ⊂ E, in G.
� Prover’s first step (P1): The prover selects a random permutation π of the vertices

V and commits to the entries of the adjacency matrix of the resulting permuted
graph. That is, it sends an n-by-n matrix of commitments such that the (π (i), π (j))
entry is a commitment to 1 if (i, j) ∈ E and is a commitment to 0 otherwise.

� Verifier’s first step (V1): The verifier uniformly selects σ ∈ {0, 1} and sends it to
the prover.

� Motivation: σ = 0 means that the verifier asks to check that the matrix of commit-
ments is a legitimate one, whereas σ = 1 means that the verifier asks to reveal a
Hamiltonian cycle in the permuted graph.

� Prover’s second step (P2): If σ = 0, then the prover sends π to the verifier along
with the revealing (i.e., pre-images) of all commitments. Otherwise, the prover
reveals to the verifier only the commitments to entries (π (i), π (j)), with (i, j) ∈ C.

� Verifier’s second step (V2): If σ = 0, then the verifier checks that the revealed
graph is indeed isomorphic, via π , to G. Otherwise, the verifier simply checks
that all revealed values are 1 and that the corresponding entries form a simple
n-cycle. (Of course, in both cases, the verifier checks that the revealed values do fit
the commitments.) The verifier accepts if and only if the corresponding condition
holds.

We claim that the protocol resulting from sequentially repeating Construction 4.7.14
n times is a (zero-knowledge) strong proof of knowledge of a Hamiltonian cycle; see
Exercises 20 and 30. Because a Hamiltonian cycle isNP-complete, we get such proof
systems for any language in NP . We mention that the known zero-knowledge strong
proofs of knowledge forNP-complete languages are all costly in terms of the round-
complexity. Still, we have the following:

276

4.8.∗∗ COMPUTATIONALLY SOUND PROOFS (ARGUMENTS)

Theorem 4.7.15: Assuming the existence of (non-uniformly) one-way functions,
everyNP-relation has a zero-knowledge system for strong proofs of knowledge.

4.8.∗ Computationally Sound Proofs (Arguments)

In this section we consider a relaxation of the notion of an interactive proof system.
Specifically, we relax the soundness condition of interactive proof systems. Instead of
requiring that it be impossible to fool the verifier into accepting false statements (with
probability greater than some bound), we require only that it be infeasible to do so. We
call such protocols computationally sound proof systems (or arguments). The advantage
of computationally sound proof systems is that perfect zero-knowledge computation-
ally sound proof systems can be constructed, under some reasonable complexity-
assumptions, for all languages in NP . Recall that perfect zero-knowledge proof sys-
tems are unlikely to exist for all languages in NP (see Section 4.5). Also recall
that computational zero-knowledge proof systems do exist for all languages in NP ,
provided that one-way functions exist. Hence, the previously quoted positive results
exhibit some kind of a trade-off between the soundness and zero-knowledge proper-
ties of the zero-knowledge protocols of NP . (We remark, however, that the perfect
zero-knowledge computationally sound proofs forNP are constructed under stronger
complexity-theoretic assumptions than are the ones used for the computational zero-
knowledge proofs. It is indeed an interesting research project to try to construct perfect
zero-knowledge computationally sound proofs for NP under weaker assumptions, in
particular, assuming only the existence of one-way functions.)

We mention that it seems that computationally sound proof systems can be much
more efficient than ordinary proof systems. Specifically, under some plausible com-
plexity assumptions, extremely efficient computationally sound proof systems (i.e.,
requiring only poly-logarithmic communication and randomness) exist for any lan-
guage inNP . An analogous result cannot hold for ordinary proof systems unlessNP
is contained in deterministic quasi-polynomial time (i.e.,NP ⊆ Dtime(2polylog)).

4.8.1. Definition

The definition of computationally sound proof systems follows naturally from the
foregoing discussion. The only issue to consider is that merely replacing the soundness
condition of Definition 4.2.4 with a computational-soundness condition leads to an
unnatural definition, since the computational power of the prover in the completeness
condition (in Definition 4.2.4) is not restricted. Hence, it is natural to restrict the prover
in both (the completeness and soundness) conditions to be an efficient one. It is crucial
to interpret “efficient” as being probabilistic polynomial-time given auxiliary input
(otherwise, only languages in BPP will have such proof systems). Hence, our starting
point is Definition 4.2.10 (rather than Definition 4.2.4).

Definition 4.8.1 (Computationally Sound Proof System (Arguments)): A pair
of interactive machines (P, V) is called a computationally sound proof system

277

ZERO-KNOWLEDGE PROOF SYSTEMS

(or an argument) for a language L if both machines are polynomial-time (with
auxiliary inputs) and the following two conditions hold:

� Completeness: For every x ∈ L, there exists a string y such that for every string z,

Pr [〈P(y), V (z)〉(x) = 1] ≥ 2

3

� Computational soundness: For every polynomial-time interactive machine B, and
for all sufficiently long x �∈ L and every y and z,

Pr [〈B(y), V (z)〉(x) = 1] ≤ 1

3

As usual, the error probability (in both the completeness and soundness conditions)
can be reduced (from 1

3) down to as much as 2−poly(|x |) by sequentially repeating the
protocol sufficiently many times; see Exercise 31. We mention that parallel repetitions
may fail to reduce the (computational) soundness error in some cases.

4.8.2. Perfectly Hiding Commitment Schemes

The thrust of the current section is toward a method for constructing perfect zero-
knowledge arguments for every language inNP . This method makes essential use of
the concept of a commitment scheme with a perfect (or “information-theoretic”) secrecy
property. Hence, we start with an exposition of such perfectly hiding commitment
schemes. We remark that such schemes may also be useful in other settings (e.g., other
settings in which the receiver of the commitment is computationally unbounded; see,
for example, Section 4.9.1).

The difference between commitment schemes (as defined in Section 4.4.1) and
perfectly hiding commitment schemes (defined later) consists in a switch in the
scope of the secrecy and unambiguity requirements: In commitment schemes (see
Definition 4.4.1), the secrecy requirement is computational (i.e., refers only to prob-
abilistic polynomial-time adversaries), whereas the unambiguity requirement is
information-theoretic (and makes no reference to the computational power of the
adversary). On the other hand, in perfectly hiding commitment schemes (as defined
later), the secrecy requirement is information-theoretic, whereas the unambiguity
requirement is computational (i.e., refers only to probabilistic polynomial-time
adversaries).

Comments about Terminology. From this point on, we explicitly mention the “per-
fect” feature of a commitment scheme to which we refer. That is, a commitment scheme
as in Definition 4.4.1 will be referred to as perfectly binding, whereas a commitment
scheme as in Definition 4.8.2 (presented later) will be referred to as perfectly hiding.
Consequently, when we talk of a commitment scheme without specifying any “perfect”
feature, it may be that the scheme is only computationally hiding and computationally
binding. We remark that it is impossible to have a commitment scheme that is both
perfectly hiding and perfectly binding (see Exercise 32).

278

4.8.∗∗ COMPUTATIONALLY SOUND PROOFS (ARGUMENTS)

We stress that the terminology just suggested is inconsistent with the exposition in
Section 4.4 (in which schemes such as in Definition 4.4.1 were referred to as “commit-
ment schemes,” without the extra qualification of “perfectly binding”).20 Furthermore,
the terminology just suggested is inconsistent with significant parts of the literature, in
which a variety of terms can be found.21

4.8.2.1. Definition

Loosely speaking, a perfectly hiding commitment scheme is an efficient two-phase
two-party protocol through which the sender can commit itself to a value such that the
following two conflicting requirements are satisfied:

1. (Perfect) secrecy (or hiding): At the end of the commit phase, the receiver does not gain
any information about the sender’s value.

2. Unambiguity (or binding): It is infeasible for the sender to interact with the receiver, so
the commit phase is successfully terminated, and yet later it is feasible for the sender to
perform the reveal phase in two different ways, leading the receiver to accept (as legal
“openings”) two different values.

Using conventions analogous to those in Section 4.4.1, we state the following definition.
Again, S and R are the specified strategies of the commitment’s sender and receiver,
respectively.

Definition 4.8.2 (Perfectly Hiding Bit-Commitment Scheme): A perfectly hid-
ing bit-commitment scheme is a pair of probabilistic polynomial-time interac-
tive machines, denoted (S, R), satisfying the following:

� Input specification: The common input is an integer n presented in unary (serving
as the security parameter). The private input to the sender is a bit denoted v.

� Secrecy (hiding): For every probabilistic (not necessarily polynomial-time) ma-
chine R∗ interacting with S, the random variables describing the output of R∗ in the
two cases, namely 〈S(0), R∗〉(1n) and 〈S(1), R∗〉(1n), are identically distributed.

� Unambiguity (binding): Preliminaries: For simplicity, v ∈ {0, 1} and n ∈ N are
implicit in all notations. Fix any probabilistic polynomial-time algorithm F∗ and
any polynomial p(·).
1. As in Definition 4.4.1, a receiver’s view of an interaction with the sender, denoted

(r,m), consists of the random coins used by the receiver (i.e., r) and the sequence
of messages received from the sender (i.e., m). A sender’s view of the same
interaction, denoted (s, m̃), consists of the random coins used by the sender
(i.e., s) and the sequence of messages received from the receiver (i.e., m̃). A
joint view of the interaction is a pair consisting of corresponding receiver and
sender views of the same interaction.

20The extra qualification was omitted from the terminology of Section 4.4 in order to simplify the basic text.
21For example, as in Section 4.4, many works refer to schemes such as in Definition 4.4.1 merely by the term

“commitment schemes,” and many refer to schemes such as in Definition 4.8.2 by the term “perfect commitment
schemes.” Furthermore, in some works the term “commitment schemes” means schemes such as in Definition 4.8.2.

279

ZERO-KNOWLEDGE PROOF SYSTEMS

2. Let σ ∈ {0, 1}. We say that a joint view (of an interaction), ((r,m), (s, m̃)), has
a feasible σσσ -opening (with respect to F∗ and p(·)) if on input (m, (s, m̃), σ),
algorithm F∗ outputs, with probability at least 1/p(n), a string s ′ such that m
describes the messages received by R when R uses local coins r and interacts
with machine S that uses local coins s ′ and input (σ, 1n).

(Remark: We stress that s ′ may, but need not, equal s. The output of algorithm
F∗ has to satisfy a relation that depends on only part of the input (i.e., the
receiver’s view (r,m)); the sender’s view (i.e., (s, m̃)) is supplied to algorithm
F∗ as additional help.)

3. We say that a joint view is ambiguous with respect to F∗ and p(·) if it has both
a feasible 0-opening and a feasible 1-opening (with respect to F∗ and p(·)).

The unambiguity (or binding) requirement asserts that for all but a negligible
fraction of the coin tosses of the receiver it is infeasible for the sender to inter-
act with the receiver, so that the resulting joint view is ambiguous with respect
to some probabilistic polynomial-time algorithm F∗ and some positive polyno-
mial p(·). Namely, for every probabilistic polynomial-time interactive machine S∗,
probabilistic polynomial-time algorithm F∗, positive polynomials p(·) and q(·),
and all sufficiently large n, the probability that the joint view of the interaction
between R and S∗, on common input 1n, is ambiguous, with respect to F∗ and
p(·), is smaller than 1/q(n).

In the formulation of the unambiguity requirement, S∗ describes the (cheating) sender
strategy in the commit phase, whereas F∗ describes its strategy in the reveal phase.
Hence, it is justified (and in fact necessary) to pass the sender’s view of the interaction
(between S∗ and R) to algorithm F∗. The unambiguity requirement asserts that any
efficient strategy S∗ will fail to yield a joint view of interaction that can later be (effi-
ciently) opened in two different ways supporting two different values. As usual, events
occurring with negligible probability are ignored.

One can consider a relaxation of the secrecy condition in which the probability
ensembles {〈S(0), R∗〉(1n)}n∈N and {〈S(1), R∗〉(1n)}n∈N are required to be statistically
close, rather than identically distributed. We choose not to do so because the cur-
rently known constructions achieve the more stringent condition. Furthermore, use
of the weaker notion of a perfectly hiding commitment scheme (in Section 4.8.3)
yields almost-perfect zero-knowledge arguments rather than perfect zero-knowledge
ones.

As in Definition 4.4.1, the secrecy requirement refers explicitly to the situation at
the end of the commit phase, whereas the unambiguity requirement implicitly assumes
that the reveal phase takes the following canonical form:

1. The sender sends to the receiver its initial private input, v, and the random coins, s, it
has used in the commit phase.

2. The receiver verifies that v and s (together with the coins (i.e., r) used by R in the commit
phase) indeed yield the messages that R has received in the commit phase. Verification
is done in polynomial time (by running the programs S and R).

280

4.8.∗∗ COMPUTATIONALLY SOUND PROOFS (ARGUMENTS)

4.8.2.2. Construction Based on One-Way Permutations

Perfectly hiding commitment schemes can be constructed using any one-way permuta-
tion. The known scheme, however, involves a linear (in the security parameter) number
of rounds. Hence, it can be used for the purposes of the current section, but not for the
construction in Section 4.9.1.

Construction 4.8.3 (A Perfectly Hiding Bit Commitment): Let f be a permu-
tation, and let b(x, y) denote the inner product mod 2 of x and y (i.e., b(x, y) =∑n

i=1 xi yi mod 2, where x = x1 · · · xn ∈ {0, 1}n and y = y1 · · · yn ∈ {0, 1}n).

1. Commit phase (using security parameter n):

(a) (Local computations): The receiver randomly selects n − 1 linearly indepen-
dent vectors r1, . . . , rn−1 ∈ {0, 1}n. The sender uniformly selects s ∈ {0, 1}n
and computes y = f (s).
(Thus far, no message has been exchanged between the parties.)

(b) (Iterative hashing): The parties proceed in n − 1 rounds. In the i round (i =
1, . . . , n − 1), the receiver sends r i to the sender, which replies by computing
and sending ci def= b(y, r i).

(c) (The “actual” commitment): At this point there are exactly two solutions to the
system of equations {b(y, r i) = ci : 1 ≤ i ≤ n − 1}. (Both parties can easily
determine both solutions.)
� The sender sets π = 1 if y is the lexicographically first solution (of the

two), and π = 0 otherwise.
� To commit to a value v ∈ {0, 1}, the sender sends cn def= π ⊕ v to the

receiver.

2. Canonical reveal phase: In the reveal phase, the sender reveals v along with the
string s randomly selected by it in the commit phase. The receiver accepts the
value v if the following two conditions hold, where ((r1, . . . , rn−1), (c1, . . . , cn))
denote the receiver’s view of the commit phase:
� b(f (s), r i) = ci , for all 1 ≤ i ≤ n − 1.
� If there exists y′ < f (s) (resp., y′ > f (s)) such that b(y′, r i) = ci for all 1 ≤

i ≤ n − 1, then v = cn (resp., v = cn ⊕ 1) must hold.

That is, the receiver solves the linear system {b(y j , r i) = ci }n−1
i=1 , obtaining solu-

tions y1 < y2, so that b(y j , r i) = ci for j = 1, 2 and i = 1, . . . , n − 1. Next, it
checks whether or not f (s) ∈ {y1, y2} (if the answer is negative, it rejects imme-
diately) and sets π accordingly (i.e., so that f (s) = yπ). It accepts the value v if
and only if v ≡ cn + π (mod 2).

Proposition 4.8.4: Suppose that f is a one-way permutation. Then the protocol
presented in Construction 4.8.3 constitutes a perfectly hiding bit-commitment
scheme.

It is quite easy to see that Construction 4.8.3 satisfies the secrecy condition. The proof
that the unambiguity requirement is satisfied is quite complex andis omitted. The

281

ZERO-KNOWLEDGE PROOF SYSTEMS

intuition underlying the proof is that it is infeasible to play the iterative hashing so
as to reach a situation in which one can invert f on both the resulting solutions y1 and
y2. (We mention that this reasoning fails if one replaces the iterative hashing by an
ordinary one; see Exercise 33.)

4.8.2.3. Construction Based on Claw-Free Collections

A perfectly hiding commitment scheme of constant number of rounds can be constructed
using a seemingly stronger intractability assumption, specifically, the existence of claw-
free collections (see Section 2.4.5). This assumption implies the existence of one-way
functions, but it is not known if the converse is true. Nevertheless, claw-free collections
can be constructed under widely believed assumptions such as the intractability of
factoring and DLP. Actually, the construction of perfectly hiding commitment schemes,
presented next, uses a claw-free collection with an additional property; specifically, it
is assumed that the set of indices of the collection (i.e., the range of algorithm I) can be
efficiently recognized (i.e., is in BPP). Such a collection exists under the assumption
that DLP is intractable (see Section 2.4.5).

Construction 4.8.5 (A Constant-Round Perfectly Hiding Bit Commitment):
Let (I, D, F) be a triplet of probabilistic polynomial-time algorithms. (Think of
I as the index generating algorithm of a claw-free collection {(f 0

i , f 1
i) : i ∈ I }

and S and F as the corresponding sampling and evaluating algorithms.)

1. Commit phase: To receive a commitment to a bit (using security parameter n),
the receiver randomly generates i = I (1n) and sends it to the sender. To commit
to value v ∈ {0, 1} (upon receiving the message i from the receiver), the sender
checks to see if indeed i is in the range of I (1n), and if so the sender randomly
generates s = D(v, i), computes c = F(v, i, s), and sends c to the receiver. (In
case i is not in the range of I (1n), the sender aborts the protocol, announcing that
the receiver is cheating.)

2. (Almost-canonical) reveal phase: In the reveal phase, it suffices for the sender to re-
veal the string s generated by it in the commit phase. The receiver accepts the value
v if F(v, i, s) = c, where (i, c) is the receiver’s (partial) view of the commit phase.

Proposition 4.8.6: Let (I, D, F) be a claw-free collection with a probabilis-
tic polynomial-time-recognizable set of indices. Then the protocol presented in
Construction 4.8.5 constitutes a perfectly hiding bit-commitment scheme.

Proof Sketch: The secrecy requirement follows directly from Property 2 of a
claw-free collection (as in Definition 2.4.6) combined with the test i ∈ I (1n)
conducted by the sender. The unambiguity requirement follows from Property 3 of
a claw-free collection (Definition 2.4.6), using a standard reducibility argument.
(Note that F(0, i, s0) = F(1, i, s1) means that (s0, s1) constitute a claw for the
permutation pair (f 0

i , f 1
i).) �

282

4.8.∗∗ COMPUTATIONALLY SOUND PROOFS (ARGUMENTS)

The rationale for having the sender check to see if the index i indeed belongs
to the legitimate index set I is that only permutation pairs (f 0

i , f 1
i) with i ∈ I are

guaranteed to have identical range distributions. Thus, it actually is not necessary for
the sender to check whether or not i ∈ I ; it suffices for it to check (or be otherwise
convinced) that the permutation pair (f 0

i , f 1
i) satisfies the requirement of identical range

distributions. Consider, for example, the factoring claw-free collection (presented in
Section 2.4.5). This collection is not known to have an efficiently recognizable index set.
Still, having sent an index N , the receiver can prove in zero-knowledge to the sender that
the permutation pair (f 0

N , f 1
N) satisfies the requirement of identical range distributions.

What is actually being proved is that half of the square roots of each quadratic residue
mod N have Jacobi symbol 1 (relative to N). A (perfect) zero-knowledge proof system
for this claim does exist (without assuming anything). In fact, it suffices to use a witness-
independent proof system, and such a system having a constant number of rounds does
exist (again, without assuming anything). Hence, the factoring claw-free collection can
be used to construct a constant-round perfectly hiding commitment scheme, and thus
such commitment schemes also exist under the assumption that the factoring of Blum
integers is intractable.

4.8.2.4. Non-Uniform Computational Unambiguity

Actually, for the applications to proof/argument systems, both the one following and
the one in Section 4.9.1, we need commitment schemes with perfect secrecy and non-
uniform computational unambiguity. (The reason for this need is analogous to one
discussed in the case of the zero-knowledge proof for NP presented in Section 4.4.)
By non-uniform computational unambiguity we mean that the unambiguity condition
should also hold for (non-uniform) families of polynomial-size circuits. We stress that
the foregoing constructions of perfect commitment schemes possess the non-uniform
computational unambiguity, provided that the underlying intractability assumption also
holds with respect to non-uniform polynomial-size circuits (e.g., the one-way permu-
tation is hard to invert even by such circuits, and the claw-free collections also foil
non-uniform polynomial-size claw-forming circuits).

In order to prevent the terminology from becoming too cumbersome, we omit the
attribute “non-uniform” when referring to the perfectly hiding commitment schemes
in the description of the two applications mentioned earlier.

4.8.2.5. Commitment Schemes with A Posteriori Secrecy

We conclude the discussion of perfectly hiding commitment schemes by introducing
a relaxation of the secrecy requirement. The resulting scheme cannot be used for the
purposes of the current section, yet it is useful in different settings discussed later.
The advantage of the relaxation is that it allows us to construct such (constant-round
perfectly hiding) commitment schemes using any claw-free collection, thus waiving
the additional requirement that the index set be efficiently recognizable.

Loosely speaking, we relax the secrecy requirement of perfectly hiding commitment
schemes by requiring that it hold only when the receiver follows its prescribed program

283

ZERO-KNOWLEDGE PROOF SYSTEMS

(denoted R). This seems strange, because we do not really want to assume that the real
receiver follows the prescribed program (but rather protect against arbitrary behavior).
The point is that a real receiver may disclose its commit-phase coin tosses at a later
stage, say even after the reveal phase, and by doing so prove a posteriori that (at least
in some weak sense) it was following the prescribed program. Actually, the receiver
proves only that it has behaved in a manner that is consistent with its program.

Definition 4.8.7 (Commitment Scheme with Perfect A Posteriori Secrecy):
A bit-commitment scheme with perfect a posteriori secrecy is defined as in
Definition 4.8.2, except that the secrecy requirement is replaced by the following
a posteriori secrecy requirement: For every string r ∈ {0, 1}poly(n), it holds that
〈S(0), Rr 〉(1n) and 〈S(1), Rr 〉(1n) are statistically close, where Rr denotes the
execution of the interactive machine R when using internal coin tosses r .

Proposition 4.8.8: Let (I, D, F) be a claw-free collection. Consider a modifica-
tion of Construction 4.8.5 in which the sender’s check of whether or not i is in the
range of I (1n) is omitted (from the commit phase). Then the resulting protocol
constitutes a bit-commitment scheme with perfect a posteriori secrecy.

We stress that in contrast to Proposition 4.8.6, here the claw-free collection need not
have an efficiently recognizable index set. Hence, we had to omit the sender’s check.
Yet the receiver can later prove that the message it sent during the commit phase (i.e., i)
is indeed a valid index simply by disclosing the random coins it used in order to generate
i (using algorithm I).

Proof Sketch: The a posteriori secrecy requirement follows directly from
Property 2 of a claw-free collection (combined with the fact that i is indeed
a valid index, since it is generated by invoking I). The unambiguity requirement
follows as in Proposition 4.8.6. �

A typical application of a commitment scheme with perfect a posteriori secrecy is
presented in Section 4.9.1. In that setting the commitment scheme is used inside an
interactive proof, with the verifier playing the role of the sender (and the prover playing
the role of the receiver). If the verifier a posteriori learns that the prover has been
cheating, then the verifier rejects the input. Hence, no damage is caused, in this case,
by the fact that the secrecy of the verifier’s commitments may have been breached.

4.8.3. Perfect Zero-Knowledge Arguments for NPNPNP
Having a perfectly hiding commitment scheme at our disposal, we can construct perfect
zero-knowledge arguments forNP by modifying the construction of (computational)
zero-knowledge proofs (forNP) in a totally syntactic manner. We recall that in these
proof systems (e.g., Construction 4.4.7 for Graph 3-Colorability) the prover uses a
perfectly binding commitment scheme in order to commit itself to many values, some
of which it later reveals upon the verifier’s request. All that is needed is to replace
the perfectly binding commitment scheme used by the prover with a perfectly hiding

284

4.8.∗∗ COMPUTATIONALLY SOUND PROOFS (ARGUMENTS)

commitment scheme. We claim that the resulting protocol is a perfect zero-knowledge
argument (i.e., computationally sound proof) for the original language.

Proposition 4.8.9: Consider a modification of Construction 4.4.7 such that the
commitment scheme used by the prover is replaced by a perfectly hiding com-
mitment scheme. Then the resulting protocol is a perfect zero-knowledge weak
argument for Graph 3-Colorability.

By a weak argument we mean a protocol in which the gap between the completeness
and the computational-soundness conditions is noticeable. In our case, the verifier
always accepts inputs in G3C , whereas no efficient prover can fool him into accepting
graphs G = (V, E) not in G3C with probability that is non-negligibly greater than
1− 1

|E | . Specifically, we shall show that no efficient prover can fool him into accepting
graphs G = (V, E) not in G3C with probability greater than 1− 1

2|E | . Recall that by
(sequentially) repeating this protocol polynomially many times the (computational-
soundness) error probability can be made negligible.

Proof Sketch: We start by proving that the resulting protocol is perfect zero-
knowledge for G3C . We use the same simulator as in the proof of Proposi-
tion 4.4.8. However, this time analyzing the properties of the simulator is much
easier and yields stronger results, the reason being that here the prover’s commit-
ment is perfectly hiding, whereas there it is only computationally hiding. Thus,
here the prover’s commitments are distributed independently of the committed
values, and consequently the verifier acts in total oblivion of the values. It follows
that the simulator outputs a transcript with probability exactly 2

3 , and for similar
reasons this transcript is distributed identically to the real interaction. The perfect
zero-knowledge property follows.

The completeness condition is obvious, as in the proof of Proposition 4.4.8.
It is left to prove that the protocol satisfies the (weak) computational-soundness
requirement. This is indeed the more subtle part of the current proof (in contrast
to the proof of Proposition 4.4.8, in which proving soundness is quite easy). The
reason is that here the prover’s commitment is only computationally binding,
whereas there it is perfectly binding. Thus, here we use a reducibility argument to
show that a prover’s ability to cheat, with too high a probability, on inputs not in
G3C translates to an algorithm contradicting the unambiguity of the commitment
scheme. Details follow.

We assume, to the contradiction, that there exists a (polynomial-time) cheat-
ing prover P∗ and an infinite sequence of integers such that for each integer n in
this sequence, there exist graphs Gn = (Vn, En) �∈ G3C and a string yn such that
P∗(yn) leads the verifier to accept Gn with probability greater than 1− 1

2|En | . Let
k

def= |Vn|. Let c1, . . . , ck be the sequence of commitments (to the vertex colors)
sent by the prover in Step P1. Recall that in the next step, the verifier sends a
uniformly chosen edge (of En), and the prover must answer by revealing dif-
ferent colors for its endpoint; otherwise the verifier rejects. A straightforward

285

ZERO-KNOWLEDGE PROOF SYSTEMS

calculation shows that because Gn is not 3-colorable there must exist a vertex
for which the prover is able to reveal at least two different colors. Hence, we
can construct a polynomial-size circuit incorporating P∗, Gn , and yn that violates
the (non-uniform) unambiguity condition. Contradiction to the hypothesis of the
proposition follows, and this completes the proof. �

Combining Propositions 4.8.4 and 4.8.9, we get the following:

Corollary 4.8.10: If non-uniformly one-way permutations exist, then every
language inNP has a perfect zero-knowledge argument.

ZK Proofs versus Perfect ZK Arguments: Which to Prefer?

Propositions 4.4.8 and 4.8.9 exhibit a kind of trade-off between the strength of the
soundness and zero-knowledge properties. The protocol of Proposition 4.4.8 offers
computational zero-knowledge and “perfect” soundness, whereas the protocol of
Proposition 4.8.9 offers perfect zero-knowledge and only computational soundness.
We remark that the two results are not obtained under the same assumptions: The con-
clusion of Proposition 4.4.8 is valid as long as one-way functions exist, whereas the
conclusion of Proposition 4.8.9 seems to require a (probably) stronger assumption. Yet
one may ask which of the two protocols we should prefer, assuming that they are both
valid (i.e., assuming that the underlying complexity assumptions hold). The answer de-
pends on the setting (i.e., application) in which the protocol is to be used. In particular,
one should consider the following issues:

• The relative importance attributed to soundness and zero-knowledge in the specific
application. In case of clear priority for one of the two properties, a choice should be
made accordingly.

• The computational resources of the various users in the application. One of the users
may be known to be in possession of much more substantial computing resources, and it
may be desirable to require that he/she not be able to cheat, not even in an information-
theoretic sense.

• The soundness requirement refers only to the duration of the execution, whereas in many
applications the zero-knowledge property may be of concern for a long time afterward.
If that is the case, then perfect zero-knowledge arguments do offer a clear advantage
(over zero-knowledge proofs).

4.8.4. Arguments of Poly-Logarithmic Efficiency

A dramatic improvement in the efficiency of zero-knowledge arguments for NP
can be obtained by combining the idea of an authentication tree with results regard-
ing probabilistically checkable proofs (PCPs). In particular, assuming the existence
of very strong collision-free hashing functions, one can construct a computationally
sound (zero-knowledge) proof for any language in NP , using only poly-logarithmic
amounts of communication and randomness. The interesting point in that statement is
the mere existence of such extremely efficient arguments, let alone their zero-knowledge

286

4.8.∗∗ COMPUTATIONALLY SOUND PROOFS (ARGUMENTS)

property. Hence, we confine ourselves to describing the ideas involved in construct-
ing such arguments and do not address the issue of making them zero-knowledge.
(We stress that the argument system presented next is not zero-knowledge, unless
NP ⊆ BPP .)

By the so-called PCP theorem, every NP language L can be reduced to 3S AT ,
so that non-members of L are mapped into 3CNF formulae for which every truth
assignment satisfies at most a 1− ε fraction of the clauses, where ε > 0 is a universal
constant. Let us denote this reduction by f . Now, in order to prove that x ∈ L , it
suffices to prove that the formula f (x) is satisfiable. This can be done by supplying a
satisfying assignment for f (x). The interesting point is that the verifier need not check
that all clauses of f (x) are satisfied by the given assignment. Instead, it can uniformly
select only poly-logarithmically many clauses and check that the assignment satisfies
all of them. If x ∈ L (and the prover supplies a satisfying assignment to f (x)), then
the verifier will always accept. But if x �∈ L , then no assignment will satisfy more than
a 1− ε fraction of the clauses, and consequently a uniformly chosen clause will not
be satisfied with probability at least ε. Hence, checking super-logarithmically many
clauses will do.

The preceding paragraph shows that the randomness complexity can be made poly-
logarithmic and that the verifier need only inspect a poly-logarithmic number of ran-
domly selected values. Specifically, the prover commits to each of the values of the
variables in the formula f (x) but is asked to reveal only a few of them. To obtain (total)
poly-logarithmic communication complexity, we use a special commitment scheme
that allows us to commit to a string of length n such that the commitment phase takes
poly-logarithmic communication and individual bits of this string can be revealed (and
verified as correct) at poly-logarithmic communication cost. For constructing such
a commitment scheme, we use a collision-free hashing function. The function maps
strings of some length to strings of half that length, so that it is “hard” to find two
strings that are mapped by the function to the same image. (The following descrip-
tion is slightly inaccurate. What we need is a family of hashing functions such that no
small non-uniform circuit, given the description of a function in the family, can form
collisions with respect to it.)

Let n denote the length of the input string to which the sender wishes to commit
itself, and let k be a parameter (which is later set to be poly-logarithmic in n). Denote by
H a collision-free hashing function mapping strings of length 2k into strings of length
k. The sender partitions its input string into m

def= n
k consecutive blocks, each of length

k. Next, the sender constructs a binary tree of depth log2 m, placing the m blocks in the
corresponding leaves of the tree. In each internal node, the sender places the hashing
value obtained by applying the function H to the content of the children of this node.
The only message sent in the commit phase is the content of the root (sent by the sender
to the receiver). By doing so, unless the sender can form collisions under H , the sender
has “committed” itself to some n-bit-long string. When the receiver wishes to get the
value of a specific bit in the string, the sender reveals to the receiver the contents of
both children of each node along the path from the root to the corresponding leaf. The
receiver checks that the values supplied for each node (along the path) match the value
obtained by applying H to the values supplied for its two children.

287

ZERO-KNOWLEDGE PROOF SYSTEMS

The protocol for arguing that x ∈ L consists of the prover committing itself to a
satisfying assignment for f (x) using the foregoing scheme and the verifier checking
individual clauses by asking the prover to reveal the values assigned to the variables in
these clauses. The protocol can be shown to be computationally sound provided that it
is infeasible to find a distinct pair α, β ∈ {0, 1}2k such that H (α) = H (β). Specifically,
we need to assume that forming collisions under H is not possible in sub-exponential
time, namely, that for some δ > 0 forming collisions with probability greater than 2−kδ

must take at least 2kδ time. In such a case, we set k = (log n)1+ 1
δ and get a computa-

tionally sound proof of communication complexity O(log n
o(1) · (log m) · k) = polylog(n).

(Weaker lower bounds for the collision-forming task may yield meaningful results by
an appropriate setting of the parameter k; for example, the standard assumption that
claws cannot be formed in polynomial time allows us to set k = nε, for any constant
ε > 0, and obtain communication complexity of nε+o(1).) We stress that collisions can
always be formed in time 22k , and hence the entire approach fails if the prover is not
computationally bounded (and consequently we cannot get (perfectly sound) proof sys-
tems this way). Furthermore, one can show that only languages in Dtime(2polylog) have
proof systems with poly-logarithmic communication and randomness complexities.

4.9.∗ Constant-Round Zero-Knowledge Proofs

In this section we consider the problem of constructing constant-round zero-knowledge
proof systems with negligible error probability for all languages in NP . To make the
rest of the discussion less cumbersome, we define a proof system to be round-efficient
if it is both constant-round and has negligible error probability. We stress that none
of the zero-knowledge proof systems for NP presented and discussed thus far have
been round-efficient (i.e., they either had non-constant numbers of rounds or had non-
negligible error probability).

We present two approaches to the construction of round-efficient zero-knowledge
proofs forNP :

1. basing the construction of round-efficient zero-knowledge proof systems on constant-
round perfectly hiding commitment schemes (as defined in Section 4.8.2)

2. constructing (round-efficient zero-knowledge) computationally sound proof systems (as
defined in Section 4.8) instead of (round-efficient zero-knowledge) proof systems

The advantage of the second approach is that round-efficient zero-knowledge computa-
tionally sound proof systems forNP can be constructed using any one-way function,
whereas it is not known if round-efficient zero-knowledge proof systems for NP can
be constructed under the same general assumption. In particular, we know how to con-
struct constant-round perfectly hiding commitment schemes only by using seemingly
stronger assumptions (e.g., the existence of claw-free permutations).

The two approaches have a fundamental idea in common. We start with an abstract
exposition of this common idea. Recall that the basic zero-knowledge proof for Graph
3-Colorability, presented in Construction 4.4.7, consists of a constant number of rounds.
However, this proof system has a non-negligible error probability (in fact, the error

288

4.9.∗∗ CONSTANT-ROUND ZERO-KNOWLEDGE PROOFS

probability is very close to 1). In Section 4.4 it was suggested that the error probability
be reduced to a negligible value by sequentially applying the proof system sufficiently
many times. The problem is that this yields a proof system with a non-constant number
of rounds. A natural suggestion is to perform the repetitions of the basic proof in
parallel, instead of sequentially. The problem with this “solution” is that it is not known
if the resulting proof system is zero-knowledge. Furthermore, it is known that it is not
possible to present, as done in the proof of Proposition 4.4.8, a single simulator that
uses any possible verifier as a black box (see Section 4.5.4). The source of trouble is
that when playing many copies of Construction 4.4.7 in parallel, a cheating verifier
can select the edge to be inspected (i.e., Step V1) in each copy, depending on the
commitments sent in all copies (i.e., in Step P1). Such behavior of the verifier defeats
a simulator analogous to the one presented in the proof of Proposition 4.4.8.

One way to overcome this difficulty is to “switch” the order of Steps P1 and V1. But
switching the order of these steps enables the prover to cheat (by sending commitments
in which only the “query edges” are colored correctly). Hence, a more refined approach
is required. The verifier starts by committing itself to one edge query per each copy (of
Construction 4.4.7), then the prover commits itself to the coloring in each copy, and
only then does the verifier reveal its queries, after which the rest of the proof proceeds
as before. The commitment scheme used by the verifier should prevent the prover from
predicting the sequence of edges committed to by the verifier. This is the point where
the two approaches differ.

1. The first approach uses a perfectly hiding commitment scheme. The problem with this
approach is that such (constant-round) schemes are known to exist only under seem-
ingly stronger assumptions than merely the existence of one-way functions. Yet such
schemes do exist under assumptions such as the intractability of factoring integers or the
intractability of the discrete-logarithm problem.

2. The second approach bounds the computational resources of prospective cheating
provers. Consequently, it suffices to utilize, “against” these provers (as commitment
receivers), commitment schemes with computational security. We remark that this ap-
proach uses (for the commitments by the prover) a commitment scheme with an extra
property. Yet such schemes can be constructed using any one-way function.

Caveat. Both approaches lead to protocols that are zero-knowledge in a liberal sense
(i.e., using expected polynomial-time simulators as defined in Section 4.3.1.6). It is not
known if these protocols (or other round-efficient protocols forNP) can be shown to
be zero-knowledge in the strict sense (i.e., using strict probabilistic polynomial-time
simulators).

4.9.1. Using Commitment Schemes with Perfect Secrecy

For the sake of clarity, let us start by presenting a detailed description of the constant-
round interactive proof (for Graph 3-Colorability, G3C) sketched earlier. This in-
teractive proof employs two different commitment schemes. The first scheme is the
simple (perfectly binding) commitment scheme presented in Construction 4.4.2. We
denote by Cs(σ) the commitment of the sender, using coins s, to the (ternary) value

289

ZERO-KNOWLEDGE PROOF SYSTEMS

σ ∈ {1, 2, 3}. The second commitment scheme is a perfectly hiding commitment
scheme (see Section 4.8.2). For simplicity, we assume that this scheme has a com-
mit phase in which the receiver sends one message to the sender, which then replies
with a single message (e.g., Construction 4.8.5). Let us denote by Pm,s(α) the (perfectly
hiding) commitment of the sender to the string α, upon receiving message m (from the
receiver) and when using coins s.

Construction 4.9.1 (A Round-Efficient Zero-Knowledge Proof for G3C):

� Common input: A simple (3-colorable) graph G = (V, E). Let n
def= |V |,

t
def= n · |E |, and V = {1, . . . , n}.

� Auxiliary input to the prover: A 3-coloring of G, denoted ψ .
� Prover’s preliminary step (P0): The prover invokes the commit phase of the perfectly

hiding commitment scheme, which results in sending to the verifier a message m.
� Verifier’s preliminary step (V0): The verifier uniformly and independently selects

a sequence of t edges, E
def= ((u1, v1), . . . , (ut , vt)) ∈ Et , and sends the prover a

random commitment to these edges. Namely, the verifier uniformly selects
s ∈ {0, 1}poly(n) and sends Pm,s(E) to the prover.

� Motivating remark: At this point the verifier is committed (in a computational
sense) to a sequence of t edges. Because this commitment is of perfect secrecy, the
prover obtains no information about the edge sequence.

� Prover’s step (P1): The prover uniformly and independently selects t permu-

tations, π1, . . . , πt , over {1, 2, 3} and sets φ j (v)
def= π j (ψ(v)) for each v ∈ V

and 1 ≤ j ≤ t . The prover uses the (perfectly binding, computationally hiding)
commitment scheme to commit itself to colors of each of the vertices accord-
ing to each 3-coloring. Namely, the prover uniformly and independently selects
s1,1, . . . , sn,t ∈ {0, 1}n, computes ci, j = Csi, j (φ j (i)) for each i ∈ V and 1 ≤ j ≤ t ,
and sends c1,1, . . . , cn,t to the verifier.

� Verifier’s step (V1): The verifier performs the (canonical) reveal phase of its com-
mitment, yielding the sequence E = ((u1, v1), . . . , (ut , vt)). Namely, the verifier
sends (s, E) to the prover.

� Motivating remark: At this point the entire commitment of the verifier is revealed.
The verifier now expects to receive, for each j , the colors assigned by the j th
coloring to vertices u j and v j (the endpoints of the j th edge in the sequence E).

� Prover’s step (P2): The prover checks that the message just received from the
verifier is indeed a valid revealing of the commitment made by the verifier at
Step V0. Otherwise the prover halts immediately. Let us denote the sequence of
t edges, just revealed, by (u1, v1), . . . , (ut , vt). The prover uses the (canonical)
reveal phase of the perfectly binding commitment scheme in order to reveal to the
verifier, for each j , the j th coloring of vertices u j and v j . Namely, the prover sends
to the verifier the sequence of quadruples(

su1,1, φ1(u1), sv1,1, φ1(v1)
)
, . . . ,

(
sut ,t , φt (ut), svt ,t , φt (vt)

)
� Verifier’s step (V2): The verifier checks whether or not, for each j , the values in

the j th quadruple constitute a correct revealing of the commitments cu j , j and cv j , j

and whether or not the corresponding values are different. Namely, upon receiving

290

4.9.∗∗ CONSTANT-ROUND ZERO-KNOWLEDGE PROOFS

(s1, σ1, s ′1, τ1) through (st , σt , s ′t , τt), the verifier checks whether or not for each j
it holds that cu j , j = Cs j (σ j), cv j , j = Cs ′j (τ j), and σ j �= τ j (and both σ j and τ j are
in {1, 2, 3}). If all conditions hold, then the verifier accepts. Otherwise it rejects.

We first assert that Construction 4.9.1 is indeed an interactive proof for G3C . Clearly,
the verifier always accepts a common-input in G3C . Suppose that the common input
graph, G = (V, E), is not in G3C . Using the perfect-binding feature of the prover’s
commitment, we can refer to the values committed to in Step P1 and say that each of
the “committed colorings” sent by the prover in Step P1 contains at least one illegally
colored edge. Using the perfect secrecy of the commitments sent by the verifier in
Step V0, we deduce that at Step P1 the prover has “no idea” which edges the verifier asks
to see (i.e., as far as the information available to the prover is concerned, all possibilities
are equally likely). Hence, although the prover sends the “coloring commitment” after
receiving the “edge commitment,” the probability that all the “committed edges” have
legally “committed coloring” is at most(

1− 1

|E |
)t

≈ e−n < 2−n

The (Basic) Simulation Strategy. We now proceed to show that Construction 4.9.1
is indeed zero-knowledge (in the liberal sense allowing expected polynomial-time
simulators). For every probabilistic polynomial-time interactive machine V ∗, we in-
troduce an expected polynomial-time simulator, denoted M∗, that uses V ∗ as a black
box. The simulator starts by selecting and fixing a random tape r for V ∗ and by emulat-
ing the prover’s preliminary Step P0, producing a message m. Given the input graph G,
the random tape r , and the preliminary (prover) message m, the commitment message
of the verifier V ∗ is determined. Hence, M∗ invokes V ∗ on input G, random tape r ,
and message m and gets the corresponding commitment message, denoted C M . The
simulator proceeds in two steps.

S1. Extracting the query edges: M∗ generates a sequence of n · t random commit-
ments to dummy values (e.g., all values equal 1) and feeds it to V ∗. In case V ∗

replies by revealing correctly a sequence of t edges, denoted (u1, v1), . . . , (ut , vt),
the simulator records these edges and proceeds to the next step. In case the reply
of V ∗ is not a valid revealing of the commitment message C M , the simulator halts
outputting the current view of V ∗ (e.g., G, r , m, and the commitments to dummy
values).

S2. Generating an interaction that satisfies the query edges (an oversimplified expo-
sition): Let (u1, v1), . . . , (ut , vt) denote the sequence of edges recorded in Step S1.
Machine M∗ generates a sequence of n · t commitments, c1,1, . . . , cn,t , such that
for each j = 1, . . . , t it holds that cu j , j and cv j , j are random commitments to two
different random values in {1, 2, 3}, and all the other ci, j ’s are random commitments
to dummy values (e.g., all values equal 1). The underlying values are called pseudo-
colorings. The simulator feeds this sequence of commitments to V ∗. If V ∗ replies
by revealing correctly the (previously recorded) sequence of edges, then M∗ can
complete the simulation of a “real” interaction of V ∗ (by revealing the colors of the

291

ZERO-KNOWLEDGE PROOF SYSTEMS

endpoints of these recorded edges). Otherwise, the entire Step S2 is repeated (until
success is achieved).

For the sake of simplicity, we ignore the preliminary message m in the rest of the analy-
sis. Furthermore, in the rest of the analysis we ignore the possibility that when invoked
in Steps S1 and S2 the verifier reveals two different edge commitments. Loosely speak-
ing, this is justified by the fact that during an expected polynomial-time computation,
such an event can occur with only negligible probability (since otherwise it contradicts
the computational unambiguity of the commitment scheme used by the verifier).

The Running Time of the Oversimplified Simulator. To illustrate the behavior of
the simulator, assume that the program V ∗ always correctly reveals the commitment
made in Step V0. In such a case, the simulator will find out the query edges in Step S1,
and using them in Step S2 it will simulate the interaction of V ∗ with the real prover.
Using ideas such as in Section 4.4 one can show that the simulation is computationally
indistinguishable from the real interaction. Note that in this case Step S2 of the simulator
is performed only once.

Consider now a more complex case in which on each possible sequence of internal
coin tosses r , program V ∗ correctly reveals the commitment made in Step V0 only with
probability 1

3 . The probability in this statement is taken over all possible commitments
generated to the dummy values (in the simulator Step S1). We first observe that the
probability that V ∗ correctly reveals the commitment made in Step V0, after receiving a
random commitment to a sequence of pseudo-colorings (generated by the simulator in
Step S2), is approximately 1

3 (otherwise we derive a contradiction to the computational
secrecy of the commitment scheme used by the prover). Hence the simulator reaches
Step S2 with probability 1

3 , and each execution of Step S2 is completed successfully
with probability p ≈ 1

3 . It follows that the expected number of times that Step S2 is
executed is 1

3 · 1
p ≈ 1.

Let us now consider the general case. Let q(G, r) denote the probability that on
input graph G and random tape r , after receiving random commitments to dummy
values (generated in Step S1), program V ∗ correctly reveals the commitment made
in Step V0. Likewise, we denote by p(G, r) the probability that (on input graph G
and random tape r) after receiving a random commitment to a sequence of pseudo-
colorings (generated by the simulator in Step S2), program V ∗ correctly reveals the
commitment made in Step V0. As before, the difference between q(G, r) and p(G, r)
is negligible (in terms of the size of the graph G); otherwise one derives a contradiction
to the computational secrecy of the prover’s commitment scheme. We conclude that the

simulator reaches Step S2 with probability q
def= q(G, r), and each execution of Step S2

is completed successfully with probability p
def= p(G, r). It follows that the expected

number of times that Step S2 is executed is q · 1
p . Now, here is the bad news: We cannot

guarantee that q
p is approximately 1 or is even bounded by a polynomial in the input

size (e.g., let p = 2−n and q = 2−n/2, then the difference between them is negligible,
and yet q

p is not bounded by poly(n)). This is why the foregoing description of the
simulator is oversimplified and a modification is indeed required.

292

4.9.∗∗ CONSTANT-ROUND ZERO-KNOWLEDGE PROOFS

The Modified Simulator. We make the simulator expected polynomial-time by mod-
ifying Step S2 as follows. We add an intermediate Step S1.5, to be performed only
if the simulator does not halt in Step S1. The purpose of Step S1.5 is to provide a
good estimate of q(G, r). The estimate is computed by repeating Step S1 until a fixed
(polynomial-in-|G|) number of correct V ∗ revelations is reached (i.e., the estimate will
be the ratio of the number of successes divided by the number of trials). By fixing a
sufficiently large polynomial, we can guarantee that with overwhelmingly high proba-
bility (i.e., 1− 2−poly(|G|)) the estimate is within a constant factor of q(G, r). It is easily
verified that the estimate can be computed within expected time poly(|G|)/q(G, r).
Step S2 of the simulator is modified by adding a bound on the number of times it
is performed, and if none of these executions yields a correct V ∗ revelation, then
the simulator outputs a special empty interaction. Specifically, Step S2 will be per-
formed at most poly(|G|)/q̃ times, where q̃ is the estimate for q(G, r) computed in
Step S1.5. It follows that the modified simulator has an expected running time bounded
by q(G, r) · poly(|G|)

q(G,r) = poly(|G|).
It is left to analyze the output distribution of the modified simulator. We confine

ourselves to reducing this analysis to the analysis of the output of the original simu-
lator by bounding the probability that the modified simulator outputs a special empty
interaction. This probability equals

�(G, r) def= q(G, r) · (1− p(G, r))poly(|G|)/q(G,r)

We claim that�(G, r) is a negligible function of |G|. Assume, to the contrary, that there
exists a polynomial P(·), an infinite sequence of graphs {Gn}, and an infinite sequence
of random tapes {rn} such that�(Gn, rn) > 1/P(n). It follows that for each such n, we
have q(Gn, rn) > 1/P(n). We consider two cases.

Case 1: For infinitely many n’s, it holds that p(Gn, rn) ≥ q(Gn, rn)/2. In such
a case we get, for these n’s,

�(Gn, rn) ≤ (1− p(Gn, rn))poly(|Gn |)/q(Gn ,rn)

≤
(

1− q(Gn, rn)

2

)poly(|Gn |)/q(Gn ,rn)

< 2−poly(|Gn |)/2

which contradicts our hypothesis that �(Gn, rn) > 1/poly(n).

Case 2: For infinitely many n’s, it holds that p(Gn, rn) < q(Gn, rn)/2. It follows
that for these n’s, we have |q(Gn, rn)− p(Gn, rn)| > q(Gn ,rn)

2 > 1
2P(n) , which leads

to contradiction of the computational secrecy of the commitment scheme (used
by the prover).

Hence, contradiction follows in both cases. �

Conclusion. We remark that one can modify Construction 4.9.1 so that weaker forms
of perfect commitment schemes can be used. We refer specifically to commitment
schemes with perfect a posteriori secrecy (see Section 4.8.2). In such schemes the

293

ZERO-KNOWLEDGE PROOF SYSTEMS

secrecy is established only a posteriori by the receiver disclosing the coin tosses it used
in the commit phase. In our case, the prover plays the role of the receiver, and the verifier
plays the role of the sender. It suffices to establish the secrecy property a posteriori,
because if secrecy is not established, then the verifier will reject. In such a case no harm
has been done, because the secrecy of the perfect commitment scheme is used only
to establish the soundness of the interactive proof. Thus, using Proposition 4.8.8, we
obtain the following:

Corollary 4.9.2: If non-uniformly claw-free collections exist, then every language
inNP has a round-efficient zero-knowledge proof system.

4.9.2. Bounding the Power of Cheating Provers

Construction 4.9.1 yields round-efficient zero-knowledge proof systems for NP , un-
der the assumption that claw-free collections exist. Using the seemingly more general
assumption that one-way functions exist, we can modify Construction 4.9.1 so as to
obtain zero-knowledge computationally sound proof systems. In the modified proto-
col, we let the verifier use a commitment scheme with computational secrecy, instead
of the commitment scheme with perfect secrecy used in Construction 4.9.1. (Hence,
both users commit to their messages using a perfectly binding commitment scheme,
which offers only computational secrecy.) Furthermore, the commitment scheme used
by the prover must have the extra property that it is infeasible to construct a com-
mitment without “knowing” to what value it commits. Such a commitment scheme is
called non-oblivious. We start by defining and constructing non-oblivious commitment
schemes.

4.9.2.1. Non-Oblivious Commitment Schemes

The non-obliviousness of a commitment scheme is intimately related to the definition
of proof of knowledge (see Section 4.7).

Definition 4.9.3 (Non-Oblivious Commitment Schemes): Let (S, R) be a (per-
fectly binding) commitment scheme as in Definition 4.4.1. We say that the commit-
ment scheme is non-oblivious if the prescribed receiver R constitutes a knowledge
verifier that is always convinced by S for the relation{

((1n, r,m), (σ, s)) : m = viewS(σ,1n ,s)
R(1n ,r)

}
where, as in Definition 4.4.1, viewS(σ,1n ,s)

R(1n ,r) denotes the messages received by the
interactive machine R, on input 1n and local coins r , when interacting with
machine S (which has input (σ, 1n) and uses coins s).

It follows that the receiver’s prescribed program, R, may accept or reject at the end
of the commit phase and that this decision is supposed to reflect the sender’s ability
to later come up with a legal opening of the commitment (i.e., successfully complete

294

4.9.∗∗ CONSTANT-ROUND ZERO-KNOWLEDGE PROOFS

the reveal phase). We stress that non-obliviousness relates mainly to cheating senders,
because the prescribed sender has no difficulty in later successfully completing the
reveal phase (and in fact, during the commit phase, S always convinces the receiver
of this ability). Hence, any sender program (not merely the prescribed S) that makes
the receiver accept can be modified so that at the end of the commit phase it (locally)
outputs information enabling the reveal phase (i.e., σ and s). The modified sender runs
in expected time that is inversely proportional to the probability that the commit phase
is completed successfully.

We remark that in an ordinary commitment scheme, at the end of the commit phase,
the receiver does not necessarily “know” whether or not the sender can later successfully
conduct the reveal phase. For example, a cheating sender in Construction 4.4.2 can
(undetectedly) perform the commit phase without having the ability to later successfully
perform the reveal phase (e.g., the sender may simply send a uniformly chosen string). It
is guaranteed only that if the sender follows the prescribed program, then the sender can
always succeed in the reveal phase. Furthermore, with respect to the scheme presented
in Construction 4.4.4, a cheating sender can (undetectedly) perform the commit phase
in a way that yields a receiver view that does not have any corresponding legal opening
(and hence the reveal phase is doomed to fail); see Exercise 14. Nevertheless, one can
prove the following:

Theorem 4.9.4: If one-way functions exist, then there exist non-oblivious com-
mitment schemes with a constant number of communication rounds. Furthermore,
the commitment scheme also preserves the secrecy property when applied (poly-
nomially) many times in parallel.

The simultaneous secrecy of many copies is crucial to the application in Section
4.9.2.2.

Proof Idea: Recall that (ordinary perfectly binding) commitment schemes can
be constructed assuming the existence of one-way functions (see Proposition 4.4.5
and Theorem 3.5.12). Combining such an ordinary commitment scheme with a
zero-knowledge proof of knowledge of information allowing a proper decommit-
ment, we get a non-oblivious commitment scheme. (We remark that such proofs
do exist under the same assumptions; see Section 4.7.) However, the resulting
commitment scheme has an unbounded number of rounds (due to the round
complexity of the zero-knowledge proof), whereas we need a bounded-round
scheme. We seem to have reached a vicious circle, yet there is a way out: We
can use constant-round strong witness-indistinguishable proofs of knowledge,
instead of the zero-knowledge proofs (of knowledge). Such proofs do exist under
the same assumptions; see Section 4.6 and Exercise 28. The resulting commitment
scheme has the additional property that when applied (polynomially) many times
in parallel, the secrecy property holds simultaneously in all copies. This fact fol-
lows from the parallel-composition lemma for (strong) witness-indistinguishable
proofs (see Section 4.6). �

295

ZERO-KNOWLEDGE PROOF SYSTEMS

4.9.2.2. Modifying Construction 4.9.1

Recall that we are referring to a modification of Construction 4.9.1 in which the verifier
uses a perfectly binding commitment scheme (with computational secrecy), instead of
the commitment scheme with perfect secrecy used in Construction 4.9.1. In addition,
the commitment scheme used by the prover is non-oblivious.

We adopt the analysis of the first approach (i.e., of Section 4.9.1) to suit our current
needs. We start with the claim that the modified protocol is a computationally sound
proof for G3C . Verifying that the modified protocol satisfies the completeness condition
is easy, as usual. We remark that the modified protocol does not satisfy the (usual)
soundness condition (e.g., a “prover” of exponential computing power can break the
verifier’s commitment and generate pseudo-colorings that will later fool the verifier
into accepting). Nevertheless, one can show that the modified protocol does satisfy
the computational-soundness condition (of Definition 4.8.1). Namely, we show that
for every polynomial p(·), for every polynomial-time interactive machine B, for all
sufficiently large graphs G �∈ G3C , and for every y and z,

Pr [〈B(y), VG3C (z)〉(x) = 1] ≤ 1

p(|x |)
where VG3C is the verifier program in the modified protocol.

Using the information-theoretic unambiguity of the commitment scheme employed
by the prover, we can talk of a unique color assignment that is induced by the prover’s
commitments. Using the fact that this commitment scheme is non-oblivious, it fol-
lows that the prover can be modified so that in Step P1 it will also output (on its
private output tape) the values to which it commits itself at this step. Using this out-
put and relying on the computational secrecy of the verifier’s commitment scheme,
it follows that the color assignment generated by the prover is almost independent of
the verifier’s commitment. Hence, the probability that the prover can fool the verifier
into accepting an input not in the language is at most negligibly greater than what it
would have been if the verifier had asked random queries after the prover made its
(color) commitments. The computational soundness of the (modified) protocol fol-
lows. (We remark that we do not know if the protocol is computationally sound in
the case in which the prover uses a commitment scheme that is not guaranteed to be
non-oblivious.22)

Showing that the (modified) protocol is zero-knowledge is even easier than it was
in the first approach (i.e., in Section 4.9.1). The reason is that when demonstrating

22Specifically, we do not know how to rule out the possibility that after seeing the verifier’s commitment of
Step V0, the cheating prover could send some strings at Step P1 such that after the verifier revealed its commitments,
the prover could open those strings in a suitable way. To illustrate the problem, suppose that two parties wish to
toss a coin by using a (perfectly binding) commitment scheme and that the protocol is as follows: First, the first
party commits to a bit, then the second party commits to a bit, next the first party reveals its bit, finally the second
party reveals its bit, and the result is defined as the XOR of the two revealed bits. Now, by copying the messages
of the first party, the second party can force the outcome always to be zero! Note that this problem does not arise
when the second party uses a non-oblivious commitment scheme. The problem also does not arise when the first
party commits via a perfectly hiding commitment scheme (and the second party still uses a perfectly binding
commitment scheme). (The latter protocol is analogous to the proof system presented in Section 4.9.1.)

296

4.9.∗∗ CONSTANT-ROUND ZERO-KNOWLEDGE PROOFS

zero-knowledge of such protocols, we use the secrecy of the prover’s commitment
scheme and the unambiguity of the verifier’s commitment scheme. Hence, only these
properties of the commitment schemes are relevant to the zero-knowledge property
of the protocols. Yet the current (modified) protocol uses commitment schemes with
relevant properties that are not weaker than the ones of the corresponding commitment
schemes used in Construction 4.9.1. Specifically, the prover’s commitment scheme in
the modified protocol possesses computational secrecy, just like the prover’s commit-
ment scheme in Construction 4.9.1. We stress that this commitment, like the simpler
commitment used for the prover in Construction 4.9.1, has the simultaneous-secrecy (of
many copies) property. Furthermore, the verifier’s commitment scheme in the modified
protocol possesses “information-theoretic” unambiguity, whereas the verifier’s com-
mitment scheme in Construction 4.9.1 is merely computationally unambiguous. Thus,
using Theorem 4.9.4, we have the following:

Corollary 4.9.5: If non-uniformly one-way functions exist, then every language
inNP has a round-efficient zero-knowledge argument.

4.9.2.3. An Alternative Construction

An alternative way of deriving Corollary 4.9.5 is by modifying Construction 4.4.7 so
as to allow easy simulation, and in particular, robustness under parallel composition.
A key ingredient in this modification is the notion of commitment schemes with a
“trapdoor property.” Loosely speaking, the commit phase of such schemes consists of
a receiver message followed by a sender message, so that given the receiver’s private
coins one can efficiently generate strings that are computationally indistinguishable
from the sender’s message and yet later open these strings so as to reveal any value.
Note that this does not contradict the computational-binding property, since the latter
refers to cheating senders (that do not know the receiver’s private coins). We refrain from
presenting a formal definition and merely sketch how such schemes can be constructed
and used.

Constructing a Trapdoor Commitment Scheme Using Any One-Way Function. Let

f be a one-way function, and let R f
def= {(f (w), w) : w ∈ {0, 1}∗} be an NP-relation

(corresponding to the NP-set Range(f)). On security parameter n, the receiver se-
lects uniformly r ∈ {0, 1}n and reduces the instance f (r) ∈ Range(f) to an instance
of the Hamiltonian-cycle (HC) problem, using the standard reduction. The resulting
graph is sent to the sender that (not knowing a Hamiltonian cycle is in it) is asked
to execute Step P1 in Construction 4.7.14 so that it can respond to a Step-V1 mes-
sage that equals its input bit (to which it wishes to commit). That is, to commit to
the bit 0, the sender sends a matrix of commitments to the entries in the adjacency
matrix of a random isomorphic copy of the graph, whereas to commit to the bit 1,
the sender sends a matrix of commitments to the entries in the adjacency matrix of
a random (simple) n-cycle. Hence, the sender behaves analogously to the simula-
tor of Construction 4.7.14. That is repeated, in parallel, for n times, resulting in a
constant-round commitment scheme that is computationally hiding (by virtue of the

297

ZERO-KNOWLEDGE PROOF SYSTEMS

prover’s commitments in Step P1 of Construction 4.7.14) and computationally binding
(since otherwise the sender recovers r and so inverts f on input f (r)). In contrast,
knowledge of r allows one to execute the prover’s strategy for Step P1 of Construc-
tion 4.7.14 and later open the commitment either way. (Note that the standard reduc-
tion of Range(f) to HC is augmented by a polynomial-time computable and invertible
mapping of pre-images under f to Hamiltonian cycles in the corresponding reduced
graphs.)

Using the Trapdoor Commitment Scheme. One way of using the foregoing scheme
toward our goals is to use it for the prover’s commitment in (Step P1 of) Construc-
tion 4.4.7. To this end, we augment the trapdoor commitment scheme so that before
the sender sends its actual commitment (i.e., the message corresponding to Step P1 of
Construction 4.7.14) we let the receiver prove that it knows a (corresponding) trapdoor
(i.e., a sequence of coins that yields the graph it has sent to the sender). This proof
of knowledge need only be witness-hiding, and so it can be carried out in a constant
number of rounds. The simulator for the foregoing modification of Construction 4.4.7
first uses the corresponding knowledge extractor (to obtain the trapdoor for the prover’s
commitments) and then takes advantage of the trapdoor feature to generate false com-
mitments that it can later open any way it needs to (so as to answer the verifier’s
requests).

4.10.∗ Non-Interactive Zero-Knowledge Proofs

In this section we consider non-interactive zero-knowledge proof systems. The model
consists of three entities: a prover, a verifier, and a uniformly selected sequence of
bits (which can be thought of as being selected by a trusted third party). Both verifier
and prover can read the random sequence, and each can toss additional coins. The
interaction consists of a single message sent from the prover to the verifier, who then is
left with the decision (whether to accept or not). Non-interactive zero-knowledge proof
systems have various applications (e.g., to encryption schemes secure against chosen
message attacks and to signature schemes).

We start with basic definitions and constructions allowing us to prove a single as-
sertion of a priori bounded length. Next we extend the treatment to proof systems in
which many assertions of various lengths can be proved, as long as the total length of
all assertions is a polynomial in a security parameter but the polynomial is not a priori
known. Jumping ahead, we note that, unlike the basic treatment, the extended treatment
allows us to prove assertions of total length much greater than the length of the trusted
random string. The relation between the total length of the provable assertions and the
length of the trusted random string is analogous to the relation between the total length
of messages that can be encrypted (resp., documents that can be signed) and the length
of the encryption key (resp., signing key). We stress, however, that even handling the
basic case is very challenging in the current context (of non-interactive zero-knowledge
proofs).

298

4.10.∗∗ NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

4.10.1. Basic Definitions

The model of non-interactive proofs seems closer in spirit to the model ofNP-proofs
than to general interactive proofs. In a sense, the NP-proof model is extended by
allowing the prover and verifier to refer to a common random string, as well as toss
coins by themselves. Otherwise, as in the case ofNP-proofs, the interaction is minimal
(i.e., unidirectional: from the prover to the verifier). Thus, in the definition that follows,
both the prover and verifier are ordinary probabilistic machines that, in addition to the
common input, also get a uniformly distributed (common) reference string. We stress
that, in addition to the common input and common reference string, both the prover
and verifier can toss coins and get auxiliary inputs. However, for the sake of simplicity,
we present a definition for the case in which none of these machines gets an auxiliary
input (yet they both can toss additional coins). The verifier also gets as input the output
produced by the prover.

Definition 4.10.1 (Non-Interactive Proof System): A pair of probabilistic
machines (P, V) is called a non-interactive proof system for a language L
if V is polynomial-time and the following two conditions hold:
� Completeness: For every x ∈ L ,

Pr [V (x, R, P(x, R)) = 1] ≥ 2

3

where R is a random variable uniformly distributed in {0, 1}poly(|x |).
� Soundness: For every x �∈ L and every algorithm B,

Pr [V (x, R, B(x, R)) = 1] ≤ 1

3

where R is a random variable uniformly distributed in {0, 1}poly(|x |).

The uniformly chosen string R is called the common reference string.

As usual, the error probability in both conditions can be reduced (from 1
3) down to

2−poly(|x |) by repeating the process sufficiently many times (using a sequence of many
independently chosen reference strings). In stating the soundness condition, we have de-
viated from the standard formulation that allows x �∈ L to be adversarially selected after
R is fixed; the latter “adaptive” formulation of soundness is used in Section 4.10.3.2,
and it is easy to transform a system satisfying the foregoing (“non-adaptive”) soundness
condition into one satisfying the adaptive soundness condition (see Section 4.10.3.2).

Every language inNP has a non-interactive proof system (in which no randomness is
used). However, thisNP-proof system is unlikely to be zero-knowledge (see Definition
4.10.2).

The definition of zero-knowledge for the non-interactive model is simplified by the
fact that because the verifier cannot affect the prover’s actions it suffices to consider the
simulatability of the view of a single verifier (i.e., the prescribed one). Actually, we can
avoid considering the verifier at all (since its view can be generated from the common
reference string and the message sent by the prover).

299

ZERO-KNOWLEDGE PROOF SYSTEMS

Definition 4.10.2 (Non-Interactive Zero-Knowledge): A non-interactive proof
system (P, V) for a language L is zero-knowledge if there exists a polynomial
p and a probabilistic polynomial-time algorithm M such that the ensembles
{(x,Up(|x |), P(x,Up(|x |)))}x∈L and {M(x)}x∈L are computationally indistinguish-
able, where Um is a random variable uniformly distributed over {0, 1}m.

This definition, too, is “non-adaptive” (i.e., the common input cannot depend on the
common reference string). An adaptive formulation of zero-knowledge is presented
and discussed in Section 4.10.3.2.

Non-Interactive Zero-Knowledge versus Constant-Round Zero-Knowledge. We
stress that the non-interactive zero-knowledge model postulates the existence of a uni-
formly selected reference string available to both prover and verifier. A natural sugges-
tion is to replace this postulate with a two-party protocol for generating a uniformly
distributed string of specified length. Such a protocol should be resilient to adversarial
behavior by each of the two parties: The output should be uniformly distributed even if
one of the parties deviates from the protocol (using any probabilistic polynomial-time
strategy). Furthermore, it seems that such a protocol should have a strong simulatabil-
ity feature, allowing the generation of a random-execution transcript for every given
outcome. Specifically, in order to obtain a constant-round zero-knowledge proof sys-
tem from a non-interactive zero-knowledge proof, one seems to need a constant-round
(strongly simulatable) protocol for generating uniformly distributed strings. Such a
protocol can be constructed using perfectly hiding commitment schemes. In combi-
nation with the results that follow, one can derive an alternative construction of a
round-efficient zero-knowledge proof forNP .

4.10.2. Constructions

A fictitious abstraction that nevertheless is very helpful for the design of non-
interactive zero-knowledge proof systems is the hidden-bits model. In this model
the common reference string is uniformly selected as before, but only the prover
can see all of it. The “proof” that the prover sends to the verifier consists of two
parts; a “certificate” and the specification of some bit positions in the common
reference string. The verifier can inspect only the bits of the common reference
string residing in the locations that have been specified by the prover. Certainly,
in addition, the verifier inspects the common input and the “certificate.”

Definition 4.10.3 (Proof Systems in the Hidden-Bits Model): A pair of prob-
abilistic machines (P, V) is called a hidden-bits proof system for L if V is
polynomial-time and the following two conditions hold:

� Completeness: For every x ∈ L,

Pr [V (x, RI , I, π) = 1] ≥ 2

3

300

4.10.∗∗ NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

where (I, π)
def= P(x, R), R is a random variable uniformly distributed in

{0, 1}poly(|x |), and RI is the sub-string of R at positions I ⊆ {1, 2, . . . , poly(|x |)}.
That is, RI = ri1 · · · rit , where R = r1 · · · rt and I = (i1, . . . , it).

� Soundness: For every x �∈ L and every algorithm B,

Pr [V (x, RI , I, π) = 1] ≤ 1

3

where (I, π)
def= B(x, R), R is a random variable uniformly distributed in

{0, 1}poly(|x |), and RI is the sub-string of R at positions I ⊆ {1, 2, . . . , poly(|x |)}.
In both cases, I is called the set of revealed bits and π is called the certificate.
Zero-knowledge is defined as before, with the exception that we need to simulate
(x, RI , P(x, R)) = (x, RI , I, π) rather than (x, R, P(x, R)).

As stated earlier, we do not suggest the hidden-bits model as a realistic model. The
importance of the model stems from two facts. First, it is a “clean” model that fa-
cilitates the design of proof systems (in it); second, proof systems in the hidden-bits
model can be easily transformed into non-interactive proof systems (i.e., the realistic
model). The transformation (which utilizes a one-way permutation f with hard-core b)
follows.

Construction 4.10.4 (From Hidden-Bits Proof Systems to Non-Interactive
Ones): Let (P, V) be a hidden-bits proof system for L, and suppose that f :
{0, 1}∗ → {0, 1}∗ and b : {0, 1}∗ → {0, 1} are polynomial-time-computable. Fur-
thermore, let m = poly(n) denote the length of the common reference string for
common inputs of length n, and suppose that f is 1-1 and length-preserving.
Following is a specification of a non-interactive system (P ′, V ′):
� Common input: x ∈ {0, 1}n.
� Common reference string: s = (s1, . . . , sm), where each si is in {0, 1}n.
� Prover (denoted P ′):

1. computes ri = b(f −1(si)) for i = 1, 2, . . . ,m,

2. invokes P to obtain (I, π) = P(x, r1 · · · rm),

3. outputs (I, π, pI), where pI
def= (f −1(si1) · · · f −1(sit)) for I = (i1, . . . , it).

� Verifier (denoted V ′): Given the prover’s output (I, π, (p1 · · · pt)), the verifier

1. checks that si j = f (p j) for each i j ∈ I (in case a mismatch is found, V ′ halts
and rejects),

2. computes ri = b(pi), for i = 1, . . . , t , lets r = r1, . . . , rt ,

3. invokes V on (x, r, I, π) and accepts if and only if V accepts.

Proposition 4.10.5: Let (P, V), L, f , b, and (P ′, V ′) be as in Construction 4.10.4.
Then (P ′, V ′) is a non-interactive proof system for L, provided that Pr[b(Un) =
1] = 1

2 . Furthermore, if P is zero-knowledge and b is a hard-core of f , then P ′

is zero-knowledge too.

301

ZERO-KNOWLEDGE PROOF SYSTEMS

We remark that P ′ is not perfect zero-knowledge even in case P is. Also, P ′ cannot be
implemented in polynomial-time (even with the help of auxiliary inputs) even if P is
(see the following Remark 4.10.6).

Proof Sketch: To see that (P ′, V ′) is a non-interactive proof system for L , we
note that uniformly chosen si ∈ {0, 1}n induce uniformly distributed bits ri ∈
{0, 1}. This follows from ri = b(f −1(si)), the fact that f is 1-1, and the fact
that b(f −1(Un)) ≡ b(Un) is unbiased. (Note that in case b is a hard-core of f ,
it is almost unbiased (i.e., Pr[b(Un) = 1] = 1

2 ± µ(n), where µ is a negligible
function). Thus, saying that b is a hard-core for f essentially suffices.)

To see that P ′ is zero-knowledge, note that we can convert an efficient simulator
for P into an efficient simulator for P ′. Specifically, for each revealed bit of value
σ , we uniformly select a string r ∈ {0, 1}n such that b(r) = σ and put f (r) in the
corresponding position in the common reference string. For each unrevealed bit,
we uniformly select a string s ∈ {0, 1}n and put it in the corresponding position
in the common reference string. The output of the P ′ simulator consists of the
common reference string generated as before, all the r ’s generated by the P ′

simulator for bits revealed by the P simulator, and the output of the P simulator.
Using the fact that b is a hard-core of f , it follows that the output of the P ′

simulator is computationally indistinguishable from the verifier’s view (when
receiving a proof from P ′). �

Remark 4.10.6 (Efficient Implementation of P ′):. As stated earlier, in general, P ′

cannot be efficiently implemented given black-box access to P . What is needed is the
ability (of P ′) to invert f . On the other hand, for P ′ to be zero-knowledge, f must
be one-way. The obvious solution is to use a family of trapdoor permutations and let
the prover know the trapdoor. Furthermore, the family should have the property that
its members can be efficiently recognized (i.e., given a description of a function, one
can efficiently decide whether or not it is in the family). In other words, P ′ starts by
selecting a permutation f over {0, 1}n such that it knows its trapdoor and proceeds as
in Construction 4.10.4, except that it also appends the description of f to the “proof.”
The verifier acts as in Construction 4.10.4 with respect to the function f specified in the
proof. In addition, it checks to see that f is indeed in the family. Both the completeness
and the zero-knowledge conditions follow exactly as in the proof of Proposition 4.10.5.
For the soundness condition, we need to consider all possible members of the family
(without loss of generality, there are at most 2n such permutations). For each such
permutation, the argument is as before, and our claim thus follows by a counting argu-
ment (as applied in Section 4.10.3.2).23 The construction can be extended to arbitrary
trapdoor permutations; details omitted.

We now turn to the construction of proof systems in the Hidden-Bits model. Specifi-
cally, we are going to construct a proof system for the Hamiltonian-Cycle (HC) problem
that isNP-complete (and thus get proof systems for any language inNP). We consider

23Actually, we also need to repeat the (P, V) system O(n) times, so as first to reduce the soundness error to
1
3 · 2−n .

302

4.10.∗∗ NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

directed graphs (and the existence of directed Hamiltonian cycles). Next, we present
a basic zero-knowledge system in which Hamiltonian graphs are accepted with prob-
ability 1, whereas non-Hamiltonian graphs on n vertices are rejected with probability
�(n−3/2). (This system builds on the one presented in Construction 4.7.14.)

Construction 4.10.7 (A Hidden-Bits System for HC):

� Common input: A directed graph G = (V, E), with n
def= |V |.

� Common reference string: Viewed as an n3-by-n3 Boolean matrix M, with each
entry being 1 with probability n−5.

This is implemented by breaking the common reference string into blocks of
length 5 log2 n and setting a matrix entry to 1 if and only if the corresponding
block is all 1’s.

� Definitions: A permutation matrix is a matrix in which each row (resp., column)
contains a single entry of value 1. A Hamiltonian matrix is a permutation matrix
that corresponds to a simple directed cycle going through all rows and columns.
(That is, the corresponding directed graph consists of a single Hamiltonian cycle.)

An n3-by-n3 matrix M is called useful if it contains a generalized n-by-n
Hamiltonian sub-matrix and all other n6 − n2 entries in M are 0. That is, a
useful n3-by-n3 matrix contains exactly n 1-entries that form a simple n-cycle,
{(φ1(i), φ2((i mod n)+ 1)) : i = 1, . . . , n}, where φ1 and φ2 are 1-1 mappings
of {1, . . . , n} to {1, . . . , n3}.

� Prover: Let C be a Hamiltonian cycle in G, in case such exists. The prover examines
the matrix M and acts according to the following two cases:

Case 1: M is useful. Let H denote its Hamiltonian n-by-n sub-matrix and CH the
corresponding Hamiltonian cycle in H.

� The prover reveals all (n6 − n2) entries in M that are not in H.
� The prover finds a 1-1 mapping, π1, of V to the rows of H and a 1-1

mapping, π2, of V to the columns of H, so that the edges of C are mapped
to the 1-entries of H.

(Directed pairs of vertices of G, being edges or not, are mapped in the natu-
ral manner; that is, (u, v) is mapped to the matrix entry (π1(u),
π2(v)). The mapping pair (π1, π2) is required to be an “isomorphism”
of C to CH .24 Actually, we should specify one isomorphism among the n
possible ones.)

� The prover reveals the (n2 − |E |) entries corresponding to non-edges
of G.

(The correspondence is by the preceding mappings. That is, entry (π1(u),
π2(v)) is revealed if and only if (u, v) ∈ V × V \ E .)

24The minor technicality that prevents us from freely using the term “isomorphism” is that H is not a graph.

303

ZERO-KNOWLEDGE PROOF SYSTEMS

� The prover outputs the mapping pair (π1, π2) (as a certificate).

In total, n6 − |E | entries are revealed, all being 0-entries, and the certificate is
(π1, π2).

Case 2: M is not useful. In this case the prover reveals all entries of M.

(No certificate is provided in this case.)

� Verifier: Given the revealed entries and possibly a certificate, the verifier acts
according to the following two cases:

Case 1: The prover has not revealed all entries in M. Let (π1, π2) be the certificate
sent/output by the prover. The verifier checks that all entries in M that do not
have pre-images unders (π1, π2) in E are revealed and are indeed zero. That is,
the verifier accepts if all matrix entries, except for the entries in {(π1(u), π2(v)) :
(u, v) ∈ E}, are revealed and all revealed bits are 0.

Case 2: The prover has revealed all of M. In this case the verifier accepts if and
only if M is not useful.

The following fact is instrumental for the analysis of Construction 4.10.7.

Fact 4.10.8: Pr[Mis useful] = �(n−3/2).

Proof Sketch: The expected number of 1-entries in M equals (n3)2 · n−5 = n.
Furthermore, with probability �(1/

√
n) the matrix M contains exactly n entries

of value 1. Considering any row of M , observe that with probability at most
(n3

2

) ·
(n−5)2 < n−4 this row contains more than a single 1-entry. Thus, with probability
at least 1− 2n3 · n−4 = 1− O(n−1) the rows and columns of M each contain at
most a single 1-entry. Combining these two facts, it follows that with probability
�(1/

√
n) the matrix M contains an n-by-n permutation sub-matrix and all the

other entries of M are 0. Now observe that there are n! (n-by-n) permutation
matrices, and (n − 1)! of them are Hamiltonian matrices. Thus, conditioned on
M containing an n-by-n permutation sub-matrix (and zeros elsewhere), with
probability 1/n the matrix M is useful. �

Proposition 4.10.9: There exists a (perfect) zero-knowledge Hidden-Bits proof
system for Graph Hamiltonicity. Furthermore, the prover can be implemented by
a polynomial-time machine that gets a Hamiltonian cycle as auxiliary input.

Proof Sketch: We start by demonstrating a noticeable gap in the acceptance
probability for the verifier of Construction 4.10.7. (This gap can be amplified,
to meet the requirements, by a polynomial number of repetitions.) First, we
claim that if G is Hamiltonian and the prover follows the program, then the
verifier accepts, no matter which matrix M appears as the common reference
string. The claim follows easily by observing that in Case 1 the mapping pair
maps the Hamiltonian cycle of G to the Hamiltonian cycle of H , and because

304

4.10.∗∗ NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

the latter contains the only 1-entries in M , all non-edges of G are mapped
to 0-entries of M . (In Case 2 the claim is trivial.) We remark that the prover’s
actions can be implemented in polynomial time when given a Hamiltonian cycle
of G as auxiliary input. Specifically, all that the prover needs to do is to check
if M is useful and to find an isomorphism between two given n-vertex
cycles.

Next, suppose that G is non-Hamiltonian. By Fact 4.10.8, with probability at
least �(n−3/2), the matrix M is useful. Fixing any useful matrix M , we show
that the verifier rejects G, no matter what the prover does. Clearly, if the prover
behaves as in Case 2, then the verifier rejects (since M is useful). Thus we focus
on the case in which the prover outputs a pair of matchings (π1, π2) (as in Case 1).
Let H denote the (unique) n-by-n Hamiltonian sub-matrix of M , and consider
the following sub-cases:

1. π1(V)× π2(V) does not equal H . Because the prover must reveal all entries not in
the sub-matrix π1(V)× π2(V), it follows that it must reveal some row or column
of H . But such a row or column must contain a 1-entry, and so the verifier will
reject.

2. Otherwise, π1(V)× π2(V) = H . Also, each non-edge of G must be mapped to a
0-entry of H (or else the verifier will reject). It follows that the pre-image of each
1-entry in H must be an edge in G, which implies that G has a Hamiltonian cycle
(in contradiction to our hypothesis).

We conclude that in case G is non-Hamiltonian, it is rejected with probability
�(n−3/2).

Finally, we show that the prover is zero-knowledge. This is done by con-
structing a simulator that, on input a graph G, randomly selects an n3-by-n3

matrix, denoted M , with distribution as in the common reference string (i.e.,
each entry being 1 with probability n−5). If M is not useful, then the simu-
lator outputs (G, M, {1, . . . , n3}2) (i.e., all bits are revealed, with values as in
M , and no certificate is given). Otherwise, ignoring this (useful) M , the sim-
ulator uniformly selects a pair of 1-1 mappings (π1, π2) such that πi : V →
{1, . . . , n3} for i = 1, 2. The simulator outputs (G, 0n6−|E |, I, (π1, π2)), where

I
def= {1, . . . , n3}2 \ {(π1(u), π2(v)) : (u, v) ∈ E}. The reader can easily verify that

the output distribution of the simulator is identical to the distribution seen by the
verifier. �

Using Propositions 4.10.9 and 4.10.5 and Remark 4.10.6, we conclude the following:

Theorem 4.10.10: Assuming the existence of one-way permutations,25 each lan-
guage in NP has a zero-knowledge non-interactive proof system. Furthermore,
assuming the existence of families of trapdoor permutations, each language in
NP has a zero-knowledge non-interactive proof system in which the prover can

25As usual in this chapter, here and later, we mean constructs for which the hardness requirement also holds
with respect to non-uniform (polynomial-size) circuits.

305

ZERO-KNOWLEDGE PROOF SYSTEMS

be implemented by a probabilistic polynomial-time machine that gets an NP-
witness as auxiliary input.

4.10.3. Extensions

We present the two extensions mentioned at the beginning of this section: First we
consider proof systems that preserve zero-knowledge when applied polynomially many
times (with the same common reference string), and later we consider proof systems that
preserve security when the assertions (i.e., common inputs) are adversarially selected
after the common reference string has been fixed.

4.10.3.1. Proving Many Assertions of Varying Lengths

The definitions presented in Section 4.10.1 are restricted in two ways. First, they con-
sider the proving of only one assertion relative to the common reference string, and
furthermore the common reference string is allowed to be longer than the assertion
(though polynomial in length of the assertion). A stronger definition, provided next, al-
lows the proving of poly(n) assertions, each of poly(n) length, using the same n-bit-long
common reference string.

We first note that it suffices to treat the case in which the number of assertions is
unbounded but the length of each assertion is a priori bounded. Specifically, for any
ε > 0, it suffices to consider the case where poly(n) assertions, each of length nε, need
to be proved relative to the same n-bit-long common reference string. The reason for
this is that we can reduce, in a “zero-knowledge manner,” anyNP-assertion of length
poly(n) into a sequence of poly(n) NP-assertions, each of length nε: For example,
first we reduce the original (poly(n)-bit-long) NP-assertion to an assertion regarding
the 3-colorability of a poly(n)-vertex graph. Next, we use a commitment scheme with
commitments of length nε/2 in order to commit to the coloring of each vertex. Finally,
for each edge, we (invoke the proof system to) prove that the corresponding two com-
mitments are to two different values in {1, 2, 3}. Note that each such assertion is of an
NP type and refers to a pair of nε/2-bit-long strings.

We now turn to the actual definitions. First we note that nothing needs to be changed
regarding the definition of non-interactive proof systems (Definition 4.10.1). We still
require the ability to be convinced by valid assertions, as well as “protection” from
false assertions. Alas, a minor technical difference is that whereas in Definition 4.10.1
we denoted by n the length of the assertion and considered a common reference string
of length poly(n), here we let n denote the length of the common reference string used
for assertions of length nε. We call ε the fundamental constant of the proof system. In
contrast, the definition of zero-knowledge has to be extended to handle an (a priori)
unbounded sequence of proofs. (Recall that Un denotes a random variable, uniformly
distributed over {0, 1}n .)

Definition 4.10.11 (Non-Interactive Zero-Knowledge, Unbounded Version):
A non-interactive proof system (P, V), with fundamental constant ε, for a

306

4.10.∗∗ NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

language L is unboundedly zero-knowledge if for every polynomial p there
exists a probabilistic polynomial-time algorithm M such that the following two
ensembles are computationally indistinguishable:

1. {((x1, . . . , x p(n)),Un, (P(x1,Un), . . . , P(x p(n),Un)))}x1, . . . , x p(n)∈Lnε

2. {M(x1, . . . , x p(n))}x1, . . . , x p(n)∈Lnε

where L�
def= L ∩ {0, 1}�.

We comment that the non-interactive proof systems presented earlier (e.g., Construc-
tion 4.10.4) are not unboundedly zero-knowledge; see Exercise 34.

We now turn to the construction of unboundedly zero-knowledge (non-interactive)
proof systems. The underlying idea is to facilitate the simulation by potentially prov-
ing a fictitious assertion regarding a portion of the common reference string. The as-
sertion that will be potentially proved (about this portion) will have the following
properties:

1. The assertion holds for a negligible fraction of the strings of the same length. Thus,
adding this potential ability does not significantly affect the soundness condition.

2. Strings satisfying the assertion are computationally indistinguishable from uniformly
distributed strings of the same length. Thus, it will be acceptable for the simulator to use
such strings, rather than uniformly chosen ones (used in the real proof system).

3. The decision problem for the assertion is in NP . This will allow a reduction to an
NP-complete problem.

An immediate assertion, concerning strings, that comes to mind is being produced by
a pseudorandom generator. This yields the following construction, where G denotes
such a generator.

Construction 4.10.12 (An Unboundedly Zero-Knowledge Non-Interactive
Proof System): Let G : {0, 1}� → {0, 1}2�, let L1 be an NP-complete lan-
guage, let L be an arbitrary NP language, and consider the following NP
language:

L2
def= {(x, p) : x ∈ L

∨
∃w′ ∈ {0, 1}|x | s.t. G(w′) = p}

Consider a standard reduction of L2 to L1, and let q be a polynomial such that 3�-
bit-long instances of L2 are mapped to q(�)-bit-long instances of L1. Let (P, V)
be an ordinary non-interactive proof system for L1, and suppose that for some
polynomial q ′ the system (P, V) uses a common reference string of length q ′(�)
for assertions of length q(�). Suppose that P takes as auxiliary input an NP-
witness for membership in L1, and let n = q ′(�)+ 2�. Following is a specification
of a non-interactive proof system for L ∈ NP :

� Common input: x ∈ {0, 1}�.
� Common reference string: r = (p, s), where p ∈ {0, 1}2� and s ∈ {0, 1}n−2�.

307

ZERO-KNOWLEDGE PROOF SYSTEMS

� Prover:

1. Using a standard reduction of L2 to L1, the prover reduces (x, p) ∈ {0, 1}�+2�

to y ∈ {0, 1}q(�). In addition, when given anNP-witness u for x ∈ L, the prover
reduces26 u to a witness, denoted w, for y ∈ L1.

2. The prover invokes P on common input y, auxiliary input w, and common
reference string s, obtaining output π , which it outputs/sends.

� Verifier:

1. Reduces (x, p) to y using the same standard reduction of L2 to L1.

2. Invokes V on common input y, common reference string s, and prover’s output
π , and decides as V does.

Note that the reduction maps (�+ 2�)-bit-long instances of L2 to instances of L1

having length q(�). Recall that by the hypothesis, the proof system (P, V) handles L1

instances of length q(�) by using a reference string of length q ′(�) = n − 2�, which
exactly matches the length of s. Let ε > 0 be a constant satisfying nε ≤ � (i.e., (2�+
q ′(�))ε ≤ �). Then we have the following:

Proposition 4.10.13: Let (P, V) be as before, and let G be a pseudorandom
generator. Furthermore, suppose that P is zero-knowledge and that when given an
NP-witness as auxiliary input, it can be implemented in probabilistic polynomial
time. Then Construction 4.10.12 constitutes an unboundedly zero-knowledge non-
interactive proof system for L, with fundamental constant ε. Furthermore, the
prover can be implemented by a probabilistic polynomial-time machine that gets
anNP-witness as auxiliary input.

Proof Sketch: The completeness and efficiency claims for the new prover fol-
low immediately from the hypotheses concerning (P, V). The soundness con-
dition follows by observing that the probability that p is in the range of G
is at most 2−� (and relying on the soundness of (P, V)). To prove the zero-
knowledge property, we construct a simulator as follows. The simulator uni-
formly selects u′ ∈ {0, 1}� and s ∈ {0, 1}n−2�, sets p = G(u′), and handles each
instance x ∈ {0, 1}� in a sequence of L instances as follows: The simulator emu-
lates the prover’s program (on input x), except that it uses u′ as theNP-witness
for (x, p) ∈ L2. Namely, the simulator reduces (x, p) ∈ L2 to y′ ∈ L1, along
with reducing the NP-witness u′ to a witness w′ (for y′). Next, the simula-
tor invokes P on common input y′, auxiliary input w′, and common reference
string s. Thus, when given a sequence of instances x = (x1, . . . , xt), the simulator
outputs (x, (p, s), Pw′(y′1, s), . . . , Pw′(y′t , s)), where yi is the result of applying
the reduction to (xi , p). Note that the efficiency of the simulator relies on the
efficient implementation of P (and on the efficiency of G). To prove that the
simulator’s output is computationally indistinguishable from the verifier’s view,

26We again use the fact that the standard reductions are coupled with an adequate witness-reduction (see
Exercise 16).

308

4.10.∗∗ NON-INTERACTIVE ZERO-KNOWLEDGE PROOFS

we combine the following two observations (which also rely on the efficient
implementation of P):

1. The distributions of the common reference string are indeed very different in the
two cases (i.e., real execution versus simulator’s output). Yet, by the pseudoran-
domness of G, this difference is computationally indistinguishable. Thus, the ver-
ifier’s view in real execution is computationally indistinguishable from its view
in the case in which the common reference string is selected exactly as in the
simulation (but the prover acts as in Construction 4.10.12).

2. The zero-knowledge property of P implies that P is witness-indistinguishable (as
defined in Section 4.6). Thus, one cannot distinguish the case in which P uses a
witness for x ∈ L (as in Construction 4.10.12) from the case in which P uses as
witness a seed for the pseudorandom sequence p (as done by the simulator). The
same holds when repeating the proving process polynomially many times.

In other words, the zero-knowledge claim is proved by using a hybrid argument,
where the (single) intermediate hybrid corresponds to executing the prover strat-
egy (as is) on a pseudorandom reference string as produced by the simulator
(rather than on a truly random reference string). These two observations establish
that this intermediate hybrid is computationally indistinguishable from both of
the extreme hybrids (which are the ensembles we wish to relate). �

Using Theorem 4.10.10 and Proposition 4.10.13, we obtain the following:

Theorem 4.10.14: Assuming the existence of families of trapdoor permutations,27

each language inNP has an unboundedly zero-knowledge non-interactive proof
system. Furthermore, the prover can be implemented by a probabilistic polynomial-
time machine that gets anNP-witness as auxiliary input.

4.10.3.2. Adaptive Zero-Knowledge

As mentioned in Section 4.10.1, the definitions used thus far are non-adaptive. This
refers to both the soundness and the zero-knowledge conditions. (The same applies
also to the completeness condition; but because all commonly used schemes have
perfect completeness,28 this issue is of little interest). In the adaptive analogies, the
common input is adversarially selected after the common reference string is fixed. The
formulation of adaptive soundness is straightforward, and we call the reader’s attention
to the formulation of adaptive zero-knowledge.

Definition 4.10.15 (Non-Interactive Zero-Knowledge Proofs, Adaptive
Version): Let (P, V) be a non-interactive proof system for a language L (i.e., as
in Definition 4.10.1).

27See footnote 25.
28That is, for every x ∈ L , it actually holds that Pr [V (x, R, P(x, R)) = 1] = 1.

309

ZERO-KNOWLEDGE PROOF SYSTEMS

� Adaptive soundness: We say that (P, V) is adaptively sound if for every n and
every pair of functions # : {0, 1}poly(n) → ({0, 1}n \ L) and � : {0, 1}poly(n) →
{0, 1}poly(n),

Pr [V (#(R), R,�(R)) = 1] ≤ 1

3

where R is a random variable uniformly distributed in {0, 1}poly(n).
� Adaptive zero-knowledge: We say that (P, V) is adaptively zero-knowledge if

there exist two probabilistic polynomial-time algorithms M1 and M2 such that
for every function # : {0, 1}poly(n) → ({0, 1}n ∩ L) the ensembles {(Rn, #(Rn),
P(#(Rn), Rn))}n∈N, and {M#(1n)}n∈N are computationally indistinguishable,
where Rn is a random variable uniformly distributed in {0, 1}poly(n), and M#(1n)
denotes the output of the following randomized process:

1. (r, s) ← M1(1n)

2. x ← #(r)

3. π ← M2(x, s)

4. Output (r, x, π)

(That is, M1 generates a pair (r, s) consisting of a supposedly common reference
stringr and auxiliary information s to be used by M2. The latter, given an adaptively
selected input x and the auxiliary information s, generates an alleged proof π . We
stress that x can depend on r, but not on s.)

As usual, the error probability (in the adaptive-soundness condition) can be reduced
(from 1

3) down to 2−poly(|x |). Also, any non-interactive proof system (i.e., of non-adaptive
soundness) can be transformed into a system that is adaptively sound by merely reducing
the error probability and applying the union bound; that is, for every# : {0, 1}poly(n) →
({0, 1}n \ L) and � : {0, 1}poly(n) → {0, 1}poly(n), we have

Pr [V (#(R), R,�(R)) = 1] ≤
∑

x∈{0,1}n\L

Pr [V (x, R,�(R)) = 1]

≤ 2n · max
x∈{0,1}n\L

{Pr [V (x, R,�(R)) = 1]}
In contrast to the foregoing trivial transformation (from non-adaptive to adaptive sound-
ness), we do not know of a simple transformation of non-interactive zero-knowledge
proofs into ones that are adaptively zero-knowledge. Fortunately, however, the exposi-
tion in Section 4.10.2 extends to the adaptive setting. (The key idea is that the reference
string in these proof systems can be generated obliviously of the common input.29) We
obtain the following:

Theorem 4.10.16: Assuming the existence of one-way permutations,30 each
language in NP has a non-interactive proof system that is adaptively

29Specifically, this is obvious for the simulator presented in the proof of Proposition 4.10.9. We stress that
this simulator determines the values of all hidden bits independently of the common input (i.e., either they form a
random unuseful matrix or they are “effectively” all zeros). The simulator for the proof of Proposition 4.10.5 can
be easily modified to work for such hidden-bit model simulators.

30See footnote 25.

310

4.11.∗∗ MULTI-PROVER ZERO-KNOWLEDGE PROOFS

zero-knowledge. Furthermore, assuming the existence of families of trapdoor
permutations, the prover strategy in such a proof system can be implemented by
a probabilistic polynomial-time machine that gets an NP-witness as auxiliary
input.

The “furthermore” statement extends to a model that allows the adaptive selection of
polynomially many assertions (i.e., a model that combines the two extensions discussed
in this subsection).

4.11.∗ Multi-Prover Zero-Knowledge Proofs

In this section we consider an extension of the notion of an interactive proof system.
Specifically, we consider the interaction of a verifier with more than one prover (say,
two provers). The provers can share an a-priori-selected strategy, but it is assumed that
they cannot interact with each other during the time period in which they interact with
the verifier. Intuitively, the provers can coordinate their strategies prior to, but not dur-
ing, their interrogation by the verifier. Indeed, the multi-prover model is reminiscent
of the common police procedure of isolating suspected collaborators and interrogating
each of them separately. We discuss one realistic (digital) setting in which this model
is applicable.

The notion of a multi-prover interactive proof plays a fundamental role in complexity
theory. That aspect is not addressed here. In the current section we merely address the
zero-knowledge aspects of multi-party interactive proofs. Most importantly, the multi-
prover model enables the construction of (perfect) zero-knowledge proof systems for
NP , independent of any complexity-theoretic assumptions.

4.11.1. Definitions

For the sake of simplicity, we consider the two-prover model. We remark that the use
of more provers would not offer any essential advantages (and specifically, none that
would interest us in this section). Loosely speaking, a two-prover interactive proof
system is a three-party protocol in which two parties are provers and the additional
party is a verifier. The only interaction allowed in this model is between the verifier
and each of the provers individually. In particular, a prover does not “know” the con-
tent of the messages sent by the verifier to the other prover. The provers do, however,
share a random-input tape that is (as in the one-prover case) “beyond the reach” of the
verifier. The two-prover setting is a special case of the two-partner model described
next.

4.11.1.1. The Two-Partner Model

The two-partner model consists of two partners interacting with a third party, called
the solitary. The two partners can agree on their strategies beforehand, and in particular
they can agree on a common uniformly chosen string. Yet once the interaction with

311

ZERO-KNOWLEDGE PROOF SYSTEMS

the solitary begins, the partners can no longer exchange information. The following
definition of such an interaction extends Definitions 4.2.1 and 4.2.2.

Definition 4.11.1 (Two-Partner Model): The two-partner model consists of
three interactive machines, two called partners and the third called the solitary,
that are linked and interact as hereby specified:
� The input tapes of all three parties coincide, and their content is called the common

input.
� The random tapes of the two partners coincide and are called the partners’ ran-

dom tape. (The solitary has a separate random tape.)
� The solitary has two pairs of communication tapes and two switch tapes, instead

of a single pair of communication tapes and a single switch tape (as in Defini-
tion 4.2.1).

� The two partners have the same identity, and the solitary has an opposite identity
(see Definitions 4.2.1 and 4.2.2).

� The first (resp., second) switch tape of the solitary coincides with the switch
tape of the first (resp., second) partner, and the first (resp., second) read-only
communication tape of the solitary coincides with the write-only communication
tape of the first (resp., second) partner, and vice versa.

� The joint computation of the three parties, on a common input x, is a sequence of
triplets. Each triplet consists of the local configurations of the three machines. The
behavior of each partner-solitary pair is as in the definition of the joint computation
of a pair of interactive machines.

We denote by 〈P1, P2, S〉(x) the output of the solitary S after interacting with the
partners P1 and P2, on common input x.

4.11.1.2. Two-Prover Interactive Proofs

A two-prover interactive proof system is now defined analogously to the one-prover
case (see Definitions 4.2.4 and 4.2.6).

Definition 4.11.2 (Two-Prover Interactive Proof System): A triplet of interac-
tive machines (P1, P2, V) in the two-partner model is called a proof system for
a language L if the machine V (called verifier) is probabilistic polynomial-time
and the following two conditions hold:

� Completeness: For every x ∈ L,

Pr [〈P1, P2, V 〉(x) = 1] ≥ 2

3
� Soundness: For every x �∈ L and every pair of partners (B1, B2),

Pr [〈B1, B2, V 〉(x) = 1] ≤ 1

3

As usual, the error probability in both conditions can be reduced (from 1
3) down to

2−poly(|x |) by sequentially repeating the protocol sufficiently many times. Error reduction

312

4.11.∗∗ MULTI-PROVER ZERO-KNOWLEDGE PROOFS

via parallel repetitions is problematic (in general) in this context; see the suggestions
for further reading at the end of the chapter.

The notion of zero-knowledge (for multi-prover systems) remains exactly as in the
one-prover case. Actually, we make the definition of perfect zero-knowledge more strict
by requiring that the simulator never fail (i.e., never outputs the special symbol ⊥).31

Namely:

Definition 4.11.3: We say that a (two-prover) proof system (P1, P2, V) for a
language L is perfect zero-knowledge if for every probabilistic polynomial-time
interactive machine V ∗ there exists a probabilistic polynomial-time algorithm
M∗ such that for every x ∈ L the random variables 〈P1, P2, V ∗〉(x) and M∗(x)
are identically distributed.

Extension to the auxiliary-input (zero-knowledge) model is straightforward.

4.11.2. Two-Sender Commitment Schemes

The thrust of the current section is toward a method for constructing perfect zero-
knowledge two-prover proof systems for every language in NP . This method makes
essential use of a commitment scheme for two senders and one receiver that possesses
information-theoretic secrecy and unambiguity properties (i.e., is perfectly hiding and
perfectly binding). We stress that it is impossible to achieve information-theoretic
secrecy and unambiguity properties simultaneously in the single-sender model.

4.11.2.1. A Definition

Loosely speaking, a two-sender commitment scheme is an efficient two-phase protocol
for the two-partner model through which the partners, called senders, can commit
themselves to a value such that the following two conflicting requirements are satisfied:

1. Secrecy: At the end of the commit phase, the solitary, called the receiver, does not gain
any information about the senders’ value.

2. Unambiguity: Suppose that the commit phase is successfully completed. Then if later
the senders can perform the reveal phase such that the receiver accepts the value 0 with
probability p, then they cannot perform the reveal phase such that the receiver accepts
the value 1 with probability substantially greater than 1− p. We stress that no interaction
is allowed between the senders throughout the entire commit and reveal process. (We
comment that for every p the senders can always conduct the commit phase such that
they can later reveal the value 0 with probability p and the value 1 with probability
1− p. See Exercise 35.)

Instead of presenting a general definition, we restrict our attention to the special case of
two-sender commitment schemes in which only the first sender (and the receiver) takes
part in the commit phase, whereas only the second sender takes part in the (canonical)
reveal phase. Furthermore, we assume, without loss of generality, that in the reveal

31Recall that in Definition 4.3.1, the simulator was allowed to fail (with probability at most 1
2).

313

ZERO-KNOWLEDGE PROOF SYSTEMS

phase the second sender sends the content of the joint random tape (used by the first
sender in the commit phase) to the receiver. We stress again that the two senders cannot
exchange information between themselves throughout the entire commit and reveal
process; thus, in particular, the second sender does not know the messages sent by the
receiver to the first sender during the commit phase.

Definition 4.11.4 (Two-Sender Bit Commitment): A two-sender bit-commit-
ment scheme is a triplet of probabilistic polynomial-time interactive machines,
denoted (S1, S2, R), for the two-partner model satisfying the following:
� Input specification: The common input is an integer n presented in unary, called

the security parameter. The two partners, called the senders, have an auxiliary
private input v ∈ {0, 1}.

� Secrecy: The 0-commitment and the 1-commitment are identically distributed.
Namely, for every probabilistic (not necessarily polynomial-time) machine R∗

interacting with the first sender (i.e., S1), the random variables 〈S1(0), R∗〉(1n)
and 〈S1(1), R∗〉(1n) are identically distributed.

� Unambiguity: Preliminaries: For simplicity, v ∈ {0, 1} and n ∈ N are implicit in
all notations.

1. As in Definition 4.4.1, a receiver’s view of an interaction with the (first) sender,
denoted (r,m), consists of the random coins used by the receiver, denoted r , and
the sequence of messages received from the (first) sender, denoted m.

2. Let σ ∈ {0, 1}. We say that the string s is a possible σσσ -opening of the receiver’s
view (r,m) if m describes the messages received by R when R uses local coins r
and interacts with machine S1, which uses local coins s and input (σ, 1n).

3. Let S∗1 be an arbitrary program for the first sender. Let p be a real and σ ∈
{0, 1}. We say that p is an upper bound on the probability of a σσσ -opening of
the receiver’s view of the interaction with S∗1 if for every random variable X
(representing the string sent by the second sender in the reveal phase), which is
statistically independent of the receiver’s coin tosses, the probability that X is a
possible σ -opening of the receiver’s view of an interaction with S∗1 is at most p.
That is,

Pr[X is a σ -opening of 〈S∗1 , R〉(1n)] ≤ p

(The probability is taken over the coin tosses of the receiver, the strategy S∗1 , and
the random variable X .)

4. Let S∗1 be as before, and for each σ ∈ {0, 1} let pσ be an upper bound on the
probability of a σ -opening of the receiver’s view of the interaction with S∗1 . We say
that the receiver’s view of the interaction with S∗1 is unambiguous if p0 + p1 ≤
1+ 2−n.

The unambiguity requirement asserts that for every program for the first sender
S∗1 the receiver’s interaction with S∗1 is unambiguous.

In the formulation of the unambiguity requirement, the random variables X represent
possible strategies of the second sender. Such a strategy may depend on the random

314

4.11.∗∗ MULTI-PROVER ZERO-KNOWLEDGE PROOFS

input that is shared by the two senders, but is independent of the receiver’s random
coins (since information on these coins, if any, is only sent to the first sender). The
strategies employed by the two senders determine, for each possible coin-tossing of
the receiver, a pair of probabilities corresponding to their success in a 0-opening and a
1-opening. (In fact, bounds on these probabilities are determined merely by the strategy
of the first sender.) The unambiguity condition asserts that the average of these pairs,
taken over all possible receiver’s coin tosses, is a pair that sums up to at most 1+ 2−n .
Intuitively, this means that the senders cannot do more harm than deciding at random
whether to commit to 0 or to 1. Both the secrecy and unambiguity requirements are
information-theoretic (in the sense that no computational restrictions are placed on the
adversarial strategies). We stress that we have implicitly assumed that the reveal phase
takes the following canonical form:

1. The second sender sends to the receiver the initial private input v and the random coins
s used by the first sender in the commit phase.

2. The receiver verifies that v and s (together with the private coins (i.e., r) used by R in
the commit phase) indeed yield the messages that R has received in the commit phase.
Verification is done in polynomial time (by running the programs S1 and R).

Consider the pairs (p0, p1) assigned to each strategy S∗1 in the unambiguity condition
of Definition 4.11.4. We note that the highest possible value of p0 + p1 is attainable
by deterministic strategies for both senders.32 Thus, it suffices to consider an arbitrary
deterministic strategy S∗1 for the first sender and fixed σ -openings, denoted sσ , for
σ ∈ {0, 1}. The unambiguity condition thus says that for every such S∗1 , s0, and s1,∑

σ∈{0,1}
Pr[sσ is a σ -opening of 〈S∗1 , R〉(1n)] ≤ 1+ 2−n

In fact, for the construction presented next, we shall establish a stronger condition:

Strong unambiguity condition: For every deterministic strategy S∗1 and
every pair of strings (s0, s1),

Pr[∀ σ ∈ {0, 1}, sσ is a σ -opening of 〈S∗1 , R〉(1n)] ≤ 2−n

(Clearly, if the unambiguity condition is violated, then so is the strong unambiguity
condition.)

4.11.2.2. A Construction

By the foregoing conventions, it suffices to explicitly describe the commit phase (in
which only the first sender takes part).

32We use an averaging argument. First note that for every (probabilistic) S∗1 and σ there exists a string sσ

maximizing the probability that any fixed string is a σ -opening of 〈S∗1 , R〉(1n). Thus, the probability that sσ is
a σ -opening of 〈S∗1 , R〉(1n) is an upper bound on the probability that X (as in the definition) is a σ -opening of
〈S∗1 , R〉(1n). Similarly, fixing such a pair (s0, s1), we view S∗1 as a distribution over deterministic strategies for the
first sender and consider the sum of the two probabilities assigned to each such strategy S∗∗1 . Thus, there exists a
deterministic strategy S∗∗1 for which this sum is at least as large as the sum associated with S∗1 .

315

ZERO-KNOWLEDGE PROOF SYSTEMS

Construction 4.11.5 (A Two-Sender Bit Commitment):

� Preliminaries: Let π0 and π1 denote two fixed permutations over {0, 1, 2} such
that π0 is the identity permutation and π1 is a permutation consisting of a single
transposition, say (1, 2). Namely, π1(1) = 2, π1(2) = 1, and π1(0) = 0.

� Common input: The security parameter n (in unary).
� Sender’s input: σ ∈ {0, 1}.
� A convention: Suppose that the content of the senders’ random tape encodes a

uniformly selected s = s1 · · · sn ∈ {0, 1, 2}n.
� Commit phase:

1. The receiver uniformly selects r = r1 · · · rn ∈ {0, 1}n and sends r to the first
sender.

2. For each i , the first sender computes ci
def= πri (si)+ σ mod 3 and sends c1 · · · cn

to the receiver.

We remark that the second sender could have opened the commitment either way if
it had known r (sent by the receiver to the first sender). The point is that the second
sender does not know r , and this fact drastically limits its ability to cheat.

Proposition 4.11.6: Construction 4.11.5 constitutes a two-sender bit-commitment
scheme.

Proof: The security property follows by observing that for every choice of r ∈
{0, 1}n the message sent by the first sender is uniformly distributed over {0, 1, 2}n .

The (strong) unambiguity property is proved by contradiction. As a motivation,
we first consider the execution of the preceding protocol, with n equal to 1, and
show that it is impossible for the two senders always to be able to open the
commitments both ways. Consider any pair, (s0, s1), such that s0 is a possible
0-opening and s1 is a possible 1-opening, both with respect to the receiver’s
view. We stress that these sσ ’s must match all possible receiver’s views (or else
the opening does not always succeed). It follows that for each r ∈ {0, 1} both
πr (s0) and πr (s1)+ 1 mod 3 must fit the message received by the receiver (in the
commit phase) in response to message r sent by it. Hence, πr (s0) ≡ πr (s1)+ 1
(mod 3) holds for each r ∈ {0, 1}. Contradiction follows because no two s0, s1 ∈
{0, 1, 2} can satisfy bothπ0(s0) ≡ π0(s1)+ 1 (mod 3), andπ1(s0) ≡ π1(s1)+ 1
(mod 3), the reason being that the first equality implies s0 ≡ s1 + 1 (mod 3),
which combined with the second equality yields π1(s1 + 1 mod 3) ≡ π1(s1)+ 1
(mod 3), whereas for every s ∈ {0, 1, 2} it holds thatπ1(s + 1 mod 3) �≡ π1(s)+1
(mod 3).

We now turn to the actual proof of the strong unambiguity property. The arbi-
trary (deterministic) strategy of the first sender is captured by a function, denoted
f , mapping n-bit-long strings into sequences in {0, 1, 2}n . Thus, the receiver’s
view, when using coin sequence r = r1 · · · rn ∈ {0, 1}n , consists of (r , f (r)).
Let s0 and s1 denote arbitrary opening attempts (i.e., 0-opening and 1-opening,

316

4.11.∗∗ MULTI-PROVER ZERO-KNOWLEDGE PROOFS

respectively) of the second sender. Without loss of generality, we can assume
that both s0 and s1 are in {0, 1, 2}n and let sσ = sσ1 · · · sσn (with sσj ∈ {0, 1, 2}).
The strong unambiguity property asserts that for a uniformly selected r ∈ {0, 1}n
the probability that s0 and s1 are 0-opening and 1-opening, respectively, of the
receiver’s view (r , f (r)) is at most 2−n .

Let us denote by Rσ the set of all strings r ∈ {0, 1}n for which the sequence
sσ is a possible σ -opening of the receiver’s view (r , f (r)). Namely,

Rσ = {r : (∀i) fi (r) ≡ πri

(
sσi
)+ σ (mod 3)

}
where r = r1 · · · rn , and f (r) = f1(r) · · · fn(r). Then the strong unambiguity
property asserts that |R0 ∩ R1| ≤ 2−n · |{0, 1}n|. That is:

Claim 4.11.6.1: |R0 ∩ R1| ≤ 1.

Proof: Suppose, on the contrary, that α, β ∈ R0 ∩ R1 (and α �= β). Then there
exists an i such that αi �= βi and, without loss of generality, αi = 0 (and βi = 1).
By the definition of Rσ it follows that

fi (α) ≡ π0

(
s0

i

)
(mod 3)

fi (α) ≡ π0

(
s1

i

)+ 1 (mod 3)

fi (β) ≡ π1

(
s0

i

)
(mod 3)

fi (β) ≡ π1

(
s1

i

)+ 1 (mod 3)

Contradiction follows as in the motivating discussion. That is, using the first two
equations and the fact that π0 is the identity, we have s1

i + 1 ≡ s0
i (mod 3), and

combining this with the last two equations, we have

π1

(
s1

i + 1
) = π1

(
s0

i

) ≡ π1

(
s1

i

)+ 1 (mod 3)

in contradiction to the (readily verified) fact that π1(s + 1 mod 3) �≡ π1(s)+ 1
(mod 3) for every s ∈ {0, 1, 2}. �

This completes the proof of the proposition. �

Remark 4.11.7 (Parallel Executions). The proof extends to the case in which many
instances of the protocol are executed in parallel. In particular, by t parallel executions
of Construction 4.11.5, we obtain a two-sender commitment scheme for t-bit-long
strings. Note that we are content in asserting that the probability that the verifier’s view
has two conflicting openings is at most 2−n (or even t · 2−n), rather than seeking error
reduction (i.e., a probability bound of 2−t ·n).

4.11.3. Perfect Zero-Knowledge for NPNPNP
Two-prover perfect zero-knowledge proof systems for any language in NP follow
easily by modifying Construction 4.4.7. The modification consists of replacing the bit-
commitment scheme used in Construction 4.4.7 with the two-sender bit-commitment

317

ZERO-KNOWLEDGE PROOF SYSTEMS

scheme of Construction 4.11.5. Specifically, the modified proof system for Graph
Coloring proceeds as follows.

Two-Prover Atomic Proof of Graph Coloring

1. The first prover uses the prover’s random tape to determine a permutation of the coloring.
In order to commit to each of the resulting colors, the first prover invokes (the commit
phase of) a two-sender bit commitment, setting the security parameter to be the number
of vertices in the graph. (The first prover plays the role of the first sender, whereas the
verifier plays the role of the receiver.)

2. The verifier uniformly selects an edge and sends it to the second prover. In response, the
second prover reveals the colors of the endpoints of the required edge by sending the
portions of the prover’s random tape used in the corresponding instance of the commit
phase.

As usual, one can see that the provers can always convince the verifier of valid claims
(i.e., the completeness condition holds). Using the unambiguity property of the two-
sender commitment scheme (and ignoring the 2−n deviation from the “perfect case”),
we can think of the first prover as selecting at random, with arbitrary probability
distribution, a color assignment to the vertices of the graph. We stress that this claim
holds although many instances of the commit protocol are performed concurrently (see
Remark 4.11.7). If the graph is not 3-colored, then each of the possible color assignments
chosen by the first prover is illegal, and a weak soundness property follows. Yet, by
executing this protocol polynomially many times, even in parallel, we derive a protocol
satisfying the soundness requirement. We stress that the fact that parallelism is effective
here (as means for decreasing error probability) follows from the unambiguity property
of the two-sender commitment scheme and not from a general “parallel-composition
lemma” (which is highly non-trivial in the two-prover setting).

We now turn to the zero-knowledge aspects of this protocol. It turns out that this part
is much easier to handle than in all previous cases we have seen. In the construction
of the simulator, we take advantage on the fact that the simulator is playing the role
of both provers (and hence the unambiguity of the commitment scheme does not ap-
ply). Specifically, the simulator, playing the role of both senders, can easily open each
commitment any way it wants. (Here we take advantage of the specific structure of the
commitment scheme of Construction 4.11.5.) Details follow.

Simulation of the Atomic Proof of Graph Coloring

1. The simulator generates random “commitments to nothing.” Namely, the simulator in-
vokes the verifier and answers the verifier’s messages that belong to the commit phase
by a sequence of uniformly chosen strings over {0, 1, 2}.

2. Upon receiving the query-edge (u, v) from the verifier, the simulator uniformly selects
two different colors, φu and φv , and opens the corresponding commitments so as to reveal
these values. The simulator has no difficulty in doing so, because, unlike the second
prover, it knows the messages sent by the verifier in the commit phase. Specifically,
given the receiver’s view of the commit phase, (r1 · · · rn, c1 · · · cn), a 0-opening (resp.,

318

4.11.∗∗ MULTI-PROVER ZERO-KNOWLEDGE PROOFS

1-opening) is computed by setting si = π−1
ri

(ci) (resp., si = π−1
ri

(ci − 1)) for all i . Note
that the receiver’s view of the commit phase equals the messages exchanged by the
verifier and the first prover, and these were generated in Step 1.

Note that the simulator’s messages are distributed identically to the provers’ messages
in the real interaction. (The only difference is in the way these messages are generated:
In the real interaction, the si ’s are selected uniformly in {1, 2, 3} and (together with the
ri ’s and the randomly permuted coloring) determine the ci ’s, whereas in the simulation
the ci ’s are selected uniformly in {1, 2, 3} and (together with the ri ’s and a random pair
in {1, 2, 3}) determine the revealed si ’s.)

We remark that the entire argument extends easily to the case in which polynomi-
ally many instances of the protocol are performed concurrently. Thus, we obtain the
following:

Theorem 4.11.8: Every language in NP has a perfect zero-knowledge two-
prover proof system. Furthermore, this proof system has the following additional
properties:
� Communication is conducted in a single round: The verifier sends a single message

to each of the two provers, which in turn respond with a single message.
� The soundness error is exponentially vanishing.
� The strategies of the two provers can be implemented by probabilistic polynomial-

time machines that get an NP-witness as auxiliary input.

Efficiency Improvement. A dramatic improvement in the efficiency of two-prover
(perfect) zero-knowledge proofs forNP can be obtained by relying on results regard-
ing probabilistically checkable proofs (PCPs). In particular, such proof systems, with
negligible error probability, can be implemented in probabilistic polynomial time, so
that the total number of bits exchanged in the interaction is poly-logarithmic.

4.11.4. Applications

Multi-prover interactive proofs are useful only in settings in which the “proving entity”
can be “split” into two (or more) parts and its parts kept ignorant of one another during
the proving process. In such cases, we get perfect zero-knowledge proofs without having
to rely on complexity-theoretic assumptions. In other words, general (widely believed)
intractability assumptions are replaced by physical assumptions concerning the specific
setting in which the proving process takes place.

One natural application is to the problem of identification and specifically the identi-
fication of a user at some station. In Section 4.7 we discuss how to reduce identification
to a zero-knowledge proof of knowledge (for some NP-relation). Here we suggest
supplying each user with two smart-cards, implementing the two provers in a two-
prover zero-knowledge proof of knowledge. These two smart-cards have to be inserted
in two different slots of the station, and this should guarantee that the smart-cards
cannot communicate with one another. The station will play the role of the verifier in
the zero-knowledge proof of knowledge. This way, the station is perfectly protected
against impersonation, whereas the users are perfectly protected against pirate stations

319

ZERO-KNOWLEDGE PROOF SYSTEMS

that may try to extract knowledge from the smart-cards (so as to enable impersonation
by their own agents).

4.12. Miscellaneous

4.12.1. Historical Notes

Interactive proof systems were introduced by Goldwasser, Micali, and Rackoff [124].33

A restricted form of interactive proof, known by the name Arthur-Merlin game (or
public-coin proof), was introduced in [8] and shown in [128] to be equivalent to gen-
eral interactive proofs. The interactive proof for Graph Non-Isomorphism is due to
Goldreich, Micali, and Wigderson [112]. The amazing theorem-proving power of in-
teractive proofs was subsequently demonstrated in [157, 198], showing interactive
proofs for coNP and (more generally) for PSPACE , respectively.

The concept of zero-knowledge was introduced by Goldwasser, Micali, and Rackoff
in the very same paper [124]. That paper also contained a perfect zero-knowledge proof
for Quadratic Non-Residuosity. The perfect zero-knowledge proof system for Graph
Isomorphism is due to Goldreich, Micali, and Wigderson [112].

The zero-knowledge proof systems for all languages inNP , using any (non-uniform
secure) commitment scheme, are also due to Goldreich, Micali, and Wigderson [112].34

(Zero-knowledge proof systems for all languages in IP have been presented in [136]
and [25].)

The cryptographic applications of zero-knowledge proofs were the very motivation
for their introduction in [124]. Zero-knowledge proofs were applied to solve crypto-
graphic problems in [81] and [54]. However, many more applications became possible
once it was shown how to construct zero-knowledge proof systems for every language
in NP . In particular, general methodologies for the construction of cryptographic
protocols have appeared in [112, 113].

The construction of commitment schemes based on one-way permutations can be
traced to [31]. The construction of commitment scheme based on pseudorandom gen-
erators is due to Naor [170].

Credits for the Advanced Sections

Negative Results. The results demonstrating the necessity of randomness and inter-
action for zero-knowledge proofs are from [115]. The results providing upper bounds on
the complexity of languages with almost-perfect zero-knowledge proofs (i.e.,
Theorem 4.5.8) are from [83] and [2]. The results indicating that one-way functions
are necessary for non-trivial zero-knowledge are from [181]. The negative results

33Earlier versions of their paper date to early 1983. Yet the paper, having been rejected three times from major
conferences, first appeared in public only in 1985, concurrently with the paper of Babai [8].

34A weaker result was shown later in [41]: It provides an alternative construction of zero-knowledge proof
systems for NP , using a stronger intractability assumption (specifically, the intractability of the Quadratic Resid-
uosity problem).

320

4.12. MISCELLANEOUS

concerning parallel composition of zero-knowledge proof systems (i.e., Proposition
4.5.9 and Theorem 4.5.11) are from [106].

Witness Indistinguishability. The notions of witness indistinguishability and witness-
hiding, were introduced and developed by Feige and Shamir [78]. Section 4.6 is based
on their work.

Proofs of Knowledge. The concept of proofs of knowledge originates from the paper
of Goldwasser, Micali, and Rackoff [124]. Early attempts to provide a definition of that
concept appear in [75] and [205]; however, those definitions were not fully satisfactory.
The issue of defining proofs of knowledge has been extensively investigated by Bellare
and Goldreich [17], and we follow their suggestions. The application of zero-knowledge
proofs of knowledge to identification schemes was discovered by Feige, Fiat, and
Shamir [80, 75]. The Fiat-Shamir identification scheme [80] is based on the zero-
knowledge proof for Quadratic Residuosity of Goldwasser, Micali, and Rackoff [124].

Computationally Sound Proof Systems (Arguments). Computationally sound proof
systems (i.e., arguments)35 were introduced by Brassard, Chaum, and Crépeau [40].
Their paper also presents perfect zero-knowledge arguments for NP based on the
intractability of factoring. Naor et al. [171] showed how to construct perfect zero-
knowledge arguments for NP based on any one-way permutation, and Construc-
tion 4.8.3 is taken from their paper. The poly-logarithmic-communication argument
system forNP (of Section 4.8.4) is due to Kilian [143].

Constant-Round Zero-Knowledge Protocols. The round-efficient zero-knowledge
proof systems for NP , based on any claw-free collection, is taken from [105]. The
round-efficient zero-knowledge arguments forNP , based on any one-way function, is
due to [77], yet our presentation (which uses some of their ideas) is different. (The alter-
native construction outlined in Section 4.9.2.3 is much more similar to the construction
in [77].)

Non-Interactive Zero-Knowledge Proofs. Non-interactive zero-knowledge proof sys-
tems were introduced by Blum, Feldman, and Micali [34]. The constructions presented
in Section 4.10 are due to Feige, Lapidot, and Shamir [76]. For further detail on Remark
4.10.6, see [23].

Multi-Prover Zero-Knowledge Proofs. Multi-prover interactive proofs were intro-
duced by Ben-Or, Goldwasser, Kilian, and Wigderson [26]. Their paper also presents a
perfect zero-knowledge two-prover proof system forNP . The perfect zero-knowledge
two-prover proof forNP presented in Section 4.11 follows their ideas; however, we ex-
plicitly state the properties of the two-sender commitment scheme in use. Consequently,
we observe that (sufficiently many) parallel repetitions of this specific proof system will

35Unfortunately, there is some confusion regarding terminology in the literature: In some work (particularly
[40]), computationally sound proofs (arguments) are negligently referred to as “interactive proofs.”

321

ZERO-KNOWLEDGE PROOF SYSTEMS

decrease the error probability to a negligible one.36 (The efficiency improvement, briefly
mentioned at the end of Section 4.11.3, is due to [66].)

We mention that multi-prover interactive proof systems are related to probabilisti-
cally checkable proof (PCP) systems. The complexity-theoretic aspects of these proof
systems have been the focus of much interest. The interested reader is referred to
Sections 2.4 and 2.5.2 of [97] (and to the references therein).

4.12.2. Suggestions for Further Reading

A wider perspective on probabilistic proof systems is offered by Goldreich [97]: In
particular, Chapter 2 of [97] contains further details on interactive proof systems, an
introduction to probabilistically checkable proof (PCP) systems and discussions of other
types of probabilistic proof systems. The exposition focuses on the basic definitions and
results concerning such systems and emphasizes both the similarities and differences
between the various types of probabilistic proofs. Specifically, like zero-knowledge
proof systems, all probabilistic proof systems share a common (untraditional) feature:
They carry a probability of error. Yet this probability is explicitly bounded and can
be reduced by successive applications of the proof system. The gain in allowing this
untraditional relaxation is substantial, as demonstrated by three well-known results
regarding interactive proofs, zero-knowledge proofs, and probabilistic checkable proofs:
In each of these cases, allowing a bounded probability of error makes the system much
more powerful and useful than the traditional (errorless) counterparts.

Since their introduction a decade and a half ago, zero-knowledge proofs have been
the focus of much research. We refrain from offering a comprehensive list of suggestions
for further reading. Instead, we merely point out some works that address obvious gaps
in the current chapter.

• A uniform-complexity treatment of zero-knowledge is provided in [94]. In particular,
it is shown how to use (uniformly) one-way functions to construct interactive proof
systems for NP such that it is infeasible to find instances in which the prover leaks
knowledge.

• Statistical (a.k.a almost-perfect) zero-knowledge proofs offer absolute levels of security
for both the prover and the verifier; that is, both the zero-knowledge and soundness con-
ditions are satisfied in a strong probabilistic sense rather than in a computational one.
The class of problems possessing statistical zero-knowledge proofs, denoted SZK, is
quite intriguing (e.g., it contains some hard problems [124, 109], has complete prob-
lems [194, 118, 120], and is closed under complementation [180, 194, 118]). The inter-
ested reader is directed to Vadhan’s thesis [206].

We mention that some of the techniques developed toward studying SZK are
also applicable in the context of ordinary (computational) zero-knowledge proofs
(e.g., the transformation from public-coin proof systems that are zero-knowledge with
respect to an honest verifier to similar systems that are zero-knowledge in general
[118]).

36This observation escaped the authors of [146], who, being aware of the problematics of parallel repetitions
(of general multi-prover systems), suggested an alternative construction.

322

4.12. MISCELLANEOUS

• In Section 4.5 we discussed the problematics of parallel repetition in the context of zero-
knowledge. As mentioned there, parallel repetition is also problematic in the context of
computationally sound proofs [19] and in the context of multi-prover proofs [74, 190].

• In continuation of Section 4.9, we mention that round-efficient perfect zero-knowledge
arguments for NP , based on the intractability of the discrete-logarithm problem, have
been published [42].

• In continuation of Section 4.10, we mention that a much more efficient construction
of non-interactive proof systems for NP , based on the same assumptions as [76], has
appeared in [144]. Further strengthenings of non-interactive zero-knowledge have been
suggested in [193].

• The paper by Goldwasser, Micali, and Rackoff [124] also contains a suggestion for a
general measure of “knowledge” revealed by a prover. For further details on this measure,
which is called knowledge complexity, see [116] (and the references therein). (Indeed,
knowledge-complexity zero coincides with zero-knowledge.)

Finally, we mention recent research taking place regarding the preservation of zero-
knowledge in settings such as concurrent asynchronous executions [68, 189, 60] and
resettable executions [47]. It would be unwise to attempt to summarize those research
efforts at the current stage.

4.12.3. Open Problems

Our formulation of zero-knowledge (e.g., perfect zero-knowledge as defined in
Definition 4.3.1) is different from the standard definition used in the literature (e.g.,
Definition 4.3.6). The standard definition refers to expected polynomial-time ma-
chines rather than to strictly (probabilistic) polynomial-time machines. Clearly, Defini-
tion 4.3.1 implies Definition 4.3.6 (see Exercise 7), but it is unknown whether or not the
converse holds. In particular, the known constant-round zero-knowledge protocols for
NP are known to be zero-knowledge only when allowing expected polynomial-time
simulators. This state of affairs is quite annoying, and resolving it will be of theoretical
and practical importance.

Whereas zero-knowledge proofs for NP can be constructed based on any (non-
uniformly) one-way function (which is the most general assumption used in this book),
some other results mentioned earlier require stronger assumptions. Specifically, it would
be nice to construct constant-round zero-knowledge proofs, perfect zero-knowledge
arguments, and non-interactive zero-knowledge proofs for NP based on weaker as-
sumptions than the ones currently used.

4.12.4. Exercises

The exercises in this first batch are intended for coverage of the basic material (i.e.,
Sections 4.1–4.4).

Exercise 1: Decreasing the error probability in interactive proof systems: Prove
Proposition 4.2.7.

323

ZERO-KNOWLEDGE PROOF SYSTEMS

Guideline: Execute the weaker interactive proof sufficiently many times, using indepen-
dently chosen coin tosses for each execution, and rule by comparing the number of
accepting executions to an appropriate threshold. Observe that the bounds on complete-
ness and soundness need to be efficiently computable. Be careful when demonstrating
the soundness of the resulting verifier (i.e., do not assume that the cheating prover ex-
ecutes each copy independently of the other copies). We note that the statement remains
valid regardless of whether these repetitions are executed sequentially or “in parallel,” but
demonstrating that the soundness condition is satisfied is much easier in the sequential
case.

Exercise 2: The role of randomization in interactive proofs, Part 1: Prove that if L has
an interactive proof system in which the verifier is deterministic, then L ∈ NP .

Guideline: Note that if the verifier is deterministic, then the entire interaction between the
prover and the verifier can be determined by the prover.

Exercise 3: The role of randomization in interactive proofs, Part 2: Prove that if L
has an interactive proof system, then it has one in which the prover is deterministic.
Furthermore, prove that for every (probabilistic) interactive machine V, there exists a de-
terministic interactive machine P such that for every x, the probability Pr [〈P, V 〉(x) = 1]
equals the supremum of Pr [〈B, V 〉(x) = 1] taken over all interactive machines B.

Guideline: For each possible prefix of interaction, the prover can determine a message
that maximizes the accepting probability of the verifier V.

Exercise 4: The role of randomization in interactive proofs, Part 3: Consider the fol-
lowing (bad) modification to the definition of a pair of linked interactive machines (and
interactive proofs). By this modification, also the random tapes of the prover and verifier
coincide (i.e., intuitively, both use the same sequence of coin tosses that is known to
both of them). We call such proof systems shared-randomness interactive proofs. Show
that only languages inMA have a shared-randomness interactive proof system, where
a language L is inMA if there exists a language RL in BPP and a polynomial p such
that x ∈ L if and only if there exists y ∈ {0, 1} p(|x|) such that (x, y) ∈ RL.

Guideline: First convert a shared-randomness interactive proof system into an interactive
proof system (of the original kind) in which the verifier reveals all its coin tosses up-front.
Next, use reasoning as in Exercise 2.

Show that MA actually equals the class of languages having shared-randomness
interactive proof systems.

Exercise 5: The role of error in interactive proofs: Prove that if L has an interactive
proof system in which the verifier never (not even with negligible probability) accepts a
string not in the language L, then L ∈ NP .

Guideline: Define a relation RL such that (x, y) ∈ RL if y is a full transcript of an interaction
leading the verifier to accept the input x. We stress that y contains the verifier’s coin tosses
and all the messages received from the prover.

Exercise 6: Simulator error in perfect zero-knowledge simulators, Part 1: Consider a
modification of Definition 4.3.1 in which condition 1 is replaced by requiring that for some
function β(·), Pr[M∗ (x) = ⊥] < β(|x |). Assume that β(·) is polynomial time-computable.
Show that the following hold:

324

4.12. MISCELLANEOUS

1. If for some polynomial p1(·) and all sufficiently large n’s, β(n) < 1− (1/p1(n)), then the
modified definition is equivalent to the original one.

2. If for some polynomial p2(·) and all sufficiently large n’s, β(n) > 2− p2(n), then the modified
definition is equivalent to the original one.

Justify the bounds placed on the function β(·).
Guideline: Invoke the simulator sufficiently many times.

Exercise 7: Simulator error in perfect zero-knowledge simulators, Part 2: Prove that
Definition 4.3.1 implies Definition 4.3.6.

Exercise 8: Perfect versus almost-perfect zero-knowledge: Prove that every perfect
zero-knowledge system is also almost-perfect zero-knowledge. (That is, prove that
Definition 4.3.1 implies Definition 4.3.4.)

Guideline: Using Item 2 of Exercise 6, note that the statistical difference between M∗ (x)
and m∗ (x) (i.e., “M∗ (x) conditioned that it not be ⊥ ”) is negligible.

Exercise 9: Simulator error in computational zero-knowledge simulators: Consider
an alternative to Definition 4.3.2 by which the simulator is allowed to output the symbol
⊥ (with probability bounded above by, say, 1

2) and its output distribution is considered
conditioned on it not being ⊥ (as done in Definition 4.3.1). Prove that this alternative
definition is equivalent to the original one (i.e., to Definition 4.3.2).

Exercise 10: An alternative formulation of zero-knowledge, simulating the interaction:
Prove the equivalence of Definitions 4.3.2 and 4.3.3.

Guideline: To show that Definition 4.3.3 implies Definition 4.3.2, observe that the output
of every interactive machine can be easily computed from its view of the interaction.
To show that Definition 4.3.2 implies Definition 4.3.3, show that for every probabilistic
polynomial-time V∗ there exists a probabilistic polynomial-time V∗∗ such that viewP

V∗ (x) =
〈P, V∗∗〉(x).

Exercise 11: Prove that Definition 4.3.10 is equivalent to a version where the auxiliary
input to the verifier is explicitly bounded in length. That is, the alternative zero-knowledge
clause reads as follows:

for every polynomial � and for every probabilistic polynomial-time interactive ma-
chine V∗ there exists a probabilistic polynomial-time algorithm M∗ such that the
following two ensembles are computationally indistinguishable:
� {〈P(yx), V∗ (z)〉(x)}x ∈L, z∈{0,1}�(|x|)
� {M∗ (x, z)}x ∈L,z∈{0,1}�(|x|)

where yx is as in Definition 4.3.10.

Note that it is immaterial here whether the running time of M∗ (as well as the distin-
guishing gap) is considered as a function of |x| or as a function of |(x, z)|.

Exercise 12: Present a simple probabilistic polynomial-time algorithm that simulates
the view of the interaction of the verifier described in Construction 4.3.8 with the prover
defined there. The simulator, on input x ∈ GI , should have output that is distributed
identically to viewPGI

VGI
(x).

325

ZERO-KNOWLEDGE PROOF SYSTEMS

Exercise 13: Prove that the existence of bit-commitment schemes implies the exis-
tence of one-way functions.

Guideline: Following the notation of Definition 4.4.1, consider the mapping of (v, s, r)
to the receiver’s view (r, m). Observe that by the unambiguity requirement, range ele-
ments are very unlikely to have inverses with both possible values of v. The mapping
is polynomial-time computable, and any algorithm that inverts it with success probability
that is not negligible can be used to contradict the secrecy requirement.

Exercise 14: Considering the commitment scheme of Construction 4.4.4, suggest a
cheating sender that induces a receiver’s view (of the commit phase) that is unlikely
to have any possible opening and still is computationally indistinguishable from the
receiver’s view in interactions with the prescribed sender. That is, present a probabilistic
polynomial-time interactive machine S∗ such that the following two conditions hold:
1. With overwhelmingly high probability, 〈S∗ (0), R〉(1n) is neither a possible 0-commitment

nor a possible 1-commitment.
2. The ensembles 〈S∗ (0), R〉(1n) and 〈S(0), R〉(1n) are computationally indistinguishable.

Guideline: The sender simply replies with a uniformly chosen string.

Exercise 15: Using Construction 4.4.4 as a commitment scheme in Construction
4.4.7: Prove that when the commitment scheme of Construction 4.4.4 is used in the
G3C protocol, then the resulting scheme remains zero-knowledge. Consider the modi-
fications required to prove Claim 4.4.8.2.

Exercise 16: Strong reductions: Let L1 and L2 be two languages in NP , and let
R1 and R2 be binary relations characterizing L1 and L2, respectively. We say that the
relation R1 is Levin-reducible 37 to the relation R2 if there exist two polynomial-time-
computable functions f and g such that the following two conditions hold:

Standard requirement: x ∈ L1 if and only if f (x) ∈ L2.

Additional requirement: For every (x, w) ∈ R1, it holds that (f (x), g(x, w)) ∈ R2.

Prove the following statements:
1. Let L ∈ NP, and let RL be the generic relation characterizing L (i.e., fix a non-

deterministic machine ML, and let (x, w) ∈ RL if w is an accepting computation of ML on
input x). Let RSAT be the standard relation characterizing SAT (i.e., (x, w) ∈ RSAT if w
is a truth assignment satisfying the CNF formula x). Prove that RL is Levin-reducible to
RSAT .

2. Let RSAT be as before, and let R3SAT be defined analogously for 3SAT. Prove that RSAT

is Levin-reducible to R3SAT .
3. Let R3SAT be as before, and let RG3C be the standard relation characterizing G3C (i.e.,

(x, w) ∈ RG3C if w is a 3-coloring of the graph x). Prove that R3SAT is Levin-reducible to
RG3C.

4. Levin reductions are transitive.

37We name this reduction after Levin because it was he who, upon discovering (independently of Cook and
Karp) the existence of NP-complete problems, used a stronger definition of a reduction that implies the one here.
We assume that the reader is familiar with standard reductions among languages such as Bounded Halting, SAT,
and 3SAT (as in [86]).

326

4.12. MISCELLANEOUS

Exercise 17: Prove the existence of a Karp reduction of anyNP language L to SAT
that when considered as a function can be inverted in polynomial time. Same for the
reduction of SAT to 3SAT and the reduction of 3SAT to G3C. (In fact, the standard
Karp reductions have this property.)

Exercise 18: Applications of Theorem 4.4.11: This exercise assumes a basic famil-
iarity with the notions of a public-key encryption scheme and a signature scheme.
Assuming the existence of non-uniformly one-way functions, present solutions to the
following cryptographic problems:
1. Suppose that party S sends, over a public channel, encrypted data to several parties,

R1, . . . , Rt . Specifically, the data sent to Ri are encrypted using the public encryption key
of party Ri . We assume that all parties have access to the ciphertexts sent over the public
channel. Suppose that S wants to prove to some other party that it has sent the same
data to all Ri ’s, but it wants to do so without revealing the data.

2. Referring to the same communication setting, consider a party R that has received data
encrypted using its own public encryption key. Suppose that these data consist of two
parts, and party R wishes to reveal to someone the first part of the data but not the
second. Further suppose that the other party wants a proof that R has indeed revealed
the correct content of the first part of the data.

3. Suppose that party S wishes to send party R a signature to a publicly known document
such that only R receives the signature, but everyone else can verify that such a signature
was indeed sent by S. (We assume, again, that all parties share a public channel.)

Exercise 19: On knowledge tightness: Prove that the protocol resulting from executing
Construction 4.4.7 for k(n) = O(log n) times in parallel is zero-knowledge. Furthermore,
prove that it has knowledge tightness (3/2)k (n) (approximately).

Exercise 20: More efficient zero-knowledge proofs forNP : Consider the basic proof
system for the Hamiltonian-cycle problem (HC) presented in Construction 4.7.14.
1. Evaluate its acceptance probabilities (i.e., completeness and soundness bounds).
2. Provide a sketch of the proof of the zero-knowledge property (i.e., describe the simulator).

Specifically, present a simulator that establishes knowledge tightness of approximately 2.
If you are really serious, provide a full proof of the zero-knowledge property.

Exercises for the Advanced Sections. The rest of the exercises refer to the mate-
rial in the advanced sections (i.e., Sections 4.5–4.11).

Exercise 21: An alternative formulation of black-box zero-knowledge: Here we say
that a probabilistic polynomial-time oracle machine M is a black-box simulator for the
prover P and the language L if for every (not necessarily uniform) polynomial-size circuit
family {Bn}n∈N, the ensembles {〈P, B|x|〉(x)}x∈L and {M B |x| (x)}x∈L are indistinguish-
able by (non-uniform) polynomial-size circuits. Namely, for every polynomial-size circuit
family {Dn}n∈N, every polynomial p(·), all sufficiently large n, and x ∈ {0, 1}n ∩ L,

∣∣Pr [Dn(〈P, Bn〉(x)) = 1]− Pr
[
Dn

(
M Bn(x)

)
= 1

]∣∣ < 1
p(n)

Prove that the current formulation is equivalent to the one presented in Definition 4.5.10.

327

ZERO-KNOWLEDGE PROOF SYSTEMS

Exercise 22: Prove that the protocol presented in Construction 4.4.7 is indeed a
black-box zero-knowledge proof system for G3C.

Guideline: Use the formulation presented in Exercise 21.

Exercise 23: Prove that black-box zero-knowledge is preserved under sequential
composition. (Note that this does not follow merely from the fact that auxiliary-input
zero-knowledge is preserved under sequential composition.)

Guideline: Adapt the proof of Lemma 4.3.11.

Exercise 24: Refuting another parallel-composition conjecture: Prove that there exists
a zero-knowledge prover P such that the prover resulting from running two copies of
P in parallel yields knowledge (e.g., a cheating verifier can extract from this prover a
solution to a problem that is not solvable in polynomial time).

Guideline: Let P1 and P2 be as in Proposition 4.5.9, and consider the prover P that
randomly selects which of the two programs to execute. Alternatively, the choice can be
determined by the verifier.

Exercise 25: Assuming that one-way permutations exist, present a witness-
indistinguishable proof system (with a probabilistic polynomial-time prover) that is NOT

strongly witness-indistinguishable.
Guideline: Consider a one-way permutation f , a hard-core predicate b of f , and the
witness relation {(f (w),w):w ∈ {0, 1}∗}. Consider a prover that on input f (w) (and
auxiliary input w) sends w to the verifier, and consider the ensembles {X0

n}n∈N and
{X 1

n }n ∈N, where X i
n is uniform on { f (w):w ∈ {0, 1}n & b(w) = i }.

Exercise 26: Some basic zero-knowledge proofs of knowledge:
1. Show that Construction 4.3.8 is a proof of knowledge of an isomorphism with knowledge

error 1
2 .

2. Show that Construction 4.4.7 (when applied on common input G = (V, E)) is a proof of
knowledge of a 3-coloring with knowledge error 1− 1

|E | .
See also Part 1 of Exercise 28.

Guideline: Observe that in these cases, if the verifier accepts with probability greater
than the knowledge error, then it accepts with probability 1. Also observe that the number
of possible verifier messages in these proof systems is polynomial in the common input.
Thus, the extractor can emulate executions of these systems with all possible verifier
messages.

Exercise 27: Parallel repetitions of some basic proofs of knowledge: Let k : N → N

be polynomially bounded. Consider the proof systems resulting by executing each of
the basic systems mentioned in Exercise 26 for k times in parallel.
1. Show that the k parallel execution of Construction 4.3.8 constitutes a proof of knowledge

of an isomorphism with knowledge error 2−k (·). (Analogously for Construction 4.7.12.)
2. Show that the k parallel execution of Construction 4.4.7 provides a proof of knowledge of

a 3-coloring with knowledge error (1− (1/|E |))−k (|G |).
Note that we make no claim regarding zero-knowledge.

See also Part 2 of Exercise 28.

328

4.12. MISCELLANEOUS

Guideline: For Part 1, note that any two different transcripts in which the verifier accepts
will yield an isomorphism. In Part 2 this simple observation fails. Still, observe that |E|
accepting transcripts that differ in any fixed copy of the basic system do yield a 3-coloring.

Exercise 28: More efficient zero-knowledge proofs of knowledge for NP : As in
Exercise 20, consider the basic proof system for the Hamiltonian-cycle problem (HC)
presented in Construction 4.7.14.
1. Prove that the basic proof system is a proof of knowledge of a Hamiltonian cycle with

knowledge error 1
2 .

2. Prove that the proof system that results from iterating the basic system k times is a proof
of knowledge of a Hamiltonian cycle with knowledge error 2−k. Consider both sequential
and parallel repetitions.

Exercise 29: More on the equivalence of Definitions 4.7.2 and 4.7.3: Suppose that R
is polynomially bounded and that the extractor in Definition 4.7.3 outputs either a valid
solution or a special failure symbol. Referring to this relation R, show that V satisfies the
validity-with-error κ condition of Definition 4.7.2 if and only if V satisfies the alternative
validity-with-error κ condition of (the modified) Definition 4.7.3.

Guideline: Follow the outline of the proof of Proposition 4.7.4, noting that all references
to the hypothesis that R is an NP-relation can be replaced by the hypothesis that the
extractor in Definition 4.7.3 outputs either a valid solution or a special failure symbol.
In particular, in the second direction, omit the exhaustive search that takes place with
probability 2−poly(|x|), and use the fact that p(x, y, r) > κ(|x|) implies p(x, y, r) ≥ κ(|x|) +
2−poly(|x|).

Exercise 30: Zero-knowledge strong proofs of knowledge for NP : Consider again
the basic proof system for the Hamiltonian-cycle problem (HC) presented in Construc-
tion 4.7.14. Prove that the proof system that results from sequentially iterating the basic
system sufficiently many times is a strong proof of knowledge of a Hamiltonian cycle.
(Recall that it is indeed zero-knowledge.)

Exercise 31: Error reduction in computationally sound proofs: Given a computation-
ally sound proof (with error probability 1

3) for a language L, construct a computationally
sound proof with negligible error probability (for L).

Guideline: Use sequential repetitions. In fact, the error probability can be made expo-
nentially vanishing. Parallel repetitions may fail to reduce computational soundness in
some cases (see [19]).

Exercise 32: Commitment schemes, an impossibility result: Prove that there ex-
ists no two-party protocol that simultaneously satisfies the perfect secrecy require-
ment of Definition 4.8.2 and the (information-theoretic) unambiguity requirement of
Definition 4.4.1.

Exercise 33: Failure of ordinary hashing in Construction 4.8.3: Show that in Con-
struction 4.8.3, replacing the iterative hashing by an ordinary one results in a scheme
that is NOT binding (not even in a computational sense). That is, using the notation of

329

ZERO-KNOWLEDGE PROOF SYSTEMS

Construction 4.8.3, consider replacement of the iterative hashing step with the following
step (where b and the r i ’s are as in Construction 4.8.3):

� (Ordinary hashing): The receiver sends the message (r 1, . . . , r n−1) to the

sender, which replies with the message (c1, . . . , cn−1), where ci def
= b(y, r i),

for i = 1, . . . , n− 1.

That is, the prescribed sender computes the ci ’s as in Construction 4.8.3, but a
cheating sender can determine all ci ’s based on all r i ’s (rather that determine
each ci based only on (r 1, . . . , r i)).

Present an efficient strategy that allows the sender to violate the unambiguity condition.
Guideline: Given any one-way permutation f ′ , first construct a one-way permutation f
satisfying f (0|x

′ |, x ′) = (0|x
′ |, x ′) and f (x ′ , 0|x

′ |) = (x ′ , 0|x
′ |) for every x ′ . (Hint: First

obtain a one-way permutation f ′′ that satisfies f ′′ (0n) = 0n for all n’s,38 and then let

f (0|x
′′ |, x ′′)

def
= (0|x

′′ |, x ′′), f (x ′ , 0|x
′ |)

def
= (x ′ , 0|x

′ |), and f (x ′ , x ′′)
def
= (f ′′ (x ′), f ′′ (x ′′)) for

x ′ , x ′′ ∈ {0, 1}|x ′ | \ {0}|x ′ |.)
Assuming that the modified protocol is executed with f as constructed here, consider a

cheating sender that upon receiving the message (r 1, . . . , r n−1) finds y1 ∈ {0, 1}n/2{0}n/2,
y2 ∈ {0}n/2{0, 1}n/2, and c = (c1, . . . , cn−1) such that the following conditions hold:
1. ci = b(y j , r i) for i = 1, . . . , n− 1 and j = 1, 2
2. b(y j , r n) ≡ j (mod 2) for j = 1, 2
(where r n is the unique vector independent of r 1, . . . , r n−1).

Note that f is invariant under such y j ’s, and thus they can serve as valid decommit-
ments.

Finally, prove that such a solution y1, y2, c always exists and can be found by solving
a linear system. (Hint: Consider the linear system b(x10n/2, r i) = b(0n/2x2, r i) for i =
1, . . . , n− 1 and b(x10n/2, r n)≡ b(0n/2x2, r n) + 1(mod 2). Extra hint: Things may become
more clear when writing the conditions in matrix form.)

Exercise 34: Non-interactive zero-knowledge, bounded versus unbounded: Show
that Construction 4.10.4 is not unboundedly zero-knowledge unless NP ⊆ BPP .

Guideline: Consider invoking this proof system twice: first on a graph consisting of a
simple cycle and then on a graph for which a Hamiltonian cycle is to be found.

Exercise 35: Regarding the definition of a two-sender commitment scheme
(Definition 4.11.4), show that for every p there exist senders’ strategies such that each
resulting receiver view can be 0-opened with probability p and 1-opened with probability
1− p.

Guideline: Use the perfect-secrecy requirement and the fact that you can present com-
putationally unbounded senders’ strategies.

38See Exercise 13 in Chapter 2.

330

APPENDIX A

Background in Computational
Number Theory

The material presented in this appendix is merely the minimum needed for the few
examples of specific constructions presented in this book. What we cover here are a few
structural and algorithmic facts concerning prime and composite numbers. For a more
comprehensive treatment, consult any standard textbook (e.g., [10]).

A.1. Prime Numbers

A prime is a natural number that is not divisible by any natural number other than itself
and 1. For simplicity, say that 1 is NOT a prime.

For a prime P , the additive group modulo P , denoted ZP , consists of the set
{0, . . . , P − 1} and the operation of addition mod P . All elements except the iden-
tity (i.e., 0) have order P(in this group). The multiplicative group modulo P , denoted
Z∗

P , consists of the set {1, . . . , P − 1} and the operation of multiplication mod P . This
group is cyclic too. In fact, at least 1/ log2 P of the elements of the group have order
P − 1 and are called primitive.1

A.1.1. Quadratic Residues Modulo a Prime

A quadratic residue modulo a prime P is an integer s such that there exists an r ∈ Z∗
P

satisfying s ≡ r 2 (mod P). Thus, in particular, s has to be relatively prime to P .
Clearly, if r is a square root of s modulo P , then so is −r (since (−r)2 ≡ r 2). Fur-
thermore, if x2 ≡ s (mod P) has a solution modulo P , then it has exactly two such
solutions (as otherwise r1 �≡ ±r2 (mod P) are both solutions, and 0 ≡ r 2

1 − r 2
2 ≡

(r1 − r2)(r1 + r2) (mod P) follows, in contradiction to the primality of P).
The quadratic residues modulo P form a subgroup of the multiplicative group

modulo P . The former subgroup contains exactly half of the members of the group.

1The exact number of primitive elements modulo P depends on the prime factorization of P − 1 =∏t
i=1 Pei

i
(see Section A.2): It equals

∏t
i=1((Pi − 1) · Pei−1

i).

331

BACKGROUND IN COMPUTATIONAL NUMBER THEORY

Furthermore, squaring modulo P is a 2-to-1 mapping of the group to the sub-
group. In case P ≡ 3 (mod 4), each image of this mapping has one pre-image in the
subgroup (i.e., a quadratic residue) and one pre-image that is not in the subgroup (i.e.,
a non-quadratic residue).2

A.1.2. Extracting Square Roots Modulo a Prime

In general, extracting square roots module a prime can be done by using Berlekamp’s
algorithm [28]. The latter is a randomized algorithm for factoring polynomials modulo
a prime. (Note that extracting a square root of s modulo a prime P amounts to solving
the equation x2 ≡ s (mod P), which can be cast as the problem of factoring the
polynomial x2 − s modulo P .)

A more direct approach is possible in the special case in which the prime is congruent
to 3 (mod 4), which is the case in most cryptographic applications. In this case we
observe that for a quadratic residue s ≡ x2 (mod P), we have

s(P+1)/4 ≡ x (P+1)/2 (mod P)

≡ x (P−1)/2 · x (mod P)

≡ ±x (mod P)

where in the last equality we use Fermat’s little theorem, by which x (P−1)/2 ≡ ±1
(mod P) for every integer x and prime P . Thus, in this special case, we obtain a square
root of s modulo P by raising s to the power P+1

4 modulo P . (Note that this square root
is a quadratic residue modulo P .)

A.1.3. Primality Testers

The common approach to testing whether or not an integer is a prime is to utilize
Rabin’s randomized primality tester [185], which is related to a deterministic algo-
rithm due to Miller [166].3 The alternative of using a somewhat different randomized
algorithm, discovered independently by Solovay and Strassen [202], seems less popular.
Here we present a third alternative, which seems less well known (and was discovered
independently by several researchers, one of them being Manuel Blum). The only
number-theoretic facts that we use are as follows:

1. For every prime P > 2, each quadratic residue mod P has exactly two square roots
mod P (and they sum up to P).

2. For every odd and non-integer-power composite number N , each quadratic residue
mod N has at least four square roots mod N .

2 This follows from the fact that−1 is a non-quadratic residue modulo such primes. In contrast, in case P ≡ 1
(mod 4), it holds that −1 is a quadratic residue modulo P . Thus, in case P ≡ 1 (mod 4), for each quadratic
residue the two square roots either are both quadratic residues or are both non-quadratic residues.

3 Miller’s algorithm relies on the Extended Riemann Hypothesis (ERH).

332

A.1. PRIME NUMBERS

Our algorithm uses as a black box an algorithm, denoted SQRT, that given a prime P and
a quadratic residue s mod P , returns a square root of s mod P . There is no guarantee
as to what the algorithm does in case the input is not of this form (and, in particular, in
case P is not a prime).

Algorithm. On input a natural number N > 2, do the following:

1. If N is either even or an integer-power, then reject.

2. Uniformly select r ∈ {1, . . . , N − 1} and set s ← r2 mod N .

3. Let r ′ ← SQRT(N , s). If r ′ ≡ ±r (mod N), then accept, else reject.

Analysis. By Fact 1, on input a prime number N , the algorithm always accepts (since in
this case SQRT(N , r 2 mod N) = ±r for any r ∈ {1, . . . , N − 1}). On the other hand,
suppose that N is an odd composite that is not an integer-power. Then, by Fact 2,
each quadratic residue s has at least four square roots, and each is equally likely
to be chosen at Step 2 (since s yields no information on the specific r). Thus, for
every such s, the probability that ±SQRT(N , s) is chosen in Step 2 is at most 2

4 . It
follows that on input a composite number, the algorithm rejects with probability at
least 1

2 .

Comment. The analysis presupposes that the algorithm SQRT is always correct when
fed with a pair (P, s), where P is prime and s is a quadratic residue mod P . Such
an algorithm was described for the special case where P ≡ 3 (mod 4). Thus, when-
ever the candidate number is congruent to 3 (mod 4), which typically is the case
in our applications, this description suffices. For the case P ≡ 1 (mod 4), we em-
ploy the randomized modular square-root-extraction algorithm mentioned earlier and
observe that in case SQRT has error probability ε < 1

2 , our algorithm still distin-
guishes primes from composites (since on the former it accepts with probability at least
1− ε > 1

2 , whereas on the latter it accepts with probability at most 1
2). The statistical

difference between the two cases can be amplified by invoking the algorithm several
times.

We mention that error-free probabilistic polynomial-time algorithms for testing pri-
mality do exist [121, 1], but currently are much slower. (These algorithms output either
the correct answer or a special don’t know symbol, where the latter is output with
probability at most 1

2 .)

A.1.4. On Uniform Selection of Primes

A simple method for uniformly generating a prime number in some interval, say between
N and 2N , consists of repeatedly selecting at random an integer in this interval and
testing it for primality. The question, of course, is, How many times do we need to repeat
the procedure before a prime number is found? This question is intimately related to
the density of primes, which has been extensively studied in number theory [7]. For
our purposes it suffices to assert that in case the sampling interval is sufficiently large

333

BACKGROUND IN COMPUTATIONAL NUMBER THEORY

(when compared with the size of the integers in it), then the density of primes in it
is noticeable (i.e., is a polynomial fraction). Specifically, the density of primes in the
interval [N , 2N] is �(1/ log N). Hence, on input N , we can expect to hit a prime
in the interval [N , 2N] within �(log N) trials. Furthermore, with probability at least
1− (1/N)2 we will hit a prime before conducting �((log N)2) trials. Hence, for all
practical purposes, we can confine ourselves to conducting a number of trials that is
polynomial (i.e., n2) in the length of the prime we want to generate (i.e., n = log2 N).
(We comment that an analogous discussion applies for primes that are congruent to
3 mod 4.)

We remark that there exists a probabilistic polynomial-time algorithm [9] that pro-
duces a uniformly selected prime P together with the factorization of P − 1. The prime
factorization of P − 1 can be used to verify that a given residue is a generator of the
multiplicative group modulo P: If gP−1 ≡ 1 (mod P) and gN �≡ 1 (mod P) for
every N that divides P − 1, then g is a generator of the multiplicative group modulo P .
(Note that it suffices to check that gP−1 ≡ 1 (mod P) and g(P−1)/Q �≡ 1 (mod P)
for every prime Q that divides P − 1.) We mention that a noticeable fraction of the
residues modulo P will be generators of the multiplicative group modulo P .

Finally, we comment that more randomness-efficient procedures for generating an
n-bit-long prime do exist and utilize only O(n) random bits.4

A.2. Composite Numbers

A natural number (other than 1) that is not a prime is called a composite. Such a number
N is uniquely represented as a product of prime powers; that is, N = ∏t

i=1 Pei
i , where

the Pi ’s are distinct primes, the ei ’s are natural numbers, and either t > 1 or e1 > 1.
These Pi ’s are called the prime factorization of N . It is widely believed that given
a composite number, it is infeasible to find its prime factorization. Specifically, it is
assumed that it is infeasible to find the factorization of a composite number that is the
product of two random primes. That is, it is assumed that any probabilistic polynomial-
time algorithm, given the product of two uniformly chosen n-bit-long primes, can
successfully recover these primes only with negligible probability. Rivest, Shamir,
and Adleman [191] have suggested the use of this assumption for the construction
of cryptographic schemes. Indeed, they have done so in proposing the RSA function,
and their suggestion has turned out to have a vast impact (i.e., being the most popular
intractability assumption in use in cryptography).

For a composite N , the additive group modulo N , denoted ZN , consists of the set
{0, . . . , N − 1} and the operation of addition mod N . All elements that are relatively
prime to N have order N (in this group). The multiplicative group modulo N , denoted
Z
∗
N , consists of the set of natural numbers that are smaller than Nand relatively prime

to it, and the operation is multiplication mod N .

4 For example, one can use a generic transformation of [177]. Loosely speaking, the latter transformation
takes any polynomial-time linear-space randomized algorithm and returns a similar algorithm that has linear
randomness complexity. Note that the selection process described in the preceding text satisfies the premise of the
transformation.

334

A.2. COMPOSITE NUMBERS

A.2.1. Quadratic Residues Modulo a Composite

For simplicity, we focus on odd composite numbers that are not divisible by any strict
prime power; that is, we consider numbers of the form

∏t
i=1 Pi , where the Pi ’s are

distinct odd primes and t > 1.
Let N = ∏t

i=1 Pi be such a composite number. A quadratic residue modulo N is
an integer s such that there exists an r ∈ Z

∗
N satisfying s ≡ r 2 (mod N). Using the

Chinese Remainder Theorem, one can show that s is a quadratic residue modulo N
if and only if it is a quadratic residue modulo each of the Pi ’s. Suppose that s is a
quadratic residue modulo N . Then the equation x2 ≡ s (mod N) has 2t distinct (inte-
ger) solutions modulo N. Again, this can be proved by invoking the Chinese Remainder
Theorem: First observe that the system

x2 ≡ s (mod Pi) for i = 1, . . . , t (A.1)

has a solution. Next note that each single equation has two distinct solutions ±ri

(mod Pi), and finally note that each of the 2t different combinations yields a distinct-
solution to Eq. (A.1) modulo N (i.e., a distinct square root of s modulo N).

The quadratic residues modulo N form a subgroup of the multiplicative group mod-
ulo N . The subgroup contains exactly a 2−t fraction of the members of the group.
Furthermore, for N = ∏t

i=1 Pi (as before), squaring modulo N is a 2t -to-1 mapping of
the group to the subgroup. For further discussion of this mapping, in the special case
where t = 2 and P1 ≡ P2 ≡ 3 (mod 4), see Section A.2.4.

A.2.2. Extracting Square Roots Modulo a Composite

By the preceding discussion (and the effectiveness of the Chinese Remainder Theorem),5

it follows that given the prime factorization of N , one can efficiently extract square roots
modulo N . On the other hand, any algorithm that extracts square roots modulo a com-
posite can be transformed into a factoring algorithm [187]: It suffices to show how
an algorithm for extraction of square roots (modulo a composite N) can be used to
produce non-trivial divisors of N . The argument is very similar to the one employed in
Section A.1.3, the difference being that there the root-extraction algorithm was assumed
to work only for extracting square roots modulo a prime (and such efficient algorithms
do exist), whereas here we assume that the algorithm works for extracting square roots
modulo composites (and such efficient algorithms are assumed not to exist).

Reduction of Factoring to Extracting Modular Square Roots. On input a composite
number N , do the following:

1. Uniformly select r ∈ {1, . . . , N − 1}.
2. Compute g ← GCD(N , r). If g > 1, then output g and halt.6

5Specifically, the system x ≡ ai (mod Pi) for i = 1, . . . , t is solved by
∑t

i=1 ci · ai mod
∏t

i=1 Pi , where

ci
def= Qi · (Q−1

i mod Pi) and Qi
def=
∏

j �=i Pj .
6 This step takes place in order to allow us to invoke the root-extraction algorithm only on relatively prime

pairs (s, N).

335

BACKGROUND IN COMPUTATIONAL NUMBER THEORY

3. Set s ← r2 mod N and invoke the root-extraction algorithm to obtain r ′ such that
(r ′)2 ≡ s (mod N).

4. Compute g ← GCD(N , r − r ′). If g > 1, then output g and halt.

In case the algorithm halts with some output, the output is a non-trivial divisors of N .
The prime factorization of N can be obtained by invoking the algorithm recursively on
each of the two non-trivial divisors of N .

Analysis. We can assume that r selected in Step 1 is relatively prime to N , or else the
GCD of r and N yields the desired divisor. Invoking the root-extraction algorithm, we
obtain r ′ such that (r ′)2 ≡ s ≡ r 2 (mod N). Because the root-extraction algorithm
has no information on r (beyond r 2 (mod N) with probability 2/2t , we have r ′ ≡ ±r
(mod N). Otherwise, r ′ �≡ ±r (mod N), and still 0 ≡ (r − r ′)(r + r ′) (mod N).
Therefore, r − r ′ (resp., r + r ′) has a non-trivial GCD with N , which is found in
Step 4. Thus, with probability at least 1

2 , we obtain a non-trivial divisor of N .

A.2.3. The Legendre and Jacobi Symbols

The Legendre symbol of integer r modulo a prime P , denoted LSP (r), is defined as 0
if P divides r , as +1 in case r is a quadratic residue modulo P , and as −1 otherwise.
Thus, for r that is relatively prime to P , the Legendre symbol of r modulo P indicates
whether or not r is a quadratic residue.

The Jacobi symbol of residues modulo a composite N is defined based on the prime
factorization of N . Let

∏t
i=1 Pei

i denote the prime factorization of N . Then the Jacobi
symbol of r modulo N , denoted JSN (r), is defined as

∏t
i=1 LSPi (r)ei . Although the

Jacobi symbol (of r modulo N) is defined in terms of the prime factorization of the
modulus, the Jacobi symbol can be computed efficiently without knowledge of the
factorization of the modulus. That is, there exists a polynomial-time algorithm that
given a pair (r, N) computes JSN (r). The algorithm proceeds in “GCD-like” manner7

and utilizes the following facts regarding the Jacobi symbol:

1. JSN (r) = JSN (r mod N)

2. JSN (a · b) = JSN (a) · JSN (b), and JSN (1) = 1

3. JSN (2) = (−1)(N 2−1)/8 (i.e., JSN (2) = −1 iff N ≡ 4± 1 (mod 8))

4. JSN (r) = (−1)(N−1)(r−1)/4 · JSr (N) for odd integers N and r

Note that a quadratic residue modulo N must have Jacobi symbol 1, but not all
residues of Jacobi symbol 1 are quadratic residues modulo N . (In fact, for N = ∏t

i=1 Pi ,
as in Section A.2.1, half of the residues with non-zero Jacobi symbols have Jacobi
symbol 1, but only a 2−t fraction of these residues are squares modulo N .)8 The fact that

7 E.g., JS21(10) = JS21(2) · JS21(5) = (−1)55 · (−1)20 · JS5(21) = −JS5(1) = −1. In general, Fact 2 is used
only with a = 2 (i.e., JSN (2 · r) = JSN (2) · JSN (r)). Also, at the very beginning, one can use JS2N (r) =
JS2(r) · JSN (r) = (r mod 2) · JSN (r).

8 The elements of Z
∗
N having Jacobi symbol 1 form a subgroup of Z

∗
N . This subgroup contains exactly half of

the members of the group.

336

A.2. COMPOSITE NUMBERS

the Jacobi symbol can be computed efficiently (without knowledge of the factorization
of the modulus) does not seem to yield an efficient algorithm for determining whether or
not a given residue is a square modulo a given composite (of unknown factorization). In
fact, it is believed that determining whether or not a given integer is a quadratic residue
modulo a given composite (of unknown factorization) is infeasible. Goldwasser and
Micali [123] have suggested use of the conjectured intractability of this problem toward
the construction of cryptographic schemes, and that suggestion has been followed in
numerous works.

A.2.4. Blum Integers and Their Quadratic-Residue Structure

We call N = P · Q, where P and Q are primes, a Blum integer if P ≡ Q ≡ 3 (mod 4).
For such P (resp., Q), the integer −1 is not a quadratic residue mod P(resp., mod Q),
and it follows that −1 is not a quadratic residue modulo N and that −1 has Jacobi
symbol 1 mod N .

By earlier discussion, each quadratic residue s modulo N has four square roots,
denoted ±x and ±y, so that GCD(N , x ± y) ∈ {P, Q}. The important fact about Blum
Integers is that exactly one of these square roots is a quadratic residue itself.9 Conse-
quently, x �→ x2 mod N induces a permutation on the set of quadratic residues mod-
ulo N .

(We comment that some sources use a more general definition of Blum integers,
but the preceding special case suffices for our purposes. The term “Blum integers” is
commonly used in honor of Manuel Blum, who advocated the use of squaring modulo
such numbers as a one-way permutation.)

We mention that in case P �≡ Q (mod 8), the Jacobi symbol of 4 modulo N =
P · Q is−1. In this case, obtaining a square root of 4 mod N that is a quadratic residue
itself allows us to factor N (since such a residue r satisfies r �≡ ±2 (mod N) and
(r − 2) · (r + 2) ≡ 0 (mod N)).

9 Let a and b be such that a2 ≡ s (mod P) and b2 ≡ s (mod Q). Then, either a or −a (but not both) is a
quadratic residue mod P , and similarly for b. Suppose, without loss of generality, that a (resp., b) is a quadratic
residue mod P (resp., mod Q). The x satisfying x ≡ a (mod P) and x ≡ b (mod Q) is a square root of s
modulo N that is a quadratic residue itself. The other square roots of s modulo N (i.e., −x and ±y, such that
y ≡ a (mod P) and y ≡ −b (mod Q) are not quadratic residues mod N .

337

APPENDIX B

Brief Outline of Volume 2

This first volume contains only material on the basic tools of modern cryptography,
that is, one-way functions, pseudorandomness, and zero-knowledge proofs. These ba-
sic tools are used in the construction of the basic applications (to be covered in the
second volume). The latter will cover encryption, signatures, and general cryptographic
protocols. In this appendix we provide brief summaries of the treatments of these basic
applications.

B.1. Encryption: Brief Summary

Both private-key and public-key encryption schemes consist of three efficient algo-
rithms: key generation, encryption, and decryption. The difference between the two
types of schemes is reflected in the definition of security: The security of a public-key
encryption scheme should also hold when the adversary is given the encryption key,
whereas that is not required for private-key encryption schemes. Thus, public-key en-
cryption schemes allow each user to broadcast its encryption key, so that any other user
can send it encrypted messages (without needing to first agree on a private encryption
key with the receiver). Next we present definitions of security for private-key encryption
schemes. The public-key analogies can be easily derived by considering adversaries
that get the encryption key as additional input. (For private-key encryption schemes,
we can assume, without loss of generality, that the encryption key is identical to the
decryption key.)

B.1.1. Definitions

For simplicity, we consider only the encryption of a single message; however, this mes-
sage can be longer than the key (which rules out information-theoretic secrecy [200]).
We present two equivalent definitions of security. The first, called semantic security,
is a computational analogue of Shannon’s definition of perfect secrecy [200]. The se-
cond definition views secure encryption schemes as those for which it is infeasible to
distinguish encryptions of any (known) pair of messages (e.g., the all-zeros message

338

B.1. ENCRYPTION: BRIEF SUMMARY

and the all-ones message). The latter definition is technical in nature and is referred to
as indistinguishability of encryptions.

We stress that the definitions presented here go way beyond saying that it is infeasible
to recover the plaintext from the ciphertext. The latter statement is indeed a minimal
requirement for a secure encryption scheme, but we claim that it is far too weak a
requirement: An encryption scheme typically is used in applications where obtaining
specific partial information on the plaintext endangers the security of the application.
When designing an application-independent encryption scheme, we do not know which
partial information endangers the application and which does not. Furthermore, even if
one wants to design an encryption scheme tailored to one’s own specific applications,
it is rare (to say the least) that one has a precise characterization of all possible partial
information that can endanger these applications. Thus, we require that it be infeasible
to obtain any information about the plaintext from the ciphertext. Furthermore, in
most applications the plaintext may not be uniformly distributed, and some a priori
information regarding it is available to the adversary. We require that the secrecy of all
partial information also be preserved in such a case. That is, even in the presence of a
priori information on the plaintext, it is infeasible to obtain any (new) information
about the plaintext from the ciphertext (beyond what it is feasible to obtain from the a
priori information on the plaintext). The definition of semantic security postulates all
of this. The equivalent definition of indistinguishability of encryptions is useful in
demonstrating the security of candidate constructions, as well as for arguing about
their usage as parts of larger protocols.

The Actual Definitions. In both definitions, we consider (feasible) adversaries that
obtain, in addition to the ciphertext, auxiliary information that may depend on the po-
tential plaintext (but not on the key). By E(x) we denote the distribution of encryptions
of x , when the key is selected at random. To simplify the exposition, let us assume
that on security parameter n, the key-generation algorithm produces a key of length n,
whereas the scheme is used to encrypt messages of length n2.

Definition B.1.1 (Semantic Security (Following [123])): An encryption scheme
is semantically secure if for every feasible algorithm, A, there exists a feasible
algorithm B such that for every two functions f, h : {0, 1}∗→{0, 1}∗ and all
sequences of pairs (Xn, zn)n∈N, where Xn is a random variable ranging over
{0, 1}n2

and |zn| is of feasible (in n) length,

Pr[A(E(Xn)h(Xn), zn)= f (Xn)]<Pr[B(h(Xn), zn)= f (Xn)]+µ(n)

where µ is a negligible function. Furthermore, the complexity of B should be
related to that of A.

What Definition B.1.1 says is that a feasible adversary does not gain anything by
looking at the ciphertext. That is, whatever information (captured by the function f)
it tries to compute about the ciphertext when given a priori information (captured by
the function h) can essentially be computed as efficiently from the available a priori

339

BRIEF OUTLINE OF VOLUME 2

information alone. In particular, the ciphertext does not help in (feasibly) computing
the least significant bit of the plaintext or any other information regarding the plaintext.
This holds for any distribution of plaintexts (captured by the random variable Xn). We
now turn to an equivalent definition.

Definition B.1.2 (Indistinguishability of Encryptions (Following [123])): An
encryption scheme has indistinguishable encryptions if for every feasible algo-
rithm A and all sequences of triples (xn, yn, zn)n∈N, where |xn| = |yn| = n2 and
|zn| is of feasible (in n) length,

|Pr[A(E(xn), zn)= 1]−Pr[A(E(yn), zn)= 1]|<µ(n)

where µ is a negligible function.

In particular, zn may equal (xn, yn). Thus, it is infeasible to distinguish the encryptions
of any two fixed messages such as the all-zeros message and the all-ones message.

Theorem B.1.3: An encryption scheme is semantically secure if and only if it has
indistinguishable encryptions.

Probabilistic Encryption. It is easy to see that a secure public-key encryption scheme
must employ a probabilistic (i.e., randomized) encryption algorithm. Otherwise, given
the encryption key as (additional) input, it is easy to distinguish the encryption of the
all-zeros message from the encryption of the all-ones message. The same holds for
private-key encryption schemes when considering the security of encrypting several
messages (rather than a single message as done before).1 This explains the linkage
between the foregoing robust security definitions and the randomization paradigm
(discussed later).

B.1.2. Constructions

Private-key encryption schemes can be constructed based on the existence of one-way
functions. In contrast, the known constructions of public-key encryption schemes seem
to require stronger assumptions (such as the existence of trapdoor permutations).

B.1.2.1. Private-Key Schemes

It is common practice to use “pseudorandom generators” as a basis for private-key
stream ciphers. We stress that this is a very dangerous practice when the “pseudoran-
dom generator” is easy to predict (such as the linear congruential generator or some
modifications of it that output a constant fraction of the bits of each resulting num-
ber [38, 84]). However, this common practice can become sound provided one uses
pseudorandom generators as defined in Section 3.3. Thus, we obtain a private-key
stream cipher that allows us to encrypt a stream of plaintext bits. Note that such a

1Here, for example, using a deterministic encryption algorithm allows the adversary to distinguish two encryp-
tions of the same message from the encryptions of a pair of different messages.

340

B.1. ENCRYPTION: BRIEF SUMMARY

stream cipher does not conform with our formulation of an encryption scheme, since
for encrypting several messages we are required to maintain a counter. In other words,
we obtain an encryption scheme with a variable state that is modified after the en-
cryption of each message. To obtain a stateless encryption scheme, as in our earlier
definitions, we can use a pseudorandom function.

Private-Key Encryption Scheme Based on Pseudorandom Functions. The key-
generation algorithm consists of selecting a seed, denoted s, for such a function, denoted
fs . To encrypt a message x ∈ {0, 1}n (using key s), the encryption algorithm uniformly
selects a string r ∈ {0, 1}n and produces the ciphertext (r, x ⊕ fs(r)). To decrypt the
ciphertext (r, y) (using key s), the decryption algorithm just computes y ⊕ fs(r). The
proof of security of this encryption scheme consists of two steps (suggested as a general
methodology in Section 3.6):

1. Prove that an idealized version of the scheme, in which one uses a uniformly selected
function f : {0, 1}n→{0, 1}n , rather than the pseudorandom function fs , is secure.

2. Conclude that the real scheme (as presented earlier) is secure (since otherwise one could
distinguish a pseudorandom function from a truly random one).

Note that we could have gotten rid of the randomization if we had allowed the encryption
algorithm to be history-dependent (e.g., use a counter in the role of r). Furthermore,
if the encryption scheme is used for FIFO communication between the parties and both
can maintain the counter value, then there is no need for the message sender to transmit
the counter value.

B.1.2.2. Public-Key Schemes

Here we use a collection of trapdoor one-way permutations, {pα}α, and a hard-core
predicate, b, for it.

The Randomization Paradigm [123]. To demonstrate this paradigm, we first construct
a simple public-key encryption scheme.

Key generation: The key-generation algorithm consists of selecting at random
a permutation pα together with a trapdoor for it; the permutation (or rather its de-
scription) serves as the public key, whereas the trapdoor serves as the private key.

Encrypting: To encrypt a single bit σ (using public key pα), the encryption
algorithm uniformly selects an element r in the domain of pα and produces the
ciphertext (pα(r), σ ⊕ b(r)).

Decrypting: To decrypt the ciphertext (y, τ) using the private key, the decryption
algorithm simply computes τ ⊕ b(p−1

α (y)), where the inverse is computed using
the trapdoor (i.e., private key).

This scheme is quite wasteful of bandwidth. However, the paradigm underlying its
construction is valuable in practice. For example, it is certainly better to randomly pad
messages (say, using padding equal in length to the message) before encrypting them

341

BRIEF OUTLINE OF VOLUME 2

using RSA than to employ RSA on the plain message. Such a heuristic can be placed
on firm ground if the following conjecture is supported: Assume that the first n/2 least
significant bits of the argument constitute a hard-core function of RSA with n-bit-long
moduli. Then, encrypting n/2-bit messages by padding the message with n/2 random
bits and applying RSA (with an n-bit modulus) on the result will constitute a secure
public-key encryption system, hereafter referred to as Randomized RSA.

An alternative public-key encryption scheme is presented in [35]. That encryption
scheme augments Construction 3.4.4 (of a pseudorandom generator based on one-way
permutations) as follows:

Key generation: As before, the key-generation algorithm consists of selecting
at random a permutation pα together with a trapdoor.

Encrypting: To encrypt the n-bit string x (using public key pα), the encryption
algorithm uniformly selects an element s in the domain of pα and produces the
ciphertext (pn

α(s), x ⊕ Gα(s)), where

Gα(s) = b(s) · b(pα(s)) · · · b(pn−1
α (s)

)
(We use the notation pi+1

α (x) = pα(pi
α(x)) and p−(i+1)

α (x) = p−1
α (p−i

α (x)).)

Decrypting: To decrypt the ciphertext (y, z) using the private key, the decryption
algorithm first recovers s = p−n

α (y) and then outputs z ⊕ Gα(s).

Assuming that factoring Blum integers (i.e., products of two primes each congruent
to 3 (mod 4)) is hard, one can use the modular squaring function in the role of the
trapdoor permutation and the least significant bit (denoted lsb) in the role of its hard-core
predicate [35, 5, 208, 82]. This yields a secure public-key encryption scheme (depicted
in Figure B.1) with efficiency comparable to that of RSA. Recall that RSA itself is
not secure (as it employs a deterministic encryption algorithm), whereas Randomized

Private key: Two n/2-bit-long primes, p and q, each congruent to 3 (mod 4).

Public key: Their product N
def= pq.

Encryption of message x ∈ {0, 1}n:

1. Uniformly select s0 ∈ {1, . . . , N }.
2. For i = 1, . . . , n + 1, compute si ← s2

i−1 mod N and σi = lsb(si).

The ciphertext is (sn+1, y), where y = x ⊕ σ1σ2 · · · σn .
Decryption of the ciphertext (r, y):

Precomputed: dp = ((p + 1)/4)n mod p − 1, dq = ((q + 1)/4)n mod q − 1,
cp = q · (q−1 mod p), and cq = p · (p−1 mod q).

1. Let s ′ ← rdp mod p and s ′′ ← rdq mod q.
2. Let s1 ← cp · s ′ + cq · s ′′ mod N .
3. For i = 1, . . . , n, compute σi = lsb(si) and si+1 ← s2

i mod N .

The plaintext is y ⊕ σ1σ2 · · · σn .

Figure B.1: The Blum-Goldwasser public-key encryption scheme [35].

342

B.1. ENCRYPTION: BRIEF SUMMARY

RSA (defined earlier) is not known to be secure under standard assumptions such as
the intractability of factoring (or of inverting the RSA function).2

B.1.3. Beyond Eavesdropping Security

The foregoing definitions refer only to a “passive” attack in which the adversary merely
eavesdrops on the communication line (over which ciphertexts are being sent). Stronger
types of attacks, culminating in the so-called chosen ciphertext attack, may be possible
in various applications. Furthermore, these definitions refer to an adversary that tries
to extract explicit information about the plaintext. A less explicit attempt, captured by
the so-called notion of malleability, is to generate an encryption of a related plaintext
(possibly without learning anything about the original plaintext). Thus, we have a
“matrix” of adversaries, with one dimension (parameter) being the type of attack and
the second being its purpose.

Types of Attacks. The following mini-taxonomy of attacks certainly is not exhaustive:

1. Passive attacks, as captured in the foregoing definitions. Among public-key schemes,
we distinguish two sub-cases:

(a) A key-oblivious passive attack, as captured in the foregoing definitions. By “key-
obliviousness” we refer to the fact that the choice of plaintext does not depend on
the public key.

(b) A key-dependent passive attack, in which the choice of plaintext may depend on the
public key.

(In Definition B.1.1 the choice of plaintext means the random variable Xn , whereas in
Definition B.1.2 it means the pair of strings (xn, yn). In both of these definitions, the
choice of the plaintext is non-adaptive.)

2. Chosen plaintext attacks. Here the attacker can obtain the encryption of any plaintext of
its choice (under the key being attacked). Such an attack does not add power in case of
public-key schemes.

3. Chosen ciphertext attacks. Here the attacker can obtain the decryption of any ciphertext
of its choice (under the key being attacked). That is, the attacker is given oracle access
to the decryption function corresponding to the decryption key in use. We distinguish
two types of such attacks:

(a) In an a-priori-chosen ciphertext attack, the attacker is given this oracle access prior
to being presented the ciphertext that it will attack (i.e., the ciphertext for which
it has to learn partial information or form a related ciphertext). That is, the attack
consists of two stages: In the first stage the attacker is given the oracle access, and
in the second stage the oracle is removed and the attacker is given a “test ciphertext”
(i.e., a target to be learned or modified in violation of non-malleability).

2Recall that Randomized RSA is secure assuming that the n/2 least significant bits constitute a hard-core
function for n-bit RSA moduli. We only know that the O(log n) least significant bits constitute a hard-core
function for n-bit moduli [5].

343

BRIEF OUTLINE OF VOLUME 2

(b) In an a-posteriori-chosen ciphertext attack the attacker is given the target ciphertext
first, but its access to the oracle is restricted in that it is not allowed to make a query
equal to the target ciphertext.

In both cases, the adversary can make queries that do not correspond to a legitimate
ciphertext, and the answers will be accordingly (i.e., a special “failure” symbol).

Purpose of Attacks. Again, the following is not claimed to be exhaustive:

1. Standard security: the infeasibility of obtaining information regarding the plaintext. As
defined earlier, such information must be a function (or a randomized process) applied
to the bare plaintext and cannot depend on the encryption (or decryption) key.

2. In contrast, the notion of non-malleability [64] refers to generating a string depending
on both the plaintext and the current encryption key. Specifically, one requires that it be
infeasible for an adversary, given a ciphertext, to produce a valid ciphertext for a related
plaintext. For example, given a ciphertext of a plaintext of the form 1x , it should be
infeasible to produce a ciphertext to the plaintext 0x .

With the exception of passive attacks on private-key schemes, non-malleability al-
ways implies security against attempts to obtain information on the plaintext. Secu-
rity and non-malleability are equivalent under a-posteriori-chosen ciphertext attack
(cf. [64, 16]). For a detailed discussion of the relationships among the various no-
tions of secure private-key and public-key encryptions, the reader is referred to [142]
and [16], respectively.

Some Known Constructions. As in the basic case, the (strongly secure) private-key
encryption schemes can be constructed based on the existence of one-way functions,
whereas the (strongly secure) public-key encryption schemes are based on the existence
of trapdoor permutations.

Private-key schemes: The private-key encryption scheme based on pseudoran-
dom functions (described earlier) is secure also against a-priori-chosen ciphertext
attacks.3

It is easy to turn any passively secure private-key encryption scheme into a
scheme secure under (a posteriori) chosen ciphertext attacks by using a message-
authentication scheme4 on top of the basic encryption.

Public-key schemes: Public-key encryption schemes secure against a-priori-
chosen ciphertext attacks can be constructed assuming the existence of trap-
door permutations and utilizing non-interactive zero-knowledge proofs see
[176]. (Recall that the latter proof systems can be constructed under the former
assumption.)

3Note that this scheme is not secure under an a-posteriori-chosen ciphertext attack: On input a ciphertext
(r, x ⊕ fs (r)), we obtain fs (r) by making the query (r, y′), where y′ �= x ⊕ fs (r). (This query is answered with
x ′ such that y′ = x ′ ⊕ fs (r).)

4See definition in Section B.2.

344

B.2. SIGNATURES: BRIEF SUMMARY

Public-key encryption schemes secure against a-posteriori-chosen ciphertext attacks
can also be constructed under the same assumption [64], but this construction is even
more complex.

In fact, both constructions of public-key encryption schemes secure against cho-
sen ciphertext attacks are to be considered as plausibility results (which also offer
some useful construction paradigms). Presenting “reasonably efficient” public-key
encryption schemes that are secure against (a posteriori) chosen ciphertext attacks,
under widely believed assumptions, is an important open problem.5

B.1.4. Some Suggestions

B.1.4.1. Suggestions for Further Reading

Fragments of a preliminary draft for the intended chapter on encryption schemes can
be obtained online [99].

In addition, there are the original papers: There is a good motivating discussion
in [123], but we prefer the definitional treatment of [92, 94], which can be substantially
simplified if one adopts non-uniform complexity measures (as done above).6 Further
details on the construction of public-key encryption schemes (sketched above) can be
found in [123, 92, 35, 5]. For discussion of non-malleable cryptography, which actually
transcends the domain of encryption, see [64].

B.1.4.2. Suggestions for Teaching

We suggest a focus on the basic notion of security (treated in Sections B.1.1 and B.1.2):
Present both definitions, prove their equivalence, and discuss the need to use random-
ness during the encryption process in order to meet these definitions. Next, present all
constructions described in Section B.1.2. We believe that the draft available online [99]
provides sufficient details for all of these.

B.2. Signatures: Brief Summary

Again, there are private-key and public-key versions, both consisting of three efficient
algorithms: key generation, signing, and verification. (Private-key signature schemes
are commonly referred to as message-authentication schemes or codes (MAC).) The
difference between the two types is again reflected in the definitions of security.
This difference yields different functionalities (even more than in the case of en-
cryption): Public-key signature schemes (hereafter referred to as signature schemes)
can be used to produce signatures that are universally verifiable (given access to the
public key of the signer). Private-key signature schemes (hereafter referred to as
message-authentication schemes) typically are used to authenticate messages sent

5The “reasonably efficient” scheme of [57] is based on a strong assumption regarding the Diffie-Hellman key
exchange. Specifically, it is assumed that for a prime P and primitive element g, given (P, g, (gx mod P), (gy mod
P), (gz mod P)), it is infeasible to decide whether or not z ≡ xy (mod P − 1).

6We comment that [92] follows [94] in providing a uniform-complexity treatment of the security of encryption
schemes.

345

BRIEF OUTLINE OF VOLUME 2

among a (small) set of mutually trusting parties (since the ability to verify signatures
may be linked to the ability to produce them). In other words, message-authentication
schemes are used to authenticate information sent between (typically two) parties,
and the purpose is to convince the receiver that the information has indeed been sent
by the legitimate sender. In particular, message-authentication schemes cannot con-
vince a third party that the sender has indeed sent the information (rather than the
receiver having generated it by itself). In contrast, public-key signatures can be used
to convince third parties: A signature to a document typically is sent to a second
party, so that in the future that party can (by merely presenting the signed document)
convince third parties that the document was indeed generated/sent/approved by the
signer.

B.2.1. Definitions

We consider very powerful attacks on the signature scheme as well as a very liberal
notion of breaking it. Specifically, the attacker is allowed to obtain signatures to any
message of its choice. One may argue that in many applications such a general attack
is not possible (since messages to be signed must have a specific format). Yet our view
is that it is impossible to define a general (i.e., application-independent) notion of ad-
missible messages, and thus it seems that a general/robust definition of an attack must
be formulated as suggested here. (Note that, at worst, our approach is overly cautious.)
Likewise, the adversary is said to be successful if it can produce a valid signature to ANY

message for which it has not asked for a signature during its attack. Again, this defines
the ability to form signatures to possibly “non-sensical” messages as a breaking of the
scheme. Yet, again, we see no way to have a general (i.e., application-independent)
notion of “meaningful” messages (so that only forging signatures to them would be
consider a breaking of the scheme).

Definition B.2.1 (Unforgeable Signatures [125]):

• A chosen message attack is a process that on input a verification key can obtain
signatures (relative to the corresponding signing key) to messages of its choice.

• Such an attack is said to succeed (in existential forgery) if it outputs a valid
signature to a message for which it has not requested a signature during the
attack.

• A signature scheme is secure (or unforgeable) if every feasible chosen message
attack succeeds with at most negligible probability.

We stress that plain RSA (like plain versions of Rabin’s scheme [187] and DSS [169])
is not secure under the foregoing definition. However, it may be secure if the message is
“randomized” before RSA (or another scheme) is applied [22]. Thus the randomization
paradigm seems pivotal here too.

The definition of security for message-authentication schemes is similar, except that
the attacker does not get the verification key as input.

346

B.2. SIGNATURES: BRIEF SUMMARY

B.2.2. Constructions

Both message-authentication and signature schemes can be constructed based on the
existence of one-way functions.

B.2.2.1. Message Authentication

Message-authentication schemes can be constructed using pseudorandom functions
[103]: To authenticate the message x with respect to key s, one generates the tag fs(x),
where fs is the pseudorandom function associated with s. Verification is done in the
same (analogous) way. However, as noted in [15], extensive use of pseudorandom
functions would seem to be overkill for achieving message authentication, and more
efficient schemes can be obtained based on other cryptographic primitives. We mention
two approaches:

1. fingerprinting the message using a scheme that is secure against forgery provided that
the adversary does not have access to the scheme’s outcome (e.g., using Universal
Hashing [49]), and “hiding” the result using a non-malleable scheme (e.g., a private-key
encryption or a pseudorandom function). (Non-malleability is not required in certain
cases [209].)

2. hashing the message using a collision-free scheme [58, 59] and authenticating the result
using a MAC that operates on (short) fixed-length strings [15].

B.2.2.2. Signature Schemes

Three central paradigms in the construction of signature schemes are the “refreshing”
of the “effective” signing key, the use of an “authentication tree,” and the “hashing
paradigm.”

The Refreshing Paradigm [125]. To demonstrate this paradigm, suppose we have a
signature scheme that is robust against a “random message attack” (i.e., an attack in
which the adversary obtains signatures only to randomly chosen messages). Further
suppose that we have a one-time signature scheme (i.e., a signature scheme that is secure
against an attack in which the adversary obtains a signature to a single message of its
choice). Then we can obtain a secure signature scheme as follows: When a new message
needs to be signed, we generate a new random signing key for the one-time signature
scheme, use it to sign the message, and sign the corresponding (one-time) verification
key using the fixed signing key of the main signature scheme7 (which is robust against
a “random message attack”) [71]. We note that one-time signature schemes (as utilized
here) are easy to construct (e.g., [161]).

The Authentication-Tree Paradigm [160, 125]. To demonstrate this paradigm, we
show how to construct a general signature scheme using only a one-time signature
scheme (alas, one where a 2n-bit string can be signed with respect to an n-bit-long

7Alternatively, one can generate the one-time key pair and the signature to its verification key ahead of time,
leading to an “off-line/on-line” signature scheme [71].

347

BRIEF OUTLINE OF VOLUME 2

verification key). The idea is to use the initial signing key (i.e., the one corresponding
to the public verification key) in order to sign/authenticate two new/random verifi-
cation keys. The two corresponding signing keys are used to sign/authenticate four
new/random verification keys (two per each signing key), and so on. Stopping after �
such steps, this process forms a binary tree with 2� leaves, where each leaf corresponds to
an instance of the one-time signature scheme. The signing keys at the leaves can be used
to sign the actual messages, and the corresponding verification keys can be authenticated
using the path from the root. That is, to sign a new message, we proceed as follows:

1. Allocate a new leaf in the tree. This requires either keeping a counter of the number
of messages signed thus far or selecting a leaf at random (assuming that the number of
leaves is much larger than the square of the number of messages to be signed).

2. Generate or retrieve from storage the pairs of signing/verification keys corresponding
to each vertex on the path from the root to the selected leaf, along with the key pairs
of the siblings of the vertices on the path. That is, let v0, v1, . . . , v� denote the vertices
along the path from the root v0 to the selected leaf v�, and let ui be the sibling of vi

(for i = 1, . . . , �). Then we generate/retrieve the key pairs of each vi and each ui , for
i = 1, . . . , �.

It is important to use the same key pair when encountering the same vertex in the
process of signing two different messages.

3. Sign the message using the signing key associated with the selected leaf v�. Sign each
pair of verification keys associated with the children of each internal vertex, along the
foregoing path, using the signing key associated with the parent vertex. That is, for
i = 1, . . . , �, sign the verification keys of vi and ui (placed in some canonical order)
using the signing key associated with vertex vi−1.

The signature is obtained by concatenating all these signatures (along with the cor-
responding verification keys). Recall that the key pair associated with the root is the
actual key pair of the signature scheme; that is, the verification component is placed in
the public file, and the signature of the verification keys of the root’s children (relative
to the root’s signing key) is part of all signatures.

Pseudorandom functions can be used to eliminate the need to store the values of vertices
used in previous signatures [89].

Employing this paradigm, and assuming that the RSA function is infeasible to in-
vert, one obtains a secure signature scheme [125, 89] (with a counter of the number
of messages signed) in which the i th message is signed/verified in time 2 log2 i slower
than plain RSA. Using a tree of large fan-in (and assuming again that RSA is infea-
sible to invert), one can obtain a secure signature scheme [67, 56] that for reasonable
parameters is only five times slower than plain RSA.8 We stress that plain RSA is
not a secure signature scheme, whereas the security of its randomized version (men-
tioned earlier) is not known to be reducible to the assumption that RSA is hard to
invert.

8 This figure refers to signing up to 1,000,000,000 messages. The scheme in [67] requires a universal set
of system parameters consisting of 1000–2000 integers of the size of the moduli. In the scheme of [56], that
requirement is removed.

348

B.2. SIGNATURES: BRIEF SUMMARY

The Hashing Paradigm. A common practice is to sign real documents via a two-
stage process: First the document is hashed into a (relatively) short bit string, and
then the basic signature scheme is applied to the resulting string. We note that this
heuristic becomes sound provided the hashing function is collision-free (as defined
in [58]). Collision-free hashing functions can be constructed, assuming the existence of
claw-free collections (as in Definition 2.4.6) [58]. One can indeed postulate that certain
off-the-shelf products (e.g., MD5 or SHA) are collision-free, but such assumptions need
to be tested (and indeed may turn out false). We stress that using a hashing scheme
in the foregoing two-stage process without carefully evaluating whether or not it is
collision-free is a very dangerous practice.

One useful variant on the foregoing paradigm is the use of universal one-way hashing
functions (as defined in [175]), rather than the collision-free hashing used earlier. In
such a case, a new hashing function is selected for each application of the scheme, and
the basic signature scheme is applied both to the (succinct) description of the hashing
function and to the resulting (hashed) string. (In contrast, when using a collision-free
hashing function, the same function, the description of which is part of the signer’s
public key, is used in all applications of the signature scheme.) The advantage of using
universal one-way hashing functions is that their security requirement seems weaker
than that for the collision-free condition (e.g., the former can be constructed using any
one-way function [192], whereas this is NOT known for the latter).

Theorem B.2.2 (Plausibility Result [175, 192]): Signature schemes exist if and
only if one-way functions exist.

Unlike the paradigms (and some of the constructions) described earlier, the known
construction of signature schemes from arbitrary one-way functions has no practical
significance. It is indeed an important open problem to provide an alternative construc-
tion that can be practical and still utilize an arbitrary one-way function.

B.2.3. Some Suggestions

B.2.3.1. Suggestions for Further Reading

Fragments of a preliminary draft for the intended chapter on signature schemes can be
obtained on line [100].

In addition, there are the original papers: For a definitional treatment of signature
schemes, the reader is referred to [125] and [183]. Easy-to-understand constructions
appear in [20, 71, 67]. The proof of Theorem B.2.2 can be extracted from [175, 192]:
The first paper presents the basic approach and implements it using any one-way per-
mutation, whereas the second paper shows how to implement this approach using any
one-way function. Variants on the basic model are discussed in [183] and in [50, 137].
For discussion of message-authentication schemes (MACs) the reader is referred to [15].

B.2.3.2. Suggestions for Teaching

We suggest a focus on signature schemes, presenting the main definition and some
construction. One may use [125] for the definitional treatment, but should not use

349

BRIEF OUTLINE OF VOLUME 2

it for the construction, the underlying ideas of which are more transparent in papers
such as [20] and [175]. Actually, we suggest presenting a variant on the signature
scheme of [175], using collision-free hashing (cf. [58]) instead of universal one-way
hashing (cf. [175]). This allows one to present, within a few lectures, many impor-
tant paradigms and techniques (e.g., the refreshing paradigm, authentication trees, the
hashing paradigm, and one-time signature schemes). We believe that the draft available
online [100] provides sufficient details for such a presentation.

A basic treatment of message authentication (i.e., motivation, definition, and con-
struction based on pseudorandom functions) can be presented within one lecture,
and [100] can be used for this purpose too. (This, however, will not cover alternative
approaches employed toward the construction of more efficient message-authentication
schemes.)

B.3. Cryptographic Protocols: Brief Summary

A general framework for casting cryptographic (protocol) problems consists of speci-
fying a random process that maps n inputs to n outputs. The inputs to the process are to
be thought of as local inputs of n parties, and the n outputs are their corresponding local
outputs. The random process describes the desired functionality. That is, if the n parties
were to trust each other (or trust some outside party), then each could send its local input
to the trusted party, who would compute the outcome of the process and send each party
the corresponding output. The question addressed in this section is the extent to which
this trusted party can be “emulated” by the mutually distrustful parties themselves.

B.3.1. Definitions

For simplicity, we consider the special case where the specified process is deterministic
and the n outputs are identical. That is, we consider an arbitrary n-ary function and n
parties that wish to obtain the value of the function on their n corresponding inputs.
Each party wishes to obtain the correct value of the function and prevent any other
party from gaining anything else (i.e., anything beyond the value of the function and
what is implied by it).

We first observe that (one thing that is unavoidable is that) each party can change
its local input before entering the protocol. However, this is also unavoidable when the
parties utilize a trusted party. In general, the basic paradigm underlying the definitions
of secure multi-party computations9 amounts to saying that situations that may occur
in the real protocol can be simulated in an ideal model (where the parties can employ
a trusted party). Thus, the “effective malfunctioning” of parties in secure protocols is
restricted to what is postulated in the corresponding ideal model. The specific definitions

9 Our current understanding of the definitional issues is most indebted to the high-level discussions in the
unfinished manuscript of [165]. A similar definitional approach is presented in [11, 12]. The approach of [122] is
more general: It avoids the definition of security (w.r.t a given functionality) and defines instead a related notion
of protocol robustness. One minimalistic instantiation of the definitional approach of [165, 11, 12] is presented
in [45] and is shown to satisfy the main conceptual concerns.

350

B.3. CRYPTOGRAPHIC PROTOCOLS: BRIEF SUMMARY

differ in the specific restrictions and/or requirements placed on the parties in the real
computation. This typically is reflected in the definition of the corresponding ideal
model; see the examples that follow.

B.3.1.1. An Example: Computations with Honest Majority

Here we consider an ideal model in which any minority group (of the parties) can
collude as follows. First, this minority shares its original inputs and decides together
on replacement inputs10 to be sent to the trusted party. (The other parties send their re-
spective original inputs to the trusted party.) When the trusted party returns the output,
each majority player outputs it locally, whereas the colluding minority can compute
an output based on all they know (i.e., the output and all the local inputs of these
parties). A secure multi-party computation with honest majority is required to sim-
ulate this ideal model. That is, the effect of any feasible adversary that controls a
minority of the players in the actual protocol can essentially be simulated by a (dif-
ferent) feasible adversary that controls the corresponding players in the ideal model.
This means that in a secure protocol the effect of each minority group is “essentially
restricted” to replacing its own local inputs (independently of the local inputs of the
majority players) before the protocol starts and replacing its own local outputs (depend-
ing only on its local inputs and outputs) after the protocol terminates. (We stress that
in the real execution the minority players do obtain additional pieces of information;
yet in a secure protocol they gain essentially nothing from these additional pieces of
information.)

Secure protocols according to this definition can even tolerate a situation where a
minority of the parties choose to abort the execution. An aborted party (in the real
protocol) is simulated by a party (in the ideal model) that aborts the execution either
before supplying its input to the trusted party (in which case a default input is used)
or after supplying its input. In either case, the majority players (in the real protocol)
are able to compute the output even though a minority aborted the execution. This
cannot be expected to happen when there is no honest majority (e.g., in a two-party
computation) [53].

B.3.1.2. Another Example: Two-Party Computations Allowing Abort

In light of the foregoing, we consider an ideal model where each of the two parties can
“shut down” the trusted (third) party at any point in time. In particular, this can happen
after the trusted party has supplied the outcome of the computation to one party but
before it has supplied it to the second. A secure two-party computation allowing abort is
required to simulate this ideal model. That is, each party’s “effective malfunctioning”
in such a secure protocol is restricted to supplying an initial input of its choice and
aborting the computation at any point in time. We stress that, as before, the choice of
the initial input of each party cannot depend on the input of the other party.

10Such replacement can be avoided if the local inputs of parties are verifiable by the other parties. In such a
case, a party (in the ideal model) has the choice of either joining the execution of the protocol with its correct local
input or not joining the execution at all (but it cannot join with a replaced local input). Secure protocols simulating
this ideal model can be constructed as well.

351

BRIEF OUTLINE OF VOLUME 2

Generalizing the preceding, we can consider secure multi-party computation allow-
ing abort. Here, in the ideal model, each of the parties can “shut down” the trusted party
at any point in time; in particular, this can happen after the trusted party has supplied
the outcome of the computation to some but not all of the parties.

B.3.2. Constructions

Theorem B.3.1 (General Plausibility Results, Loosely Stated): Suppose that
trapdoor permutations exist. Then

• any multi-party functionality can be securely computed in a model allowing abort
(cf. [211] for the two-party case and [113] for the case of more than two parties).

• any multi-party functionality can be securely computed provided that a strict ma-
jority of the parties are honest [112, 113].

The proof of each item proceeds in two steps [98]:

1. Presenting secure protocols for a “semi-honest” model in which the bad parties follow
the protocol, except that they also keep a record of all intermediate results.11

One key idea is to consider the propagation of values along the wires of a circuit
(which computes the desired function), going from the input wires to the output wires.
The execution of these protocols starts by each party sharing its inputs with all other
parties, using a secret sharing scheme, so that any strict subset of the shares yields no
information about the secret (e.g., each party is given a uniformly chosen share, and the
dealer’s share is set to the XOR of all other shares). A typical step consists of the secure
computation of shares of the output wire of a gate from the shares of the input wires of this
gate. That is, the m parties employ a secure protocol for computing the randomized m-
party functionality ((a1, b1), . . . , (am, bm)) �→ (c1, . . . , cm), where the ci ’s are uniformly
distributed subject to ⊕m

i=1ci = gate(⊕m
i=1ai ,⊕m

i=1bi). Repeating this step for each gate
of the circuit (in a suitable order), the parties securely propagate shares along the wires of
the circuit, going from the input wires of the circuit to its output wires. At the end of this
propagation process, each party announces its shares in the output wires of the circuit,
and the actual output is formed. Thus, securely computing an arbitrary functionality
(which may be quite complex) is reduced to securely computing a few specific simple
functionalities (i.e., given shares for the inputs of a Boolean gate, securely compute
random shares for the output of this gate). Indeed, secure protocols for computing these
simple functionalities are also provided.

2. Transforming protocols secure in the “semi-honest” model into full-fledged secure pro-
tocols. Here zero-knowledge proofs and protocols for fair coin-tossing are used in order
to “force” parties to behave properly (i.e., as in the “semi-honest” model).

Fair coin-tossing protocols are constructed using non-oblivious commitment schemes
(see Section 4.9.2), which in turn rely on zero-knowledge proofs of knowledge (see
Section 4.7).

11In other words, we need to simulate the local views of the dishonest players when given only the local inputs
and outputs of the honest players. Indeed, this model corresponds to the honest-verifier model of zero-knowledge
(see Section 4.3.1.7).

352

B.3. CRYPTOGRAPHIC PROTOCOLS: BRIEF SUMMARY

We stress the general nature of these constructions and view them as plausibility results
asserting that a host of cryptographic problems are solvable, assuming the existence of
trapdoor permutations. As discussed in the case of zero-knowledge proofs, the value
of these general results is in allowing one to easily infer that the problem he/she faces
is solvable in principle (as typically it is easy to cast problems within this framework).
However, we do not recommend using (in practice) the solutions derived by these
general results; one should rather focus on the specifics of the problem at hand and
solve it using techniques and/or insights available from these general results.12

Analogous plausibility results have been obtained in a variety of models. In particular,
we mention secure computations in the private-channels model [27, 51] and in the
presence of mobile adversaries [182].

B.3.3. Some Suggestions

B.3.3.1. Suggestions for Further Reading

A draft of a manuscript that is intended to cover this surveyed material is available
online from [98]. The draft provides an exposition of the basic definitions and results,
as well as detailed proofs for the latter. More refined discussions of definitional issues
can be found in [11, 12, 44, 45, 122, 165]; our advice is to start with [45].

B.3.3.2. Suggestions for Teaching

This area is very complex, and so we suggest that one merely present sketches of some
definitions and constructions. Specifically, we suggest picking one of the two settings
(i.e., computation with honest majority or two-party computation) and sketching the
definition and the construction. Our own choice would be the two-party case; alas, the
definition (allowing abort) is more complicated (but this is more than compensated for
by simpler notation and a simpler construction that relies on relatively fewer ideas). We
suggest emphasizing the definitional approach (i.e., “emulating a trusted party” as simu-
lation of any adversary operating in the real model by an ideal-model adversary) and pre-
senting the main ideas underlying the construction (while possibly skipping a few). We
believe that the draft available online from [98] provides sufficient details for all of these.

12For example, although Threshold Cryptography (cf., [62, 87]) is merely a special case of multi-party com-
putation, it is indeed beneficial to focus on its specifics.

353

Bibliography

[1] L.M. Adleman and M. Huang. Primality Testing and Abelian Varieties Over Finite Fields.
Springer-Verlag Lecture Notes in Computer Science (Vol. 1512), 1992. (Preliminary ver-
sion in 19th ACM Symposium on the Theory of Computing, 1987.)

[2] W. Aiello and J. Håstad. Perfect Zero-Knowledge Languages Can Be Recognized in Two
Rounds. In 28th IEEE Symposium on Foundations of Computer Science, pages 439–448,
1987.

[3] M. Ajtai. Generating Hard Instances of Lattice Problems. In 28th ACM Symposium on the
Theory of Computing, pages 99–108, 1996.

[4] M. Ajtai, J. Komlos, and E. Szemerédi. Deterministic Simulation in LogSpace. In 19th
ACM Symposium on the Theory of Computing, pages 132–140, 1987.

[5] W. Alexi, B. Chor, O. Goldreich, and C.P. Schnorr. RSA/Rabin Functions: Certain Parts
Are as Hard as the Whole. SIAM Journal on Computing, Vol. 17, April, pages 194–209,
1988.

[6] N. Alon and J.H. Spencer. The Probabilistic Method. Wiley, 1992.
[7] T.M. Apostol. Introduction to Analytic Number Theory. Springer, 1976.
[8] L. Babai. Trading Group Theory for Randomness. In 17th ACM Symposium on the Theory

of Computing, pages 421–420, 1985.
[9] E. Bach. Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms.

ACM Distinguished Dissertation (1984). MIT Press, Cambridge, MA, 1985.
[10] E. Bach and J. Shallit. Algorithmic Number Theory. Vol. I: Efficient Algorithms. MIT

Press, Cambridge, MA, 1996.
[11] D. Beaver. Foundations of Secure Interactive Computing. In Crypto91, Springer-Verlag

Lecture Notes in Computer Science (Vol. 576), pages 377–391, 1992.
[12] D. Beaver. Secure Multi-Party Protocols and Zero-Knowledge Proof Systems Tolerating

a Faulty Minority. Journal of Cryptology, Vol. 4, pages 75–122, 1991.
[13] M. Bellare. A Note on Negligible Functions. Tech. Rep. CS97-529, Department of Com-

puter Science and Engineering, UCSD, March 1997.
[14] M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom Functions Revisited: The

Cascade Construction and Its Concrete Security. In 37th IEEE Symposium on Founda-
tions of Computer Science, pages 514–523, 1996.

[15] M. Bellare, R. Canetti, and H. Krawczyk. Keying Hash Functions for Message Authen-
tication. In Crypto96, Springer-Verlag Lecture Notes in Computer Science (Vol. 1109),
pages 1–15, 1996.

355

BIBLIOGRAPHY

[16] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations Among Notions of
Security for Public-Key Encryption Schemes. In Crypto98, Springer-Verlag Lecture Notes
in Computer Science (Vol. 1462), pages 26–45, 1998.

[17] M. Bellare and O. Goldreich. On Defining Proofs of Knowledge. In Crypto92, Springer-
Verlag Lecture Notes in Computer Science (Vol. 740), pages 390–420, 1992.

[18] M. Bellare, S. Halevi, A. Sahai, and S. Vadhan. Trapdoor Functions and Public-Key Cry-
ptosystems. In Crypto98, Springer-Verlag Lecture Notes in Computer Science (Vol. 1462),
pages 283–298, 1998.

[19] M. Bellare, R. Impagliazzo, and M. Naor. Does Parallel Repetition Lower the Error in
Computationally Sound Protocols? In 38th IEEE Symposium on Foundations of Computer
Science, pages 374–383, 1997.

[20] M. Bellare and S. Micali. How to Sign Given Any Trapdoor Function. Journal of the ACM,
Vol. 39, pages 214–233, 1992.

[21] M. Bellare and P. Rogaway. Random Oracles Are Practical: A Paradigm for Designing
Efficient Protocols. In 1st Conference on Computer and Communications Security, ACM,
pages 62–73, 1993.

[22] M. Bellare and P. Rogaway. The Exact Security of Digital Signatures: How to Sign with
RSA and Rabin. In EuroCrypt96, Springer-Verlag Lecture Notes in Computer Science
(Vol. 1070), pp. 399–416, 1996.

[23] M. Bellare and M. Yung. Certifying Permutations: Noninteractive Zero-Knowledge Based
on Any Trapdoor Permutation. Journal of Cryptology, Vol. 9, pages 149–166, 1996.

[24] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Average Case
Complexity. Journal of Computer and System Science, Vol. 44, No. 2, April, pages 193–
219, 1992.

[25] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S. Micali, and P. Rogaway.
Everything Provable Is Probable in Zero-Knowledge. In Crypto88, Springer-Verlag Lec-
ture Notes in Computer Science (Vol. 403), pages 37–56, 1990.

[26] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-Prover Interactive Proofs:
How to Remove Intractability. In 20th ACM Symposium on the Theory of Computing,
pages 113–131, 1988.

[27] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th ACM Symposium on the
Theory of Computing, pages 1–10, 1988.

[28] E.R. Berlekamp. Factoring Polynomials over Large Finite Fields. Mathematics of Com-
putation, Vol. 24, pages 713–735, 1970.

[29] E.R. Berlekamp, R.J. McEliece, and H.C.A. van Tilborg. On the Inherent Intractability of
Certain Coding Problems. IEEE Transactions on Information Theory, 1978.

[30] M. Blum. How to Exchange Secret Keys. ACM Trans. Comput. Sys., Vol. 1, pages 175–193,
1983.

[31] M. Blum. Coin Flipping by Phone. In 24th IEEE Computer Conference (CompCon),
February, pages 133–137, 1982. (See also SIGACT News, Vol. 15, No. 1, 1983.)

[32] L. Blum, M. Blum, and M. Shub. A Simple Secure Unpredictable Pseudo-Random Number
Generator. SIAM Journal on Computing, Vol. 15, pages 364–383, 1986.

[33] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-interactive Zero-Knowledge
Proof Systems. SIAM Journal on Computing, Vol. 20, No. 6, pages 1084–1118, 1991.
(Considered the journal version of [34].)

[34] M. Blum, P. Feldman, and S. Micali. Non-Interactive Zero-Knowledge and Its Applica-
tions. In 20th ACM Symposium on the Theory of Computing, pages 103–112, 1988. (See
[33].)

[35] M. Blum and S. Goldwasser. An Efficient Probabilistic Public-Key Encryption Scheme

356

BIBLIOGRAPHY

which Hides All Partial Information. In Crypto84, Springer-Verlag Lecture Notes in Com-
puter Science (Vol. 196), pages 289–302, 1985.

[36] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits. SIAM Journal on Computing, Vol. 13, pages 850–864, 1984. (Preliminary
version in 23rd IEEE Symposium on Foundations of Computer Science, 1982.)

[37] R. Boppana, J. Håstad, and S. Zachos. Does Co-NP Have Short Interactive Proofs? Infor-
mation Processing Letters, Vol. 25, May, pages 127–132, 1987.

[38] J.B. Boyar. Inferring Sequences Produced by Pseudo-Random Number Generators. Jour-
nal of the ACM, Vol. 36, pages 129–141, 1989.

[39] G. Brassard. A Note on the Complexity of Cryptography. IEEE Transactions on Informa-
tion Theory, Vol. 25, pages 232–233, 1979.

[40] G. Brassard, D. Chaum, and C. Crépeau. Minimum Disclosure Proofs of Knowledge. Jour-
nal of Computer and System Science, Vol. 37, No. 2, pages 156–189, 1988. (Preliminary
version by Brassard and Crépeau in 27th IEEE Symposium on Foundations of Computer
Science, 1986.)

[41] G. Brassard and C. Crépeau. Zero-Knowledge Simulation of Boolean Circuits. In
Crypto86, Springer-Verlag Lecture Notes in Computer Science (Vol. 263), pages 223–
233, 1987.

[42] G. Brassard, C. Crépeau, and M. Yung. Constant-Round Perfect Zero-Knowledge Com-
putationally Convincing Protocols. Theoretical Computer Science, Vol. 84, pages 23–52,
1991.

[43] E.F. Brickell and A.M. Odlyzko. Cryptanalysis: A Survey of Recent Results. In Proceed-
ings of the IEEE, Vol. 76, pages 578–593, 1988.

[44] R. Canetti. Studies in Secure Multi-Party Computation and Applications. Ph.D. thesis,
Department of Computer Science and Applied Mathematics, Weizmann Institute of
Science, Rehovot, Israel, June 1995. (Available from http://theory.lcs.mit.edu/

∼tcryptol/BOOKS/ran-phd.html.)
[45] R. Canetti. Security and Composition of Multi-party Cryptographic Protocols. Journal of

Cryptology, Vol. 13, No. 1, pages 143–202, 2000.
[46] R. Canetti, O. Goldreich, and S. Halevi. The Random Oracle Methodology, Revisited. In

30th ACM Symposium on the Theory of Computing, pages 209–218, 1998.
[47] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. Resettable Zero-Knowledge. In

32nd ACM Symposium on the Theory of Computing, pages 235–244, 2000.
[48] E.R. Canfield, P. Erdos, and C. Pomerance. On a Problem of Oppenheim Concerning

“factorisatio numerorum.” Journal of Number Theory, Vol. 17, pages 1–28, 1983.
[49] L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer and System

Science, Vol. 18, pages 143–154, 1979.
[50] D. Chaum. Blind Signatures for Untraceable Payments. In Crypto82, pages 199–203,

Plenum Press, New York, 1983.
[51] D. Chaum, C. Crépeau, and I. Damgård. Multi-party Unconditionally Secure Protocols.

In 20th ACM Symposium on the Theory of Computing, pages 11–19, 1988.
[52] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable Secret Sharing and Achiev-

ing Simultaneity in the Presence of Faults. In 26th IEEE Symposium on Foundations of
Computer Science, pages 383–395, 1985.

[53] R. Cleve. Limits on the Security of Coin Flips When Half the Processors Are Faulty. In
18th ACM Symposium on the Theory of Computing, pages 364–369, 1986.

[54] J.D. Cohen and M.J. Fischer. A Robust and Verifiable Cryptographically Secure Election
Scheme. In 26th IEEE Symposium on Foundations of Computer Science, pages 372–382,
1985.

[55] A. Cohen and A. Wigderson. Dispensers, Deterministic Amplification, and Weak Random

357

BIBLIOGRAPHY

Sources. In 30th IEEE Symposium on Foundations of Computer Science, pages 14–19,
1989.

[56] R. Cramer and I. Damgård. New Generation of Secure and Practical RSA-based Signatures.
In Crypto96, Springer-Verlag Lecture Notes in Computer Science (Vol. 1109), pages 173–
185, 1996.

[57] R. Cramer and V. Shoup. A Practical Public-Key Cryptosystem Provably Secure Against
Adaptive Chosen Ciphertext Attacks. In Crypto98, Springer-Verlag Lecture Notes in Com-
puter Science (Vol. 1462), pages 13–25, 1998.

[58] I. Damgård. Collision Free Hash Functions and Public Key Signature Schemes. In
EuroCrypt87, Springer-Verlag Lecture Notes in Computer Science (Vol. 304), pages 203–
216, 1988.

[59] I. Damgård. A Design Principle for Hash Functions. In Crypto89, Springer-Verlag Lecture
Notes in Computer Science (Vol. 435), pages 416–427, 1990.

[60] I. Damgård. Concurrent Zero-Knowledge Is Easy in Practice. Theory of Cryptography
Library, 99-14, June 1999. http://philby.ucsd.edu/cryptolib.

[61] I. Damgård, O. Goldreich, T. Okamoto, and A. Wigderson. Honest Verifier vs Dishonest
Verifier in Public Coin Zero-Knowledge Proofs. In Crypto95, Springer-Verlag Lecture
Notes in Computer Science (Vol. 963), pages 325–338, 1995.

[62] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In Crypto89, Springer-Verlag Lec-
ture Notes in Computer Science (Vol. 435), pages 307–315, 1990.

[63] W. Diffie and M.E. Hellman. New Directions in Cryptography. IEEE Transactions on
Information Theory, IT-22 (Nov.), pages 644–654, 1976.

[64] D. Dolev, C. Dwork, and M. Naor. Non-malleable Cryptography. In 23rd ACM Symposium
on the Theory of Computing, pages 542–552, 1991. (Full version available from authors.)

[65] D. Dolev and A.C. Yao. On the Security of Public-Key Protocols. IEEE Transactions on
Information Theory, Vol. 30, No. 2, pages 198–208, 1983.

[66] C. Dwork, U. Feige, J. Kilian, M. Naor, and S. Safra. Low Communication Perfect Zero
Knowledge Two Provers Proof Systems. In Crypto92, Springer-Verlag Lecture Notes in
Computer Science (Vol. 740), pages 215–227, 1992.

[67] C. Dwork and M. Naor. An Efficient Existentially Unforgeable Signature Scheme and its
Application. Journal of Cryptology, Vol. 11, No. 3, pages 187–208, 1998.

[68] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages
409–418, 1998.

[69] S. Even and O. Goldreich. On the Security of Multi-party Ping-Pong Protocols. In 24th
IEEE Symposium on Foundations of Computer Science, pages 34–39, 1983.

[70] S. Even, O. Goldreich, and A. Lempel. A Randomized Protocol for Signing Contracts.
CACM, Vol. 28, No. 6, pages 637–647, 1985.

[71] S. Even, O. Goldreich, and S. Micali. On-line/Off-line Digital Signatures. Journal of
Cryptology, Vol. 9, pages 35–67, 1996.

[72] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Appli-
cations to Public-Key Cryptography. Information and Control, Vol. 61, pages 159–173,
1984.

[73] S. Even and Y. Yacobi. Cryptography and NP-Completeness. In Proceedings of 7th
ICALP, Springer-Verlag Lecture Notes in Computer Science (Vol. 85), pages 195–207,
1980. (See [72].)

[74] U. Feige. Error Reduction by Parallel Repetition – The State of the Art. Technical Report
CS95-32, Computer Science Department, Weizmann Institute of Science, Rehovot, Israel,
1995.

[75] U. Feige, A. Fiat, and A. Shamir. Zero-Knowledge Proofs of Identity. Journal of Cryptol-
ogy, Vol. 1, pages 77–94, 1988.

358

BIBLIOGRAPHY

[76] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs
under General Assumptions. SIAM Journal on Computing, Vol. 29, No. 1, pages 1–28,
1999.

[77] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. In
Crypto89, Springer-Verlag Lecture Notes in Computer Science (Vol. 435), pages 526–
544, 1990.

[78] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In
22nd ACM Symposium on the Theory of Computing, pages 416–426, 1990.

[79] W. Feller. An Introduction to Probability Theory and Its Applications. Wiley, New York,
1968.

[80] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Identification and
Signature Problems. In Crypto86, Springer-Verlag Lecture Notes in Computer Science
(Vol. 263), pages 186–189, 1987.

[81] M. Fischer, S. Micali, C. Rackoff, and D.K. Wittenberg. An Oblivious Transfer Protocol
Equivalent to Factoring. Unpublished manuscript, 1986. (Preliminary versions were pre-
sented in EuroCrypt84 and in the NSF Workshop on Mathematical Theory of Security,
Endicott House (1985).)

[82] R. Fischlin and C.P. Schnorr. Stronger Security Proofs for RSA and Rabin Bits. In
EuroCrypt97, Springer-Verlag Lecture Notes in Computer Science (Vol. 1233), pages
267–279, 1997.

[83] L. Fortnow. The Complexity of Perfect Zero-Knowledge. In 19th ACM Symposium on the
Theory of Computing, pages 204–209, 1987.

[84] A.M. Frieze, J. Håstad, R. Kannan, J.C. Lagarias, and A. Shamir. Reconstructing Truncated
Integer Variables Satisfying Linear Congruences. SIAM Journal on Computing, Vol. 17,
pages 262–280, 1988.

[85] O. Gaber and Z. Galil. Explicit Constructions of Linear Size Superconcentrators. Journal
of Computer and System Science, Vol. 22, pages 407–420, 1981.

[86] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, 1979.

[87] P.S. Gemmell. An Introduction to Threshold Cryptography. In CryptoBytes (RSA Labo-
ratories), Vol. 2, No. 3, 1997.

[88] R. Gennaro and L. Trevisan. Lower Bounds on the Efficiency of Generic Cryptographic
Constructions. ECCC, TR00-022, May 2000.

[89] O. Goldreich. Two Remarks Concerning the GMR Signature Scheme. In Crypto86,
Springer-Verlag Lecture Notes in Computer Science (Vol. 263), pages 104–110,
1987.

[90] O. Goldreich. Towards a Theory of Software Protection and Simulation by Oblivious
RAMs. In 19th ACM Symposium on the Theory of Computing, pages 182–194, 1987.

[91] O. Goldreich. Foundation of Cryptography – Class Notes. Preprint, spring 1989. (Super-
seded by the current book in conjunction with [92].)

[92] O. Goldreich. Lecture Notes on Encryption, Signatures and Cryptographic Protocol.
(Extracts from [91]. Available from http://theory.lcs.mit.edu/∼oded/
ln89.html. Superseded by the combination of [99], [100], and [98].)

[93] O. Goldreich. A Note on Computational Indistinguishability. Information Processing Let-
ters, Vol. 34, May, pages 277–281, 1990.

[94] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-Knowledge.
Journal of Cryptology, Vol. 6, No. 1, pages 21–53, 1993.

[95] O. Goldreich. Foundation of Cryptography – Fragments of a Book. February 1995. (Avail-
able from http://theory.lcs.mit.edu/∼oded/frag.html. Superseded by the
current book in conjunction with [99].)

359

BIBLIOGRAPHY

[96] O. Goldreich. Notes on Levin’s Theory of Average-Case Complexity. ECCC, TR97-058,
December 1997.

[97] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algo-
rithms and Combinatorics Series (Vol. 17), Springer-Verlag, 1999.

[98] O. Goldreich. Secure Multi-Party Computation. (In preparation, 1998. Working draft avail-
able from http://theory.lcs.mit.edu/∼oded/gmw.html.)

[99] O. Goldreich. Encryption Schemes – Fragments of a Chapter. (December 1999. Available
from http://www.wisdom.weizmann.ac.il/∼oded/foc-book.html.)

[100] O. Goldreich. Signature Schemes – Fragments of a Chapter. (May 2000. Available from
http://www.wisdom.weizmann.ac.il/∼oded/foc-book.html.)

[101] O. Goldreich, S. Goldwasser, and S. Halevi. Collision-Free Hashing from Lattice Prob-
lems. ECCC, TR95-042, 1996.

[102] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal
of the ACM, Vol. 33, No. 4, pages 792–807, 1986.

[103] O. Goldreich, S. Goldwasser, and S. Micali. On the Cryptographic Applications of Random
Functions. In Crypto84, Springer-Verlag Lecture Notes in Computer Science (Vol. 263),
pages 276–288, 1985.

[104] O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuckerman. Security
Preserving Amplification of Hardness. In 31st IEEE Symposium on Foundations of Com-
puter Science, pages 318–326, 1990.

[105] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge Proof
Systems for NP. Journal of Cryptology, Vol. 9, No. 2, pages 167–189, 1996. (Preliminary
versions date to 1988.)

[106] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.
SIAM Journal on Computing, Vol. 25, No. 1, February, pages 169–192, 1996.

[107] O. Goldreich and H. Krawczyk. On Sparse Pseudorandom Ensembles. Random Structures
and Algorithms, Vol. 3, No. 2, pages 163–174, 1992.

[108] O. Goldreich, H. Krawcyzk, and M. Luby. On the Existence of Pseudorandom Generators.
SIAM Journal on Computing, Vol. 22, No. 6, pages 1163–1175, 1993.

[109] O. Goldreich and E. Kushilevitz. A Perfect Zero-Knowledge Proof for a Decision Problem
Equivalent to Discrete Logarithm. Journal of Cryptology, Vol. 6, No. 2, pages 97–116,
1993.

[110] O. Goldreich and L.A. Levin. Hard-Core Predicates for Any One-Way Function. In 21st
ACM Symposium on the Theory of Computing, pages 25–32, 1989.

[111] O. Goldreich and B. Meyer. Computational Indistinguishability – Algorithms vs. Circuits.
Theoretical Computer Science, Vol. 191, pages 215–218, 1998.

[112] O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing but Their Validity
or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM,
Vol. 38, No. 1, pages 691–729, 1991. (Preliminary version in 27th IEEE Symposium on
Foundations of Computer Science, 1986.)

[113] O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental Game – A Com-
pleteness Theorem for Protocols with Honest Majority. In 19th ACM Symposium on the
Theory of Computing, pages 218–229, 1987.

[114] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR-Lemma. ECCC, TR95-050,
1995.

[115] O. Goldreich and Y. Oren. Definitions and Properties of Zero-Knowledge Proof Systems.
Journal of Cryptology, Vol. 7, No. 1, pages 1–32, 1994.

[116] O. Goldreich and E. Petrank. Quantifying Knowledge Complexity. Computational Com-
plexity, Vol. 8, pages 50–98, 1999.

360

BIBLIOGRAPHY

[117] O. Goldreich, R. Rubinfeld, and M. Sudan. Learning Polynomials with Queries: The
Highly Noisy Case. To appear in SIAM Journal on Discrete Mathematics.

[118] O. Goldreich, A. Sahai, and S. Vadhan. Honest-Verifier Statistical Zero-Knowledge Equals
General Statistical Zero-Knowledge. In 30th ACM Symposium on the Theory of Comput-
ing, pages 399–408, 1998.

[119] O. Goldreich and M. Sudan. Computational Indistinguishability: A Sample Hierarchy.
Journal of Computer and System Science, Vol. 59, pages 253–269, 1999.

[120] O. Goldreich and S. Vadhan. Comparing Entropies in Statistical Zero-Knowledge with
Applications to the Structure of SZK. In 14th IEEE Conference on Computational Com-
plexity, pages 54–73, 1999.

[121] S. Goldwasser and J. Kilian. Primality Testing Using Elliptic Curves. Journal of the ACM,
Vol. 46, pages 450–472, 1999. (Preliminary version in 18th ACM Symposium on the Theory
of Computing, 1986.)

[122] S. Goldwasser and L.A. Levin. Fair Computation of General Functions in Presence of
Immoral Majority. In Crypto90, Springer-Verlag Lecture Notes in Computer Science
(Vol. 537), pages 77–93, 1991.

[123] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and Sys-
tem Science, Vol. 28, No. 2, pages 270–299, 1984. (Preliminary version in 14th ACM
Symposium on the Theory of Computing, 1982.)

[124] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive
Proof Systems. SIAM Journal on Computing, Vol. 18, pages 186–208, 1989. (Preliminary
version in 17th ACM Symposium on the Theory of Computing, 1985.)

[125] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal on Computing, April, pages 281–308,
1988.

[126] S. Goldwasser, S. Micali, and P. Tong. Why and How to Establish a Private Code
in a Public Network. In 23rd IEEE Symposium on Foundations of Computer Science,
pages 134–144, 1982.

[127] S. Goldwasser, S. Micali, and A.C. Yao. Strong Signature Schemes. In 15th ACM Sympo-
sium on the Theory of Computing, pages 431–439, 1983.

[128] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive Proof
Systems. Advances in Computing Research: A Research Annual, Vol. 5 (Randomness and
Computation, S. Micali, ed.), pages 73–90, 1989.

[129] J. Håstad, R. Impagliazzo, L.A. Levin, and M. Luby. Construction of a Pseudorandom
Generator from Any One-Way Function. SIAM Journal on Computing, Vol. 28, No. 4,
pages 1364–1396, 1999. (Preliminary versions by Impagliazzo et al. in 21st ACM Sym-
posium on the Theory of Computing (1989) and Håstad in 22nd ACM Symposium on the
Theory of Computing (1990).)

[130] J. Håstad, A. Schrift, and A. Shamir. The Discrete Logarithm Modulo a Composite
Hides O(n) Bits. Journal of Computer and System Science, Vol. 47, pages 376–404,
1993.

[131] R. Impagliazzo and M. Luby. One-Way Functions are Essential for Complexity
Based Cryptography. In 30th IEEE Symposium on Foundations of Computer Science,
pages 230–235, 1989.

[132] R. Impagliazzo and M. Naor. Efficient Cryptographic Schemes Provable as Secure as
Subset Sum. Journal of Cryptology, Vol. 9, pages 199–216, 1996.

[133] R. Impagliazzo and S. Rudich. Limits on the Provable Consequences of One-Way Permu-
tations. In 21st ACM Symposium on the Theory of Computing, pages 44–61, 1989.

[134] R. Impagliazzo and A. Wigderson. P=BPP if E Requires Exponential Circuits:

361

BIBLIOGRAPHY

Derandomizing the XOR Lemma. In 29th ACM Symposium on the Theory of Computing,
pages 220–229, 1997.

[135] R. Impagliazzo and D. Zuckerman. How to Recycle Random Bits. In 30th IEEE Symposium
on Foundations of Computer Science, pages 248–253, 1989.

[136] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. In Crypto87,
Springer-Verlag Lecture Notes in Computer Science (Vol. 293), pages 40–51, 1987.

[137] A. Juels, M. Luby, and R. Ostrovsky. Security of Blind Digital Signatures. In Crypto97,
Springer-Verlag Lecture Notes in Computer Science (Vol. 1294), pages 150–164,
1997.

[138] J. Justesen. A Class of Constructive Asymptotically Good Algebraic Codes. IEEE Trans-
actions on Information Theory, Vol. 18, pages 652–656, 1972.

[139] N. Kahale. Eigenvalues and Expansion of Regular Graphs. Journal of the ACM, Vol. 42,
No. 5, pages 1091–1106, 1995.

[140] J. Kahn, M. Saks, and C. Smyth. A Dual Version of Reimer’s Inequality and a Proof of
Rudich’s Conjecture. In 15th IEEE Conference on Computational Complexity, 2000.

[141] B.S. Kaliski. Elliptic Curves and Cryptography: A Pseudorandom Bit Generator and Other
Tools. Ph.D. thesis, LCS, MIT, Cambridge, MA, 1988.

[142] J. Katz and M. Yung. Complete Characterization of Security Notions for Probabilistic
Private-Key Encryption. In 32nd ACM Symposium on the Theory of Computing, pages
245–254, 2000.

[143] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In 24th ACM
Symposium on the Theory of Computing, pages 723–732, 1992.

[144] J. Kilian and E. Petrank. An Efficient Non-Interactive Zero-Knowledge Proof System for
NP with General Assumptions. Journal of Cryptology, Vol. 11, pages 1–27, 1998.

[145] J.C. Lagarias and A.M. Odlyzko. Solving Low-Density Subset Sum Problems. Journal of
the ACM, Vol. 32, pages 229–246, 1985.

[146] D. Lapidot and A. Shamir. Fully Parallelized Multi-prover Protocols for NEXP-Time.
Journal of Computer and System Science, Vol. 54, No. 2, April, pages 215–220, 1997.

[147] A. Lempel. Cryptography in Transition. Computing Surveys, Vol. 11, No. 4, pages 285–
303, December 1979.

[148] A.K. Lenstra, H.W. Lenstra, and L. Lovász. Factoring Polynomials with Rational Coeffi-
cients. Mathematische Annalen, Vol. 261, pages 515–534, 1982.

[149] L.A. Levin. Average Case Complete Problems. SIAM Journal on Computing, Vol. 15,
pages 285–286, 1986.

[150] L.A. Levin. One-Way Function and Pseudorandom Generators. Combinatorica, Vol. 7,
pages 357–363, 1987.

[151] L.A. Levin. Randomness and Non-determinism. Journal of Symbolic Logic, Vol. 58,
No. 3, pages 1102–1103, 1993.

[152] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer-Verlag, 1993.

[153] J.H. van Lint. Introduction to Coding Theory. Graduate Texts in Mathematics (Vol. 88),
Springer-Verlag, 1982.

[154] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan Graphs. Combinatorica, Vol. 8,
pages 261–277, 1988.

[155] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton University Press,
1996.

[156] M. Luby and C. Rackoff. How to Construct Pseudorandom Permutations from Pseudo-
Random Functions. SIAM Journal on Computing, Vol. 17, pages 373–386, 1988.

[157] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for Interactive Proof
Systems. Journal of the ACM, Vol. 39, No. 4, pages 859–868, 1992.

362

BIBLIOGRAPHY

[158] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryptography.
CRC Press, Boca Raton, FL, 1996.

[159] R.C. Merkle. Secure Communication over Insecure Channels. CACM, Vol. 21, No. 4,
pages 294–299, 1978.

[160] R.C. Merkle. Protocols for Public Key Cryptosystems. In Proceedings of the 1980 IEEE
Symposium on Security and Privacy, pages 122–134, 1980.

[161] R.C. Merkle. A Digital Signature Based on a Conventional Encryption Function. In
Crypto87, Springer-Verlag Lecture Notes in Computer Science (Vol. 293), pages 369–
378, 1987.

[162] R.C. Merkle. A Certified Digital Signature Scheme. In Crypto89, Springer-Verlag Lecture
Notes in Computer Science (Vol. 435), pages 218–238, 1990.

[163] R.C. Merkle and M.E. Hellman. Hiding Information and Signatures in Trapdoor Knap-
sacks. IEEE Transactions on Information Theory, Vol. 24, pages 525–530, 1978.

[164] S. Micali, C. Rackoff, and B. Sloan. The Notion of Security for Probabilistic Cryptosys-
tems. SIAM Journal on Computing, Vol. 17, pages 412–426, 1988.

[165] S. Micali and P. Rogaway. Secure Computation. In Crypto91, Springer-Verlag Lecture
Notes in Computer Science (Vol. 576), pages 392–404, 1992.

[166] G.L. Miller. Riemann’s Hypothesis and Tests for Primality. Journal of Computer and
System Science, Vol. 13, pages 300–317, 1976.

[167] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
[168] National Bureau of Standards. Federal Information Processing Standards, Publ. 46 (DES

1977).
[169] National Institute for Standards and Technology. Digital Signature Standard (DSS). Fed-

eral Register, Vol. 56, No. 169, August 1991.
[170] M. Naor. Bit Commitment Using Pseudorandom Generators. Journal of Cryptology, Vol. 4,

pages 151–158, 1991.
[171] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. Zero-Knowledge Arguments for NP

Can Be Based on General Assumptions. Journal of Cryptology, Vol. 11, pages 87–108,
1998.

[172] M. Naor and O. Reingold. Synthesizers and Their Application to the Parallel Construction
of Pseudo-Random Functions. In 36th IEEE Symposium on Foundations of Computer
Science, pages 170–181, 1995.

[173] M. Naor and O. Reingold. On the Construction of Pseudo-Random Permutations:
Luby-Rackoff Revisited. Journal of Cryptology, Vol. 12, No. 1, pages 29–66, 1999.

[174] M. Naor and O. Reingold. From Unpredictability to Indistinguishability: A Simple Con-
struction of Pseudorandom Functions from MACs. In Crypto98, Springer-Verlag Lecture
Notes in Computer Science (Vol. 1464), pages 267–282, 1998.

[175] M. Naor and M. Yung. Universal One-Way Hash Functions and Their Cryptographic
Application. In 21st ACM Symposium on the Theory of Computing, pages 33–43,
1989.

[176] M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure Against Chosen
Ciphertext Attacks. In 22nd ACM Symposium on the Theory of Computing, pages 427–
437, 1990.

[177] N. Nisan and D. Zuckerman. Randomness Is Linear in Space. Journal of Computer and
System Science, Vol. 52, No. 1, pages 43–52, 1996.

[178] A.M. Odlyzko. The Future of Integer Factorization. CryptoBytes (RSA Laborato-
ries), Vol. 1, No. 2, pages 5–12, 1995. (Available from http://www.research.

att.com/∼amo.)
[179] A.M. Odlyzko. Discrete Logarithms and Smooth Polynomials. In Finite Fields: Theory,

Applications and Algorithms, G.L. Mullen and P. Shiue, eds., Contemporary Mathematics,

363

BIBLIOGRAPHY

Vol. 168, American Mathematical Society, pages 269–278, 1994. (Available from
http://www.research.att.com/∼amo.)

[180] T. Okamoto. On Relationships between Statistical Zero-Knowledge Proofs. In 28th ACM
Symposium on the Theory of Computing, pages 649–658, 1996.

[181] R. Ostrovsky and A. Wigderson. One-Way Functions Are Essential for Non-Trivial
Zero-Knowledge. In 2nd Israel Symposium on Theory of Computing and Systems, IEEE
Comp. Soc. Press, pages 3–17, 1993.

[182] R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Attacks. In 10th ACM Sym-
posium on Principles of Distributed Computing, pages 51–59, 1991.

[183] B. Pfitzmann. Digital Signature Schemes (General Framework and Fail-Stop Signatures).
Springer-Verlag Lecture Notes in Computer Science (Vol. 1100), 1996.

[184] V. Pratt. Every Prime Has a Succinct Certificate. SIAM Journal on Computing, Vol. 4,
pages 214–220, 1975.

[185] M.O. Rabin. Probabilistic Algorithm for Testing Primality. Journal of Number Theory,
Vol. 12, pages 128–138, 1980.

[186] M.O. Rabin. Digitalized Signatures. In Foundations of Secure Computation, R.A. DeMillo
et al., eds. Academic Press, 1977.

[187] M.O. Rabin. Digitalized Signatures and Public Key Functions as Intractable as Factoring.
TR-212, LCS, MIT, Cambridge, MA, 1979.

[188] M.O. Rabin. How to Exchange Secrets by Oblivious Transfer. Tech. Memo. TR-81, Aiken
Computation Laboratory, Harvard University, 1981.

[189] R. Richardson and J. Kilian. On the Concurrent Composition of Zero-Knowledge
Proofs. In EuroCrypt99, Springer-Verlag Lecture Notes in Computer Science (Vol. 1592),
pages 415–413, 1999.

[190] R. Raz. A Parallel Repetition Theorem. SIAM Journal on Computing, Vol. 27, No. 3,
pages 763–803, 1998.

[191] R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signatures and
Public Key Cryptosystems. CACM, Vol. 21, pages 120–126, 1978.

[192] J. Rompel. One-Way Functions Are Necessary and Sufficient for Secure Signatures. In
22nd ACM Symposium on the Theory of Computing, pages 387–394, 1990.

[193] A. Sahai. Non-Malleable Non-Interactive Zero Knowledge and Achieving Chosen-
Ciphertext Security. In 40th IEEE Symposium on Foundations of Computer Science,
pages 543–553, 1999.

[194] A. Sahai and S. Vadhan. A Complete Promise Problem for Statistical Zero-Knowledge.
In 38th IEEE Symposium on Foundations of Computer Science, pages 448–457, 1997.

[195] C.P. Schnorr and H.H. Horner. Attacking the Chor-Rivest Cryptosystem by Improved
Lattice Reduction. In EuroCrypt95, Springer-Verlag Lecture Notes in Computer Science
(Vol. 921), pages 1–12, 1995.

[196] A. Shamir. How to Share a Secret. CACM, Vol. 22, pages 612–613, 1979.
[197] A. Shamir. A Polynomial-Time Algorithm for Breaking the Merkle-Hellman Cryptosys-

tem. In 23rd IEEE Symposium on Foundations of Computer Science, pages 145–152, 1982.
[198] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39, No. 4, pages 869–877, 1992.
[199] A. Shamir, R.L. Rivest, and L. Adleman. Mental Poker. Report TM-125, LCS, MIT,

Cambridge, MA, 1979.
[200] C.E. Shannon. Communication Theory of Secrecy Systems. Bell Systems Technical Jour-

nal, Vol. 28, pages 656–715, 1949.
[201] M. Sipser. A Complexity Theoretic Approach to Randomness. In 15th ACM Symposium

on the Theory of Computing, pages 330–335, 1983.
[202] M. Sipser. Introduction to the Theory of Computation. PWS Publishing, Boston, MA,

1997.

364

BIBLIOGRAPHY

[203] R. Solovay and V. Strassen. A Fast Monte-Carlo Test for Primality. SIAM Journal on
Computing, Vol. 6, pages 84–85, 1977. (Addendum in SIAM Journal on Computing,
Vol. 7, page 118, 1978.)

[204] M. Sudan. Decoding of Reed-Solomon Codes beyond the Error-Correction Bound. Journal
of Complexity, Vol. 13, No. 1, pages 180–193, 1997.

[205] M. Tompa and H. Woll. Random Self-Reducibility and Zero-Knowledge Interactive Proofs
of Possession of Information. In 28th IEEE Symposium on Foundations of Computer
Science, pages 472–482, 1987.

[206] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. Ph.D. thesis, Department of
Mathematics, MIT, Cambridge, MA, 1999.

[207] A. Vardi. Algorithmic Complexity in Coding Theory and the Minimum Distance Problem.
In 29th ACM Symposium on the Theory of Computing, pages 92–108, 1997.

[208] U.V. Vazirani and V.V. Vazirani. Efficient and Secure Pseudo-Random Number Genera-
tion. In 25th IEEE Symposium on Foundations of Computer Science, pages 458–463,
1984.

[209] M. Wegman and L. Carter. New Hash Functions and Their Use in Authentication and Set
Equality. Journal of Computer and System Science, Vol. 22, pages 265–279, 1981.

[210] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium on
Foundations of Computer Science, pages 80–91, 1982.

[211] A.C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Symposium on Founda-
tions of Computer Science, pages 162–167, 1986.

365

Index

Author Index

Adleman, L., 26, 89, 334
Ajtai, M., I., 91
Bach, E., 90
Bellare, M., 321
Ben-Or, M., 321
Blum, M., 89, 169, 321, 337
Brassard, G., 321
Carter, L., 170
Chaitin, G.J., 102
Chaum, D., 321
Crépeau, C., 321
Diffie, W., 26, 89
Even, S., 187
Feige, U., 321
Feldman, P., 321
Fiat, A., 321
Fischer, M., 26
Goldreich, O., 89, 170, 320–322
Goldwasser, S., 22, 26, 169, 170, 320, 321, 337
Håstad, J., 170
Hellman, M.E., 26, 89, 90
Impagliazzo, R., 170
Kilian, J., 321
Kolmogorov, A., 102
Krawczyk, H., 170
Lapidot, D., 321
Levin, L.A., 89, 91, 170
Lipton, R., 26
Luby, M., 170
Merkle, R.C., 26, 90
Micali, S., 22, 26, 89, 169, 170, 320, 321, 337
Naor, M., 320
Odlyzko, A., 90

Pratt, V., 90
Rabin, M., 26, 89
Rackoff, C., 26, 89, 170, 320, 321
Rivest, R.L., 22, 26, 89, 334
Shamir, A., 26, 89, 90, 321, 334
Shannon, C.E., 26
Sipser, M., 170
Solomonov, R.J., 102
Turing, A., 188
Vadhan, S., 322
Virgil, 195, 207
von Kant, P., 195, 207
Wegman, M., 170
Wigderson, A., 320, 321
Wittgenstein, L., 21
Yao, A.C., 89, 169

Subject Index

Arguments. See Interactive proofs
Averaging argument. See Techniques

Blum integers, 57, 60, 62, 283, 337

Chebyshev inequality, 10, 29, 70, 72, 137
Chernoff bound, 11, 28, 29, 106, 147
Chinese Remainder Theorem, 60, 335
Classic cryptography, 2, 26
Claw-free pairs. See One-way functions
Collision-free hashing. See Hashing
Commitment schemes, 223–240, 242–243, 252,

274, 276, 287, 320
based on one-way function, 226–227
based on one-way permutation, 225–226

367

INDEX

canonical revealing, 225, 280, 290, 315
computational secrecy, 290
computationally binding, 225, 278–286
computationally hiding, 225, 228, 278, 285,

289, 290
non-oblivious, 269, 294–297, 352
non-uniform computational secrecy, 227,

229–240, 242
non-uniform computational unambiguity, 283
perfect a posteriori secrecy, 283–284, 293
perfect secrecy, 288, 290
perfectly binding, 225, 278, 284, 285, 289,

290, 313
perfectly hiding, 225, 278–286, 289–294,

300, 313
terminology, 278
two senders, 313–317, 321
with trapdoor, 297–298

Complexity classes
AM, 250–251
BPP , 15–16, 18, 29, 31, 188, 194, 195, 201,

205, 209, 247–249, 253–255, 270, 277,
282, 287, 306, 309, 311, 319, 330

coAM, 250
coNP , 199, 250
CZK, 205
IP , 194, 199, 205
MA, 324
NP , 13, 26, 31, 184, 188–189, 194, 195,

198, 199, 223, 240–243, 246, 249–251,
254–261, 263, 268–269, 276, 284–288

NPC, see NP-completeness 12
P , 12, 31, 189
PCP. See Probabilistically checkable proofs
PSPACE , 199
PZK, 205
SZK, 205, 322
ZK, 205

Composite numbers
Blum integers. See Blum intergers
some background, 334–337

Computational complexity
assumptions, 19–20
average-case complexity, 20, 31, 91
background, 12–20
classes. See Complexity classes
non-uniform complexity, 16–19

Computational difficulty. See One-way
functions

Computational indistinguishability, 26, 74,
76–77, 101, 103–112, 115–118, 120–
123, 127–128, 132, 139, 148, 164–165,

169, 202–204, 207, 213–216, 220–222,
224, 231–239, 255, 256, 300, 302, 307,
309

by circuits, 106–107, 111–112, 148, 173–174,
214–216, 221, 222, 228, 232–239

by repeated sampling, 107–110, 152, 157
versus statistical indistinguishability,

106–107, 113, 170
Computational models

interactive machines. See Interactive
machines

non-determinism. See Non-determinism.
non-uniform. See Non-uniform complexity.
oracle machines. See Oracle machines
probabilistic machines. See Probabilistic

machines
Cryptographic protocols, 6–8, 350–353

Density-of-primes theorem, 94, 333
DES

high-level structure, 164, 166–167
Discrete-logarithm problem. See DLP function
DLP. See DLP function
DLP function, 57, 282, 289

claw-free property, 61, 282
hard-core, 65, 89, 91, 133

Elliptic curve, 58
Encryption schemes, 2–3, 31, 169, 338–345

chosen message attack, 269
private-key, 26
public-key, 3, 26, 52, 225, 269, 327
Randomized RSA, 342

Expander graph, 80, 81
explicitly constructed, 80, 91
random walk on, 80, 82, 83, 91

Factoring integers, 40, 57
Factoring polynomials, 332
Fermat’s little theorem, 332
Fiat-Shamir identification scheme. See

Identification schemes
Function ensembles, 149–150

constructible, 149, 158
constructible and pseudorandom, 150
pseudorandom, 149, 158, 162
pseudorandom, more about. See

Pseudorandom functions

Gödel’s Incompleteness Theorem, 188
Gilbert-Varshamov bound, 41
Graph Coloring, 228

368

INDEX

Graph connectivity, 13–14, 28–29
Graph Isomorphism, 64, 97, 196, 207,

270, 275

Hamiltonian cycle, 276, 297, 302
Hard-core predicates. See One-way

functions
Hashing

collision-free, 52, 286, 287, 349
universal. See Hashing functions
universal one-way, 349

Hashing functions, 136–137, 177–178
Hoefding inequality, 12, 28
Hybrid argument. See Techniques

Identification schemes, 270–274
Fiat-Shamir, 272, 321

Identifying friend or foe, 157
Interactive machine, 191

joint computation, 191
the complexity of, 192
two-partner model, 311, 312

Interactive proofs, 190–200, 277
arguments, 223, 247, 251, 277–288,

321
Arthur-Merlin, 198, 254, 320
auxiliary inputs, 199–200, 213, 230, 234,

240–242, 255, 277
completeness, 193–195, 198
computationally sound, 223, 251–253,

277–288, 321
constant-round, 199
definition, 190–195, 320
error reduction, 194, 195, 230
for Graph Non-Isomorphism, 195–199,

320
for PSPACE , 199, 320
general definition, 194
multi-prover, 223, 311–321
NP as a special case, 188, 194
perfect completeness, 198, 199, 243
proving power of, 198–199
public-coin, 198, 199, 243, 253–254
round-efficient, 288
simple definition, 193
soundness, 193–195, 198
unidirectional, 247
zero-knowlege. See Zero-knowledge

IP
as a class. See Complexity classes
the notion. See Interactive proofs

Kolmogorov complexity, 102, 105, 170

Markov inequality, 9, 28, 29, 67
Message authentication, 5, 344, 345, 347

Negligible function, 16, 32, 33, 35, 105, 106,
202, 204, 266, 274

NIZK. See Zero-knowledge
Non-determinism, 13, 15, 19
Non-interactive zero-knowledge. See

Zero-knowledge
Non-uniform complexity, 16–19, 41–43, 59, 88,

93, 111–112, 148, 214–216, 221, 222,
228–240, 242, 283, 287, 294, 297, 305, 327

Noticeable function, 35, 266
NP

as a class. See Complexity classes
as a proof system. See Interactive proofs, 188,

194, 247, 299
versus P. See P-vs-NP question

NP-completeness, 13, 41, 228, 240–246
Bounded Halting, 244
G3C , 13, 240
generic reduction, 241, 326
Karp reduction, 241, 327
Levin reduction, 326
strong sense, 241, 298, 326

Oblivious transfer, 26
One-way functions, 1–4, 7, 26, 27, 30–100, 252,

257, 272, 297, 340, 344, 347, 349
based on coding theory, 41, 89, 90
based on DLP, 57, 90, 282
based on factoring, 40, 57, 90, 282
based on integer lattices, 91
based on subset sum, 41, 89, 90
candidates, 40–41, 55–58, 63–64
claw-free collections, 53, 60–63, 89, 282, 294
collection of, 53–63, 65, 249
definitions, 32–43
distributional, 96, 174
hard-core, 64–78, 89, 170
hard-core functions, 74–78, 89, 134–135,

138–141
length conventions, 35–40
length-preserving, 39
length-regular, 39
modular squaring, 57
motivation, 31–32
non-uniform hardness, 41–43, 59, 88, 93,

148, 205, 228, 249, 259, 269, 276, 297,
323, 327

369

INDEX

One-way functions (cont.)
on some lengths, 36
one–to–one, 40, 98, 135, 138, 141, 225,

226
quantitative hardness, 48, 79
Rabin function, 57, 89, 90
regular, 79, 142, 146
RSA, 56, 89, 90
strong, 32, 66
strong vs weak, 43–51, 78–89
the inner-product hard-core, 65–76
universal, 52–53, 89
weak, 35, 89, 96

One-way permutations, 79, 225, 256, 281, 305,
310, 328, 349

based on DLP, 57, 133
based on factoring, 57, 134
claw-free collections, 61–63, 89, 349
collection of, 53, 56–61, 66, 88
hard-core, 66, 131, 225, 250, 301–302, 328,

341
modular squaring, 57
non-uniform hardness, 286
RSA, 56, 133
with trapdoor, 53, 58–60, 66, 88, 302, 305,

311, 340–344, 352
Oracle machines, 20, 148–169, 262–277

P-vs-NP question, 13, 20, 22, 31, 93
Parallel composition

in computationally sound proofs, 223, 278,
323

in interactive proofs, 209
in multi-prover proofs, 223, 313, 317, 318,

322, 323
in proofs of knowledge, 223, 268, 328
in witness-indistinguishable proofs, 258–259
in zero-knowledge protocols, 222–223, 240,

246, 251–254, 321
PCP. See Probabilistically checkable proofs
Permutation ensembles, 164

invertible, 165
pseudorandom, 164
strongly pseudorandom, 165

Primality testing, 332–333
Prime numbers

generation of, 134, 333
some background, 331–334

Probabilistic machines, 14–16
Probabilistically checkable proofs, 254, 286,

287, 319, 322
Probability ensembles, 104

efficiently constructible, 108

Probability theory
conventions, 8–9
inequalities, 9–12

Proofs of ability, 270, 273–274
Proofs of identity. See Identification schemes
Proofs of knowledge, 223, 252, 262–277,

294–296, 298, 321, 352
ability. See Proofs of ability
applications, 269–274
definition, 262–266
error reduction, 266–268, 328
for Hamiltonian cycle, 276, 329
for NP in zero-knowledge, 269, 277
in zero-knowledge, 268–269, 275–277
strong, 274–277, 329

Protocols. See Cryptographic protocols
Pseudorandom Ensembles, 112

unpredictability of, 119–123, 176
Pseudorandom functions, 101, 148–163, 170,

171, 274, 341, 347, 348
applications, 157–158, 170, 171
based on pseudorandom generators,

150–157
generalized notion, 158–163
methodology, 157–158

Pseudorandom generators, 3–4, 101, 226–227,
307–309, 340

applications, 119, 171, 226
based on 1-1 one-way functions, 135–141
based on DLP, 133, 170
based on factoring, 134, 170
based on one-way functions, 135–148, 170,

171
based on one-way permutations, 124–135,

169
based on regular one-way functions,

141–147
based on RSA, 133
computational indistinguishability. See

Computational indistinguishability
construction of, 124–148
definitions, 112–124, 169
direct access, 179
increasing the expansion, 114–118
motivation, 102–103
necessary condition, 123–124
non-uniform hardness, 148
on-line, 176–177, 179
standard definition, 113
unpredictability of, 119–123, 169
variable-output, 114, 118–119

Pseudorandom permutations, 164–171
based on pseudorandom functions, 166–169

370

INDEX

Rabin function, 57, 60
claw-free property, 62, 283
hard-core, 65, 89, 91, 134

Random linear codes, 41
Random Oracle Methodology, 171–172
Random Oracle Model, See Random Oracle

Methodology
Random variables

conventions, 8–9
pairwise independent, 10–11, 68, 69
totally independent, 11–12, 106

Reducibility argument. See Techniques
Rigorous treatment

asymptotic analysis, 23
motivation, 21–25

RSA function, 56, 60
hard-core, 65, 91, 133
hard-core function, 74, 342

Secret sharing schemes, 352
Sequential composition

in computationally sound proofs, 278
in multi-prover proofs, 312
in proofs of knowledge, 267–268,

275–277
in zero-knowledge protocols, 216–222

Signature schemes, 4–6, 26, 274, 298, 327,
345–350

Signatures. See Signature schemes
Signatures paradigm. See Techniques
Sources of imperfect randomness, 171
Statistical difference, 106, 113, 202, 204,

234, 280
Statistical indistinguishability, 106, 204
Subset sum, 41

Techniques
averaging argument, 18, 42, 67, 71, 220,

239, 315
hybrid argument, 101, 102, 108–111,

115–118, 121–123, 138, 141, 152–157,
159, 163, 170, 182, 220–222, 233, 239,
258–259, 309

leftover hash lemma, 136
probabilistic argument, 106–107
reducibility argument, 30, 37–39, 43–52, 66,

81, 82, 85–88, 108, 110, 124, 125, 133,
139, 140, 142–144, 285

the simulation paradigm, 189, 201, 266,
269

Trapdoor permutation. See One-way
permutations

Undecidability
Halting Problem, 188

Witness hiding, 257–261, 273, 298, 321
Witness indistinguishability, 254–261, 309,

321, 328
concurrent composition, 259
parallel composition, 258–259
strong, 256–257, 328

Yao’s XOR Lemma, 89, 91

Zero-knowledge, 7–8, 26, 184–330, 352
almost perfect, 204–205, 250–252, 280, 322
alternative formulation, 203, 255
applications, 242–243, 320
auxiliary inputs, 213–222, 230, 231,

241–242, 248, 255
black box, 214, 245, 251–254, 289
class of languages, 205
composition of, 216–223
computational, 202, 204, 206, 213, 214, 221
concurrent, 259, 323
constant-round, 253–254, 288–298, 300, 321
definitions, 200–207, 213–216, 320
deterministic prover, 248
deterministic verifier, 247–248
efficiency considerations, 243–245
expected polynomial time, 205–206, 245,

289–298
for Graph Coloring, 228–240
for Graph Isomorphism, 207–213, 273, 275,

320
for Graph Non-Isomorphism, 270
for Hamiltonian cycle, 244, 276, 303, 327,

329
for hard languages, 249–250
for IP , 243, 320
for NP , 223–246, 320
for Quadratic Non-Residuosity, 320
for Quadratic Residuosity, 321
honest verifier, 206–207, 299
knowledge tightness, 244–246, 327
liberal formulation, 205
motivation, 185–190
multi-prover, 311–321
negative results, 246–254, 320
non-interactive, 298–311, 321
outside BPP , 249
parallel composition, 222–223, 240, 246,

251–254, 258
perfect, 201, 204, 205, 214, 221, 250,

311–322

371

INDEX

Zero-knowledge (cont.)
proofs of knowledge. See Proofs of

knowledge
public coin, 253–254
resettable, 323
round-complexity, 244
round-efficient, 254, 288–298, 300, 321
sequential composition, 216–222, 230
statistical, 204–205, 250–251, 280, 322

unidirectional, 247–248
uniform treatment, 215, 322
witness hiding. See Witness hiding
witness indistinguishability. See Witness

indistinguishability
ZK

as a class. See Complexity classes
the notion. See Zero-knowledge
ZKIP. See Zero-knowledge

372

